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Abstract: The oxidation process is considered to be the main reason behind human aging, human
degenerative diseases and food quality degradation. Food-derived peptidic antioxidants (PAs) have
wide sources and great activity, and have broad application prospects in removing excess reactive
oxygen species in the body, anti-aging and preventing and treating diseases related to oxidative stress.
On the other hand, PAs are expected to inhibit the lipid peroxidation of foods and increase the stability
of the food system in the food industry. However, the production pathways and action mechanism of
food-derived PAs are diverse, which makes it is difficult to evaluate the performance of PAs which
is why the commercial application of PAs is still in its infancy. This article focuses on reviewing
the preparation, purification, and characterization methods of food-derived PAs, and expounds the
latest progress in performance evaluation and potential applications, in order to provide an effective
reference for subsequent related research of PAs.
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1. Introduction

Since the theory of free radicals was proposed, more and more studies have proved that the
degenerative changes in the aging process are related to the production of reactive oxygen species
(ROS) such as superoxide anion radical (O2

•−), hydroxyl radical (•OH), lipid radical (ROO•) and
reactive nitrogen species such as nitrogen oxide (NO•) during cellular metabolism [1–3]. Generally,
free radicals in the body are continuously generated, and there also exists a defense system, composed of
endogenous antioxidants (glutathione (GSH), etc.) and antioxidant enzymes (superoxide dismutase
(SOD), glutathione peroxidase (GSH-Px), peroxidase, etc.), to maintain the normal metabolic balance
of ROS and further protect the body from free radical damage [4,5]. However, when the body ages or
is in a bad environment, free radicals are excessively produced or removed slowly, causing oxidative
stress [6]. Oxidative stress can cause oxidation of the substances that constitute cell tissues such
as lipids, carbohydrates, proteins, and DNA, resulting in oxidative damage such as denaturation,
cross-linking, and breakage [7,8]. A large number of studies have demonstrated that many organ
dysfunctions or tissue lesions such as heart disease, stroke, arteriosclerosis, diabetes, and cancer are
related to the increased content of ROS in the body [9,10]. Therefore, it is necessary to seek exogenous
antioxidants that can maintain the balance of free radical metabolism in the body together with the
endogenous antioxidant system to adjust and improve human physiological functions, so as to achieve
the purpose of preventing and treating chronic diseases [11,12]. Additionally, unfavorable factors

Antioxidants 2020, 9, 799; doi:10.3390/antiox9090799 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
http://www.mdpi.com/2076-3921/9/9/799?type=check_update&version=1
http://dx.doi.org/10.3390/antiox9090799
http://www.mdpi.com/journal/antioxidants


Antioxidants 2020, 9, 799 2 of 36

such as heat, light-sensitive transition metals, metal proteins and radiation can lead to food lipid
peroxidation, that cause changes in food quality such as color, smell, tissue structure and nutritional
components and result in a decline in food quality and even the production of harmful substances [13].
Therefore, it is necessary to add antioxidants in the production process to maintain food quality
(especially for meat products) [14]. Synthetic antioxidants with strong antioxidant effects such as
2,6-Di-tert-butyl-4-methylphenol (BHT) and butylhydroxyanisole (BHA) are restricted or prohibited
due to the potential teratogenic and carcinogenic effects on the human body [15].

Recently, the development of high-efficiency and safe antioxidants from natural products,
especially foods, has become one research hotpot and has attracted widespread attention from
researchers. Except for some well-known natural antioxidants (such as vitamins, bioflavonoids,
carotenoids, proteins, amino acids, etc.), peptides also have the same antioxidant mechanism [16,17].
Compared to amino acids and macromolecular proteins, peptides with a structure between them
have extremely biological diversity and more significant antioxidant properties. In addition, peptidic
antioxidants (PAs) can be ingested safely, and usually possess other biological activities such as
antibacterial, anti-hypertensive and cholesterol reduction [18–21]. Based on the above advantages,
PAs have become potential raw materials for the development of new functional foods, health products,
and food additives. Some PAs are naturally present in foods. However, due to the low content and
limited sources, the extraction operation of such peptides is complicated and costly, which makes
it difficult for industrial production and commercial application. Studies have shown that peptide
sequences with antioxidant activity are often found in food proteins (edible proteins, and waste proteins
in food processing), and they need to be released through certain technologies (Figure 1) [22,23]. Due to
the wide sources and abundant content of precursor proteins, these types of PAs can greatly improve
the economic benefits of the food industry and promote environmental protection, with a wide range
of practical applications (Figure 1) [24,25].
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This article reviews the latest advances of PAs in foods and food processing by-products,
especially the methods of preparation, purification, and characterization, and also summarizes the
structure–activity relationship (SAR) of PAs derived from food proteins. Additionally, due to the
complexity of the antioxidant mechanism of bioactive peptides, this article comprehensively analyzes
the main methods for PA performance evaluation and summarizes its application prospects in
food-related fields in order to provide a certain reference for the subsequent research of PAs.
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2. Preparation of PAs Derived from Food Proteins

The protein in foods is an important source of PAs, and the bioactive peptides can be released by
suitable degradation means from the proteins [26]. At present, the methods for producing PAs through
degrading proteins mainly include enzymatic hydrolysis, gastrointestinal (GI) digestion, and microbial
fermentation and other food processing [27].

2.1. Enzymatic Hydrolysis

Enzymatic hydrolysis is a method for preparing PAs by using endogenous or exogenous proteases
to degrade food proteins [28]. Because the conditions of the hydrolysis process are relatively mild
and easy to control, enzymolysis is currently the most frequently used strategy in preparing PAs,
developing new PAs and studying the SAR of PAs [29,30]. Table 1 illustrates the PAs prepared by
enzymatic hydrolysis using edible animal and plant proteins as raw materials in recent years. The SAR
indicates that the PA properties are mainly related to the molecular weight (Mw), the composition
of amino acids and hydrophobicity [31,32]. The types of food proteins and enzymes directly affect
the structure of PAs. Soybean protein [33–35], wheat protein [36], corn protein [37], rice protein [38]
of plant origin and muscle protein [39,40], collagen [41], milk protein [42], egg protein [43] of animal
origin have been used for the preparation of PAs. Additionally, the parameters of time, added amount,
temperature and pH may affect the degree of hydrolysis (DH) of the substrate proteins, which further
affect the size and amino acid composition of the obtained peptides [44,45]. Due to the different
targets and cleavage methods of enzymes, the kinds and properties of enzymes are crucial to the
preparation of PAs by hydrolysis [46]. Compared to the endogenous enzymes, exogenous proteases
have higher hydrolysis efficiency and are controllable for hydrolyzed products [47]. In the early days,
proteases were selected by comparing the antioxidant properties of hydrolysates obtained under
optimal conditions through preliminary biochemical experiments [48]. Wattanasiritham et al. used
Trypsin and Papain to hydrolyze rice bran protein (RBP), in which the RBP hydrolyzed by Trypsin
had the highest antioxidant activity [49]. Although this strategy is blind and needs a cumbersome
experimental process, it is still the main way to develop new PAs and improve the system of SAR.
With the deepening of SAR research, databases related to PAs have been gradually constructed, and the
quantitative SAR (QSAR) bioinformatics have also been gradually applied to proteases selection
and exploration of new PAs [50,51]. Esfandi et al. compared the effect of different enzymes on the
extraction and hydrolysis to oat bran proteins by peptide analysis method and antioxidant activity
measurement [52]. The results showed that Viscozyme-proteins hydrolyzed with Papain showed
stronger antioxidant capacity. The effect of 21 different enzymes and enzyme combinations on the
release of potential PAs in major yolk protein of sea urchin Strongylocentrotus nudus was analyzed by
in silico analysis [53]. From the obtained results, the Proteinase K, Papain and GI tract enzymes have
the best hydrolysis effect (the number of peptides effectively released are 20, 16 and 13–15, respectively).
The use of bioinformatics can transform the tedious, time-consuming and high-cost process of exploring
new PAs into a simple, systematic, and designable one, which has wide application prospects [54].
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Table 1. Enzymes used for the preparation of food protein hydrolysate, the methods of purification, and the evaluation of antioxidant capacity 1.

Source Enzyme and Purification
Methods In Vitro Chemical Evaluation IC50 or Scavenging Activity 2 Amino Acid Sequence or

Molecular Weight Ref

Egg white
protein powder

Alcalase; UF (30, 10, 1 kDa),
GFC (Sephadex), RP-HPLC

Reducing power assay
DPPH radical scavenging activity
ABTS radical scavenging activity

ORAC assay

ABTS (92.21 ± 0.5% at 5 mg/mL)
ORAC (1238.56 ± 0.6 µmol TE/g)

DPPH (FFGFN IC50 = 80 mM;
MPDAHL IC50 = 60 mM)

DHTKE, FFGFN,
MPDAHL [55]

Duck (Anas
platyrhynchos)

breasts

Protamex; UF (30, 10 kDa),
GFC (Sephadex G-25), IEC

DPPH radical scavenging activity
•OH scavenging activity
Fe2+ chelating activity

DPPH (93.63 ± 0.13% at
1.0 mg/mL)

LQAEVEELRAALE,
IEDPFDQDDWGAWKK,

AGRALTAYLMKIL,
GYDLGEAEFARIM

[56]

Chickpea seeds Pepsin, Pancreatin; AC,
GFC, nanofiltration

Reducing power assay
DPPH radical scavenging activity -

ALEPDHR,
TETWNPNHPEL, FVPH,

SAEHGSLH
[57]

Rice residue
protein

Papain, Flavourzyme,
Protamex; GFC (Sephadex

G-15), RP-FPLC

DPPH radical scavenging activity
ABTS radical scavenging activity

FRAP-Fe3+ reducing
capacity assay

DPPH (77.6% at 0.5 mg/mL,
IC50 = 0.25 mg/mL)

RPNYTDA, TSQLLSDQ,
TRTGDPFF, NFHPQ [58]

Rice bran protein Trypsin; RP-HPLC ORAC assay ORAC (4.07 µmol TE/g) 800–2100 Da [49]

Pinto bean
protein isolate

Protamex; UF (100, 50, 30, 10,
3 kDa)

ABTS radical scavenging activity
FRAP assay

ABTS (42.2% at 7mM); FRAP
(0.81 mM)

PPHMLP, PPMHLP,
PLPPHMLP, PLPLHMLP,

ACSNHSPLGWRGH,
LSSLEMGSLGALFVCM

[59]

Pearl millet Trypsin; GFC (Sephadex
G-25), RP-UFLC

DPPH radical scavenging activity
ABTS radical scavenging activity

Fe2+ chelating activity
Reducing power assay
•OH scavenging activity

DPPH (67.66% at 1 mg/mL);
ABTS (78.81% at 1 mg/mL) SDRDLLGPNNQYLPK [60]
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Table 1. Cont.

Source Enzyme and Purification
Methods In Vitro Chemical Evaluation IC50 or Scavenging Activity 2 Amino Acid Sequence or

Molecular Weight Ref

Palmaria palmata
protein

Corolase® PP; SPE,
SP-RP-HPLC

ORAC assay, FRAP assay
ORAC (4380.75 ± 66.44 µmol

TE/g dw); FRAP (51.86 ±
1.85 µmol TE/g dw)

SDITRPGGQM [47]

Oat glutelin Alcalase; IEC, RP-HPLC
•OH scavenging activity

DPPH radical scavenging activity
•OH (IC50 = 0.68 mg/mL) HYNAPAL [61]

Egg in fresh
Apostichopus

japonicus

Papain, Protamex; UF,
HSCCC; GFC (Sephadex

G-100, G-50)

•OH scavenging activity
O2
•− scavenging activity

•OH (93.26, 70.04, and
89.82 U/mL, respectively)

30 kDa (3 kinds
of peptides) [62]

Hazelnut protein Alcalase; GFC (Sephadex
G-25, G-15), RP-HPLC

DPPH radical scavenging activity
ABTS radical scavenging activity

DPPH (69.2 ± 1.2%);
ABTS (92.9 ± 1.0%)

ADGF, AGGF, AWDPE,
DWDPK, ETTL, SGAF [63]

Pecan protein
isolate

Alcalase; UF (10, 5, 3 kDa),
IEC, GFC (Sephadex G-50)

DPPH radical scavenging activity
ABTS radical scavenging activity

•OH scavenging activity
Reducing power assay
Fe2+ chelating activity

DPPH, ABTS, •OH
(LAYLQYTDFETR: 56.25%,

67.67%, 47.42% at 0.1 mg/mL)
LAYLQYTDFETR [23]

Sheep
abomasum

protein

Papain; UF (10, 3 kDa), IEC;
GFC (Sephadex G-50),

RP-HPLC

DPPH radical scavenging activity
ABTS radical scavenging activity

•OH scavenging activity

DPPH (LEDGLK: IC50 =
0.63 mg/mL; IDDVLK: IC50 =

0.58 mg/mL)
LEDGLK, IDDVLK [64]

Erythrina edulis
(pajuro) protein

Alcalase; Polyamide SPE,
RP-HPLC

ABTS radical scavenging activity
ORAC assay

ABTS (1.37 ± 0.09 µmol TE/mg);
ORAC (2.83 ± 0.07 µmol TE/mg)

DGLGYY, CCGDYY,
YDLHGY [65]
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Table 1. Cont.

Source Enzyme and Purification
Methods In Vitro Chemical Evaluation IC50 or Scavenging Activity 2 Amino Acid Sequence or

Molecular Weight Ref

Finger millet
protein Trypsin; UF, GFC, RP-UFLC

DPPH radical scavenging activity
ABTS radical scavenging activity

Fe2+ chelating activity
•OH scavenging activity

DPPH, ABTS, Fe2+ chelating,
•OH (61.79%, 78.61%, 51.20%,

66.66% at 1.0 mg/mL)

TSSSLNMAVRGGLTR
STTVGLGISMRSASVR [66]

Cutlassfish
muscle

Pepsin; UF, GFC (Sephadex
G-25), RP-UFLC

DPPH radical scavenging activity
Peroxyl radical

scavenging activity

DPPH (IC50 = 0.03 mg/mL);
Peroxyl (IC50 = 0.02 mg/mL) FSGE [67]

Sea squirt
protein Pepsin; GFC, RP-HPLC

DPPH radical scavenging activity
ABTS radical scavenging activity

ORAC assay
Reducing power assay
Fe2+ chelating activity

DPPH (LEW: IC50 = 1.29 mM);
Fe2+ (LEW, MTTL, YYPYQL:

9.20–12.5% at 1 mM)
MTTL, LEW, YYPYQL [68]

Freeze-dried
stone fish flesh

Alcalase; UF, SDS-PAGE,
RP-HPLC, Isoelectric point

focusing fractionation

DPPH radical scavenging activity
ABTS radical scavenging activity

FRAP
DPPH (62.5% at 0.1 mg/mL) GVSGLHID [69]

Wheat germ
protein Alcalase; RP-HPLC ABTS - TVGGAPAGRIVME,

GNPIPREPGQVPAY [70]

Sesame protein Alcalase, Trypsin; UF (3, 5, 8,
10 kDa), prep-HPLC

DPPH radical scavenging activity
ABTS radical scavenging activity

DPPH (IC50 = 2.793 mg/mL);
ABTS (IC50 = 2.949 mg/mL)

1008.2–1402.7 Da
(7 kinds of peptide) [71]

Sea cucumber
collagen

Neutrase; UF (5, 1 kDa)
GFC (Sephadex G-15)

DPPH radical scavenging activity
ABTS radical scavenging activity

DPPH (35% at 0.2 mg/mL)
DPPH (FLAP EC50 =

0.385 mg/mL)
FLAP [72]
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Table 1. Cont.

Source Enzyme and Purification
Methods In Vitro Chemical Evaluation IC50 or Scavenging Activity 2 Amino Acid Sequence or

Molecular Weight Ref

Tartary
buckwheat

albumin

Alkaline Protease; UF (3,
10 kDa), IEC, GFC (Sephadex

G-15), RP-HPLC

DPPH radical scavenging activity
•OH scavenging activity
Reducing power assay

Lipid peroxidation inhibition

GEVPW, YMENF, AFYRW:
DPPH (IC50 = 1.20, 2.91,

0.64 mM); •OH (IC50 = 2.21, 1.56,
0.65 mM); Reducing power (0.702,

0.554, 0.927 at 4 mg/mL)

GEVPW, YMENF, AFYRW [73]

Duck plasma
powder

Alcalase; UF (10, 3 kDa), GFC
(Sephadex G-25), RP-HPLC

O2
•− scavenging activity

DPPH radical scavenging activity
ABTS radical scavenging activity

Fe2+ chelating activity
Reducing capacity

DPPH (88.36% at 1.0 mg/mL)
O2
•− (64.47% at 1.0 mg/mL),

ABTS (149.67 mM TE/mg at
1.0 mg/mL)

LDGP, TGVGTK, EVGK,
RCLQ, LHDVK, KLGA,

AGGVPAG
[74]

1 The complete meaning of the abbreviations in the table: ultrafiltration (UF); gel filtration chromatograph (GFC); reverse phase high performance liquid chromatography
(RP-HPLC); 2,2-Diphenyl-1-picrylhydrazyl (DPPH); 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS); Oxygen radical absorbance capacity (ORAC);
affinity chromatography (AC); ferric reducing antioxidant power (FRAP); reverse phase fast protein liquid chromatography(RP-FPLC); ion exchange chromatography (IEC); hydroxyl Radical
(•OH); sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE); superoxide anion radical (O2

•−); solid phase extraction (SPE); semi-preparative reverse phase-high
performance liquid chromatography (SP-RP-HPLC); reversed phase ultra flow liquid chromatography (RP-UFLC); high-speed countercurrent chromatography (HSCCC); preparative
HPLC (prep-HPLC). 2 If there is no special label, the antioxidant evaluation data listed here is the data of the peptide fraction with the strongest antioxidant capacity after purification.
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At present, the enzymes commonly used in the preparation of food-derived PAs mainly include
microbial-derived industrial proteases (Alcalase, Flavourzyme, Protamex and Neutral Proteases),
plant-derived proteases (Papain) and animal-derived proteases (Pepsin and Trypsin) [75] (Table 1).
Some proteases for the hydrolysis of specific food proteins have been applied for the development
of PAs. For example, collagenase can specifically hydrolyze collagen to obtain peptides with high
antioxidant activity [76,77]. In addition, some newly developed proteases have also been applied to
hydrolyze proteins to prepare PAs. Metalloproteases and Serine proteases have been respectively
prepared from fungus Eupenicillium javanicum and Myceliophthora thermophila [78]. These two proteases
were used to digest egg albumin, casein, and whey protein, and new PAs were separated and purified
from the three protein hydrolysates. Since the hydrolysis of proteases is carried out at specific sites,
single enzymes have a relatively small range of hydrolysis, and complex hydrolysis of two or more
proteases will often achieve more effective results [79]. The multi-enzyme hydrolysis process is
mainly divided into biphase sequential enzymolysis mode, two-step enzymolysis mode and their
combined method [80]. Zhang et al. used a mixed enzyme (Papain:Protamex = 1:1) and Flavorzyme to
hydrolyze egg extract in sea cucumber (Apostichopus japonicus) step by step, and gradually purified
the hydrolysate [62]. Finally, a pure PA (Mw: about 30 kDa) with a high •OH scavenging capacity of
89.82 U/mL was obtained.

In industrial production, the preparation of PAs by the traditional enzymatic hydrolysis method
has many shortcomings such as the one-time use of enzymes, unstable performance of products from
a different batch, long production cycle and high labor intensity [81,82]. Many efforts have been
made in continuous hydrolysis modes such as the use of an enzyme membrane reactor (EMR) and
the immobilized enzymes for the above shortcomings [83]. EMR is a type of reaction equipment
that uses a membrane with an appropriate pore size to separate enzymes and substrates from the
products, and allows the products to continuously pass through the membrane, achieving the purpose
of simultaneous progress of enzymatic hydrolysis and separation [84,85]. Compared with traditional
methods, EMR has many advantages such as continuous operation, reaction–separation coupling,
good enzyme stability and reusability, effective enrichment, which improves the catalytic efficiency and
product yield [86]. Tanaskovic et al. studied the effect of continuous EMR (ultrafiltration (UF) module
(10 kDa)) on Alcalase digestion of egg white protein [87]. The results showed that the continuous EMR
can improve and strengthen the enzyme reaction process and enhance 2,2-Diphenyl-1-picrylhydrazyl
(DPPH) and 1,1-diphenyl-2-picryl-hydrazyl (ABTS) radical scavenge activity, and ferric reducing
antioxidant power (FRAP) of the hydrolysates. The immobilized enzyme technology refers to the
establishment of the enzyme in a specific position to maintain its long-term catalytic ability, reusability
and controllability of the reaction [88]. Neto et al. used bovine casein as raw material and applied the
protease from Penicillium aurantiogriseum immobilization on polyaniline-coated magnetic nanoparticles
to prepare PAs [89]. Compared with non-immobilized Trypsin, covalently immobilized Trypsin
on functionalized graphene oxide nanosheets exhibited significantly enhanced thermal stability,
pH resistance and activity retention ability, and improved the free radical scavenging activity of the
hydrolysate [90].

Appropriate pretreatment technology can promote the release of PAs during enzymatic hydrolysis
of food proteins (Table 2) [91–93]. Besides the traditional heat treatment, new treatment strategies
such as microwave [94], ultrasound [95], high pressure (HP) [96] and pulsed electric field (PEF) [97]
have also been applied to improve the efficiency of enzymatic hydrolysis in the preparation of
PAs. The microwave treatment has the advantages of promoting the efficiency of the reaction,
strong selectivity, easy operation, fewer by-products, high yield and easy purification of the product [98].
Ketnawa et al. compared the effect of microwave pretreatment and microwave-assisted treatment on the
hydrolysis of fish frame protein by Alcalase [99]. The research demonstrated that microwave treatment
can significantly improve protein solubility, protein recovery, DH, and ABTS radical scavenging activity.
The antioxidant activity of fish peptides prepared by microwave pretreatment (5 min) followed by
conventional enzymatic hydrolysis (2–10 min) is superior to other treatment methods. The ultrasound
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can form the microbubbles in the liquid medium, and its rupture is accompanied by the release of energy,
which can affect protein rearrangements and aggregate formation, thereby improving the biological
activity of the hydrolysate [100–103]. The effect of ultrasonic and heat treatment on the enzymatic
hydrolysis of barley beer waste protein by Alcalase showed that the ultrasonic pretreatment (50 kHz)
can increase the antioxidant activity of protein hydrolysates and promote the release of PAs [104].
Under optimal ultrasonic conditions, low-frequency ultrasound-assisted enzymatic hydrolysis can
effectively improve DH and conversion rate of corn protein and the free radical scavenging activity of the
hydrolysate, and promote the formation of short-chain peptides (200–3000 Da) containing hydrophobic
amino acids [105]. HP pretreatment/auxiliary treatment can increase the hydrolysis rate and DH of the
substrate protein, promote the release of low Mw peptides and essential amino acids, and improve
the antioxidant activity of the hydrolysate [106], which has been applied to promote the proteolysis
process of legume [107,108] and peanut protein [109]. Additionally, high hydrostatic pressure (HHP)
also has the ability to improve the efficiency of enzymatic hydrolysis [110]. HHP auxiliary treatment
can improve the enzymatic hydrolysis efficiency of Corolase PP, reduce the surface hydrophobicity
of the hydrolysate, and increase the production of small peptides [111,112]. PEF is a non-thermal
processing technology that is used to sterilize, inactivate enzymes, extract functional active substances,
and improve the nutritional value of foods. Therefore, PEF is often used to increase the activity of
PAs after food proteolysis and separation of small PAs [113–115]. Studies have shown that PEF does
not destroy the stability of PAs, but affects the secondary structures (α-helix, β-turn and random
coil) of peptides and reduces zeta potential [116,117]. In addition, radio frequency pretreatment,
high-energy electron beam, and protease co-extrusion technology have also been shown to be beneficial
for improving the enzymatic hydrolysis efficiency and activity of PAs [118–120].

Chemical hydrolysis based on acid-base hydrolysis has also been used to prepare PAs. However,
due to the destructive effect of this method on amino acids, the great changes in the composition of
hydrolysate, and the high production cost, this method has been gradually replaced by enzymatic
hydrolysis [121]. Protease enzymolysis has the advantages of mild conditions, specific degradation
sites, fast, controllable, high repeatability, and high safety of the product, which is one hotspot in
the research of PAs. As mentioned above, new technologies are devoted to develop new PAs more
efficiently and accurately and to solve problems in the enzymatic hydrolysis process, such as reducing
production costs and maintaining the activity of PAs. However, the current hydrolysis process is
usually accompanied by the production of some bitter peptides, which need further research for
its removal.
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Table 2. The effect of different pretreatment or co-treatment methods on the preparation of peptidic antioxidants by enzymatic hydrolysis 1.

Source Enzyme Processing
Method Processing Conditions Advantages Ref

Fish frame
protein Alcalase Microwave T = 90 ◦C, t = 5 min Improved protein solubility, protein recovery,

DH, and ABTS radical scavenging activity. [99]

Barley beer
waste protein Alcalase Ultrasound Frequency = 50 Hz, t = 4 h

Improved metal-chelating activity (54%);
improved DPPH radical, O2

•− scavenging,
and •OH scavenging activity (28%, 18%, 25%)

[104]

Tilapia
by-product

protein
Alcalase High

pressure-assisted
Pressure = 250 MPa,

t = 35 min

Facilitated the release of low Mw peptides and
essential amino acids; improved soluble

protein content (5.7 mg/mL), RP
(44 µg AAE/g), and solubility (71%) of

hydrolysates; decreased IC50 (DPPH) values
from 653 µg/mL to 304 µg/mL

[106]

Soybean protein
isolate Corolase PP High hydrostatic

pressure Pressure = 200 MPa, t = 4 h

Enhanced the efficiency of enzymolysis;
decreased surface hydrophobicity of

hydrolysates; increased the production of
small peptides (< 3 kDa); increased RP,

ABTS radical scavenging activity

[111]

Egg white
protein Alcalase Pulsed electric

field

Strength = 10 kV cm−1,
pulsed number = 300,
frequency = 3000 Hz

Increased RP ability; broke down larger
peptides into smaller peptides [114]

Pea protein Papain Protease
co-extrusion

E = 12.0%, T = 60.2 ◦C, pH =
6.5, S = 7.1%

Enhanced the efficiency of enzymolysis and
DPPH radical scavenging activity (98.1%) of

enzymatic hydrolysate
[118]
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Table 2. Cont.

Source Enzyme Processing
Method Processing Conditions Advantages Ref

Sweet potato
protein

Alcalase,
Protease Radio frequency T = 80 ◦C/90 ◦C Increased Mw <3 kDa peptide fraction and its

antioxidant capacity [119]

Rice protein Alcalase High-energy
electron beam Irradiation doses = 30 kGy

Increased ratio of antioxidative amino acids;
produced smaller peptides; increased DPPH
and ABTS radical scavenging activity (32.06%

and 79.11%) of hydrolysates

[120]

1 The complete meaning of the abbreviations in the table: enzyme concentration (E); temperature(T); substrate concentration (S); time (t); reducing power (RP); 2,2-Diphenyl-1-picrylhydrazyl
(DPPH); 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS); degree of hydrolysis (DH); superoxide anion radical (O2

•−); hydroxyl radical (•OH);
molecular weight (Mw).
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2.2. Microbial Fermentation and Other Food Processing

Microbial fermentation is one traditional way of producing and preserving foods, which can
increase the nutritional and health value of foods [122,123]. Due to the action of microorganisms and
endogenous proteolytic enzymes, PAs can be produced during the fermentation process [124,125].
Many kinds of fermented milk have been proven to be an important source of bioactive
peptides [126–128]. Four peptides with high antioxidant activity in both chemistry and cell model
evaluations have been purified and identified from the pasteurized milk fermented with Lactobacillus
acidophilus NCFM®, Lactobacillus delbrueckii subs. bulgaricus and Streptococcus thermophilus [129].
Fermented meat products can also be used as a source of PAs [130]. By mixing and fermenting pork,
koji and salt, fermented meat sauce can produce antioxidant tripeptide (Gln-Tyr-Pro) with the •OH
scavenging activity greater than 90% through the proteolysis process [131]. A dipeptide (Trp-Pro) with
high ABTS radical scavenging activity (EC50 17.52 ± 0.46 µM) was identified from Thai traditional
fermented shrimp paste [132]. The purified component of fermented fish (pekasam) has strong ABTS
radical scavenging activity (IC50 = 0.636 mg/mL), and two new PAs (AIPPHPYP, IAEVFLITDPK)
were identified [133]. Compared with the enzymatic hydrolysis method, the fermentation method
can simultaneously carry out the enzyme production and enzymatic hydrolysis processes using the
microorganism, which reduces the cost. During the fermentation process, the exopeptidase produced
by the microorganism has a modification effect on the small peptide end, which not only avoids the
generation of bitterness but imparts the natural fermented flavor to the foods. Based on the above,
fermented foods are potential sources of PAs. Additionally, microbial fermentation plays an important
role in preparing PAs from the by-products of the food industry [134,135]. It has demonstrated that
the type of inoculated microorganisms and the maturation time affect the concentration and size of
peptides [136]. In the fermentation process, Bacillus subtilis [137,138], lactic acid bacteria (LAB) [139–141]
and fungi [142] can release many different kinds of peptides with antioxidant activity. The three small
peptides extracted from solid-state fermented sesame meal have demonstrated to have high DPPH
radical and •OH scavenging ability and can reduce the level of malondialdehyde (MDA) in the serum
and liver of mice, and improve the liver SOD and GSH-Px activity [143]. At present, there are many
studies focused on the exploration and analysis of bioactive components in the microbial fermentation
broth, especially antioxidant components [144,145]. However, the research on the technology and
mechanism of microbial fermentation to produce PAs still need to be explored.

Protein hydrolysis occurring in other food processing processes will naturally produce large
amounts of peptides. This phenomenon is often caused by endogenous enzymes in mature foods [146].
In some processed foods, such as dried shrimp, fish sauce, tuna, ham, pot meat, non-dairy creamer,
white bread and noodles, there is a peptide cyclo (His-Pro) with antioxidant activity, which can protect
the body from oxidative stress and prevent GSH depletion caused by glutamate, rotenone, paraquat
and beta-amyloid treatment [147,148]. From Jinhua ham, one peptidic antioxidant (PA) (GKFNV) was
purified and identified with strong DPPH radical scavenging activity [149]. Spanish dry-cured ham is
considered a good source of natural bioactive peptides [150]. The peptide with an Mw of 464.17 Da
(SNAAC) extracted from Spanish dry-cured ham is a good antioxidant [151]. Another PA (AEEEYPDL)
identified from Spanish dry-cured ham was found to have good heat and salt resistance [152].

3. Purification and Identification of PAs

3.1. Purification of PAs

Protein-derived PAs exist at low concentrations in complex systems containing different amino
acid compositions. Therefore, suitable separation and purification methods are needed to enrich
peptide fragments with high antioxidant activity. At present, the commonly used purification strategies
for PAs mainly include membrane and chromatographic separation technology based on the changes of
Mw, charge and polarity/hydrophobicity [153,154]. The membrane separation technology, containing
microfiltration, UF and nanofiltration, is cheap and easy to operate, often applied for the initial
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purification [155]. Among them, UF is currently the most widely used method for separating PAs from
food protein hydrolysates (Table 1). The centrifugal UF filters with different Mw cut-off membranes
(100, 50, 30, 10 and 3 kDa) have been used in the separation of hydrolysates of Pinto bean protein
isolate [59]. The obtained peptides with Mw < 3 kDa were demonstrated to have the highest free radical
scavenging and FRAP activity. This is because the peptides with lower Mw are more likely to react
with lipid radicals, thereby reducing free radical-mediated lipid peroxidation reaction. As mentioned
earlier, the continuous integration of EMR in the enzymatic hydrolysis reaction and UF membrane
separation can improve the enzymatic hydrolysis process and prepare peptides with satisfactory
antioxidant activity. The traditional membrane separation driven by pressure has low selectivity
for peptides with similar Mw, and can easily cause membrane contamination at HP. Electrodialysis
with filter membrane (EDFM) has increased the electric field as an additional driving force based
on the traditional pressure-driven UF, significantly improving the membrane migration efficiency
and selectivity [156]. The separation of PAs by EDFM depends on the charge (using the different
potential as a driving force for migration) and the Mw (the screening effect of the filter) of the peptides.
Suwal et al. used a two-step continuous EDFM process to directly separate rainbow trout box protein
hydrolysate and obtain the cationic and anionic peptides with high antioxidant activity [157]. EDFM is
considered to be a more environmentally friendly technology because it does not require the use of
solvents in the separation process. However, compared with other membrane separation techniques,
the production efficiency of EDFM is lower, warranting further research.

The commonly used chromatography techniques in the separation of PAs include gel filtration
chromatography (GFC), ion-exchange chromatography (IEC), reversed-phase high-performance
liquid chromatography (RP-HPLC), preparative HPLC (prep-HPLC) and affinity chromatography,
among others (Table 1). GFC is an efficient, simple, and gentle separation method based on the
difference of Mw, which is mostly used to separate and purify water-soluble polymer substances and
is mainly applied in the first stage of separation of PAs [66]. IEC has significant advantages in the
separation of different amounts of positive and negative charged peptides [158,159]. RP-HPLC is a
method of ion exchange using polar media as the main stationary phase, which separates peptides
based on Mw and hydrophobicity [160,161]. In practical applications, it is usually necessary to combine
multiple separation methods to separate the target product, and to avoid the incompatibility of the
mobile phase in the multi-dimensional system. Jang et al. combined the UF, prep-HPLC and RP-HPLC
to separate and purify sandfish protein hydrolysates and screened PAs in each stage by in vitro chemical
evaluation method, where it was demonstrated that the purified polypeptide has higher antioxidant
activity than protein hydrolysates [162].

Additionally, surface plasmon resonance (SPR) technology can monitor the interaction between
molecules in real-time and offer a label-free detection, which is also considered in screening PAs [163].
Canabady-Rochelle et al. developed an SPR strategy for screening metal-chelating peptides in
hydrolysates, which can detect the presence of metal-chelating peptides in hydrolysate faster before
starting the separation stage, and has great potential for industrial application [164].

3.2. PAs Identification and SAR

The identification and characterization are important parts of analyzing the SAR of
peptides, which is helpful to verify the reliability of the antioxidant capacity of the screened
peptides. Electrophoresis analysis technology, especially sodium dodecyl sulfate polyacrylamide
gel electrophoresis, is commonly used to evaluate the Mw distribution of food proteins or
hydrolysates [165,166]. Tandem mass spectrometry (MS) technology has become an effective method
for analyzing Mw and amino acid sequences of PAs [60,61]. Fourier transform infrared spectroscopy
(FT-IR) can be used to study the secondary structure of peptides [167]. The re-synthesis of peptides is a
common method to verify the antioxidant capacity of peptides and analyze the SAR [168]. A typical
example is the use of nano liquid chromatography-electrospray ionization-tandem MS to characterize
seven new peptide sequences with antioxidant activity from the purified components of sesame protein
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hydrolysate [71]. Seven peptides were re-synthesized to verify the antioxidant activity of the identified
peptides and nine kinds of SYPTECRMR derived peptides were designed and synthesized to study the
SAR of the peptide with the strongest antioxidant activity, and then the QSAR of SYPTECRMR was
figured out by a comparative molecular field analysis (CoMFA) model. The results show that the active
sites of SYPTECRMR are located in the fragment ECRMR and seem to be related to Cys or Met residues.
Moreover, the amino acid sequence SYPT and steric hindrance, electrostatic interaction and other
factors will also affect the antioxidant activity of SYPTECRMR. As can be seen above, the study of the
SAR can provide a theoretical basis for each link of peptide preparation, which is also supplemented
during the preparation process of peptides.

The molecular structure (Mw, amino acid composition, amino acid sequence and molecular
conformation) and hydrophobicity of peptides are considered to be closely related to its antioxidant
activity [169–171]. Bioactive peptides containing 2–20 amino acid residues and with an Mw in the
range of 200–3000 Da are considered to have good antioxidant activity [172,173]. Peptides with lower
Mw can interact with radicals more effectively, and it is easier to exert antioxidant capacity through the
intestinal barrier in vivo [174]. Dipeptides and tripeptides are considered to be highly potential PAs
because they can be absorbed intact from the intestinal lumen into the bloodstream and then produce
biological effects at the tissue level [175]. Amino acid composition and specific amino acid sequence
are the important factors affecting the antioxidant activity of peptides [176,177]. In short, peptides with
strong antioxidant activity tend to have a higher proportion of hydrophobic amino acid residues [59].
Because hydrophobic amino acid residues, especially those at the end of the peptide chain, can enhance
the solubility of PAs in fats and oils, their aliphatic hydrocarbon side chains can interact with fat
molecules, thereby delaying or blocking lipid transition oxidation reaction chain to protect the integrity
of lipid system and membrane [178]. The hydrophobicity of the peptides also makes it easier to enter
the hydrophobic target organs, thereby exerting antioxidant effects [179]. The side-chain carboxyl
group of the acidic amino acid has a hydrogen-donating effect, which can chelate metal ions to weaken
the radical chain reaction and achieve the antioxidant effect. Antioxidant amino acid residues such
as Tyr, Met, His, Lys, Trp, and Cys are often present in polypeptides with strong antioxidant activity.
The imidazole group of His is related to its metal chelation, hydrogen supply and lipid peroxidation
capabilities [180]. Cysteine containing thiol can directly interact with radicals, and it has an important
contribution to the antioxidant activity of peptides. Due to the specific interaction and relative spatial
structure between the amino acids in the amino acid sequence of the peptide, the antioxidant activity
of a single amino acid is significantly lower than that of the peptide [181,182].

Since the structure of the peptide and its mechanism of antioxidant action are extremely complex,
some researchers tried to summarize the relationship between the structure of peptides and antioxidant
activity in order to evaluate the potential of various food proteins as PAs precursors, guiding for the
selection of proteolytic enzymes and the design and synthesis of PAs [183,184]. QSAR and in silico
bioinformatics methods are effective strategies to achieve these functions [185,186]. Huang et al. have
combined proteomics technology with BIOPEP analysis to prove that the myosin heavy chain of tilapia
processing by-products is a good precursor for PAs [187]. When using bioinformatics to prepare PAs,
the update and combination of peptide databases are also important. Deng et al. applied model
population analysis to establish a QSAR model on two datasets containing antioxidant tripeptides (FTC
and FRAP) [188]. This three-dimensional QSAR model is constructed through CoMFA and comparative
similarity index analysis, and can be used to guide the combination design and virtual screening of new
peptides [189]. Leung et al. used Proteinase K to simulate digestion of rye secalin in silico, and used
computational analysis based on density functional theory to identify two tripeptides (CQV and QCA)
containing cysteine [190]. In silico methods have also been applied to in vivo function prediction of PAs.
Alcalase and Trypsin were used to hydrolyze Atlantic sea cucumber, and peptide fractions (<2 kDa)
with high antioxidant activity in vitro were separated using UF method [191]. The main antioxidant
amino acids of the two peptides and their molecular interaction with myeloperoxidase (MPO) were
further analyzed using in silico methods. The results show that Alcalase can produce more peptides
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with both antioxidant amino acids and potential MPO inhibitory activity (35.4%). A representative
peptide sequence TEFHLL produced by Alcalase has a strong molecular interaction with the active site
of MPO, which is predicted to have the ability to inhibit oxidative stress in the body.

4. Strategies for Performance Evaluation of PAs

Although a lot of research has been performed on PAs, the action mechanism of these kinds
of antioxidants has not been fully revealed. Radical scavenging efficacy, metal ion chelation and
quenching singlet oxygen are considered to be the main action mechanisms of PAs [168]. Currently,
the evaluation of PA performance mainly includes in vitro chemical evaluation, in vitro biological
evaluation and in vivo evaluation [192].

4.1. In Vitro Chemical Evaluation

Due to the characteristics of easy operation, high efficiency, low toxicity, good reproducibility and
short experimental period, in vitro chemical evaluation has become the basic method for screening
PAs and quantitatively determining the antioxidant activity of peptides. PAs usually have a complex
structure and action principle, resulting in the difficulty of establishing a unified evaluation index [193].
According to different free radical scavenging reaction mechanisms, in vitro chemical models can be
divided into the methods based on hydrogen atom transfer (HAT) and electron transfer (ET) [194].
At present, the evaluation methods for in vitro antioxidant activity mainly include DPPH radical
scavenging ability, ABTS radical scavenging ability, oxygen radical absorbance capacity (ORAC),
and FRAP (Table 1). In addition, evaluation methods based on metal ion (Cu2+, Fe2+, etc.) chelating
ability [195,196] and anti-lipid peroxidation ability (thiobarbituric acid reactive substance (TBARS)
method, ferric thiocyanate method (FTC), etc.) [197] have also been applied to in vitro chemical models.
Studies have found that the antioxidant capacity of the same antioxidant may be different by using
evaluation methods based on different mechanisms. For example, the zein hydrolysate obtained by
the two-step enzymatic hydrolysis method (Alcalase and Flavourzyme) has higher scavenging values
of DPPH radical, •OH, O2

•− and reducing power, but the Fe2+ chelating ability is lower than other
enzymatic hydrolysis methods [198]. In addition, the chemical analysis process is easily affected by
the detection environment. In particular, the assays of FRAP, TEAC, and Folin–Ciocalteu reagent for
evaluating PAs need to be performed under acidic, neutral, and alkaline conditions, respectively [193].
The DPPH assays based on the principle of ET is also susceptible to pH, and DPPH radicals are
only soluble in organic solvents and are not suitable for evaluating water-soluble antioxidants.
Therefore, in the evaluation of in vitro activity, an appropriate evaluation scheme should be selected as
comprehensively as possible or according to the antioxidant indicators that the experiment focuses on.
Vasquez-Villanueva et al. applied the inhibition of the peroxidation of linoleic acid as indicators to
evaluate the antioxidant activity of peach kernel protein hydrolysate and peptides at each separation
stage by DPPH radical assay, ABTS radical assay, •OH assay, FRAP, and finally identified 18 peptides
with antioxidant activity [199]. Tovar-Perez et al. evaluated the antioxidant activity of glutelin
hydrolysate from cocoa (Theobroma cacao L.) seed and peptides by DPPH, ABTS and ORAC,
and purified the peptides with high DPPH and ABTS radical scavenging ability (EC50 = 237.48 and
19.29 µg/mL, respectively) [200]. It is worth noting that the model system of bulk oil, oil-in-water
emulsion and muscle food can provide the expected physical and chemical environment of foods,
which is an important means to evaluate the antioxidant effect of PAs in the food matrix [201].

4.2. In Vitro Biological Evaluation

In vitro biological evaluation, that is, introducing a ROS-induced system (H2O2,
lipophilic tert-butyl hydroperoxide (t-BHP), and 2-azobis-(2-amidinopropane) dihydrochloride
(AAPH) etc.) into a biological subcellular or animal tissue homogenate system to simulate oxygen stress
damage in the body, and measuring some oxidative and non-oxidative indicators to reflect the functional
activity of PAs [202]. Since the cells of humans and other organisms are often exposed to different
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oxidants, the cell model is closer to the environment in the organism. An appropriate in vitro biological
model can provide a simple and inexpensive method for evaluating the bio-availability of PAs [203,204].
Cells of target organs (such as the liver, brain, or muscles) that are often exposed to oxidative stress are
generally selected as cells in vitro. Different model cells were selected according to the application
purpose of the antioxidants, so as to evaluate the capacity of antioxidants to inhibit a specific oxidative
stress response in the organism [205]. Currently, Erythrocytes, Human hepatoma (HepG2) cells,
Caco-2 cell monolayer, Pheochromocytoma (PC-12) cells, Human colon adenocarcinoma (HT-29) cells,
Human hepatocyte-derived (C3A) cells, Human leukemia T (Jurkat) cells, Human umbilical vein
endothelial cells (HUVECs), etc., have been used in the evaluation of various antioxidants [206,207].
The evaluation indicators of PAs in cell models mainly include the promotion of endogenous enzymes
and non-enzymatic antioxidants (SOD, catalase (CAT), GSH-Px and GSH) and the inhibition of
oxidation products (ROS, MDA, oxidized glutathione (GSSG)) (Table 3). H2O2-induced Caco-2 and
HT-29 cell models show that the penta-peptide (NRYHE) derived from chickpea protein hydrolysate can
up-regulate the activity of antioxidant enzymes (CAT, glutathione reductase (GR) and GSH-Px) in cells,
and it was observed that peptide treatment elevated the expression of Nrf2 mRNA and several relative
genes NQO1, HO-1, γ-GCS regulated by Nrf2 compared to the positive control [208]. Yi et al. studied
the effect of soybean peptides on H2O2-induced oxidative stress in HepG2 cells [209]. The results
showed that soybean peptides inhibited the production of H2O2-induced ROS, MDA and GSSG in
HepG2 cells, prevented the reduction of GSH and up-regulated the activity of cellular antioxidant
enzymes (SOD, CAT and GSH-Px), which are expected to protect and regulate the body under oxidative
stress. Wang et al. evaluated the changes of antioxidant activity of cooked eggs in a simulated human
GI digestion model in vitro, and used the level of ROS in rat aortic vascular smooth muscle cells (VSMC)
measured by dihydroethidium staining as an evaluation indicator [210]. The purified three peptides
(DSTRTQ, ESKPV and DVYSF) with antioxidant activity have the potential to regulate vascular function.
Cellular antioxidant activity (CAA) is a quantitative analysis method to measure the ability of target
compounds to quench peroxy radical in HepG2 cells, which provide evidence of the comparison of
antioxidant capacity of different peptides (Table 3). The protective effect of cells under oxidative stress
is also used in the evaluation of PAs, usually by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) colorimetric assay. Several studies have evaluated the viability of cell models exposed
to PAs without oxidative stress treatment. These experiments are used to verify whether the PAs studied
are cytotoxic and provide the concentration of non-cytotoxic peptides for subsequent experiments.
Using ORAC as an evaluation target, the PA CCCCSVQK was purified and identified from water-soluble
protein extracts of Hanwoo beef [211]. Subsequently, the MTT method was applied to determine its
effect on the proliferation of human colorectal carcinoma cells (HCT116). The results showed that
CCCCSVQK dose-dependently inhibited the growth of HCT116 cells, and the maximum inhibition rate
(25.24%) was obtained at 250 µg/mL. Peptides extracted from hazelnut protein hydrolysate can inhibit
ROS synthesis in HUVECs, and have strong antioxidant and cytoprotective effects on Ang-induced
oxidative damage, which can be used as an antioxidant in the food and pharmaceutical industries [63].
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Table 3. Evaluation of in vitro cell model of peptidic antioxidants 1.

Source Peptide Cellular Model Cellular Effect Ref

Whey protein Hydrophobic peptide H2O2-treated PC12 cells Increased cell survival rate (19.3%); decreased cell
death (28.6%) [212]

Indian squid protein WCTSVS H2O2-treated breast cancer cells
(MCF7) Decreased intracellular ROS [213]

Soybean protein FDPAL H2O2-treated HeLa cells Increased cell viability under oxidative stress [214]

Soybean protein SHECN AAPH-treated HepG2 cells Possessed CAA (776.22 µmol QE/ 100 g) [215]

Pine nut meal protein KWFCT, Ac-QWFCT AAPH-treated HepG2 cells Possessed CAA (612.8, 916.3 µmol QE/ 100 g) [216]

Pine nut protein QDHCH AAPH-treated/H2O2-treated
HepG2 cells

Possessed CAA (3051.84 µmol QE/100 g);
increased SOD, GSH-Px, CAT, GR activities;

decreased MDA content
increased cell viability under oxidative stress

[217]

Hanwoo beef protein CCCCSVQK Human colorectal carcinoma
cells (HCT116) Inhibits the proliferation of HCT116 cells [211]

Chinese Baijiu PHP AAPH-treated HepG2 cells
Increased SOD, GSH-Px, CAT activities; increased

GSH content; decreased MDA, GSSG content;
decreased intracellular ROS levels

[218]

Rapeseed protein WDHHAPQLR H2O2-treated HUVECs cells Reduced cell apoptosis [207]

Perilla seed protein YL, FY H2O2-treated HepG2 cells Reduced cell apoptosis [219]

Lupin protein confer Peptides with Mw < 3 kDa H2O2-treated HepG2 cells Increased cell survival rate; decreased intracellular
ROS levels; increased SOD, GSH-Px [220]

Soybean protein IYVVDLR; IYVFVR, VVFVDRL,
VIYVVDLR H2O2-treated Caco-2 cells

Increased CAT, GR activity (IYVVDLR, IYVFVR);
increased GSH content (IYVVDLR, IYVFVR,

VVFVDRL); increased cell viability under
oxidative stress (IYVVDLR, IYVFVR, VVFVDRL);
decreased MDA content; decreased intracellular

ROS levels

[221]
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Table 3. Cont.

Source Peptide Cellular Model Cellular Effect Ref

Fermented grain (Jiupei) VNP, YGD AAPH-treated HepG2 cells
Increased SOD, GSH-Px, CAT activities; decreased
intracellular ROS levels; decreased MDA, GSSG

content; increased GSH content
[222]

Defatted walnut meal

VEGNLQVLRPR,
LAGNPHQQQQN,
HNLDTQTESDV,

AGNDGFEYVTLK,
QQRQQQGL,

AELQVVDHLGQTV,
EQEEEESTGRMK,
WSVWEQELEDR

H2O2-treated SHSY5Y cells
Decreased intracellular ROS levels (ex

WSVWEQELEDR);
increased cell viability under oxidative stress

[223]

Mulberry leaf protein SVL, EAVQ, RDY AAPH-treated HepG2 cells Possessed CAA (1706, 1501, 2204 µmol QE/ 100 g);
inhibited oxidant-induced hemolysis (RDY: 92%) [224]

Egg white protein VYLPR H2O2-treated HEK-293 cells
Increased cell viability under oxidative stress
(97.45%); increased SOD, GSH-Px activities;

decreased MDA; inhibit LDH activity
[225]

Collagen from sea
cucumber Peptides with Mw < 1 kDa H2O2-treated RAW264.7 cells

Promote cell proliferation; decreased intracellular
ROS levels; decreased intracellular ROS levels;

increased SOD, GSH-Px activities; decreased MDA
[226]

Collagen of Redlip
Croaker

GPEGPMGLE, EGPFGPEG,
GFIGPTE H2O2-treated HepG2 cells Decreased intracellular ROS levels; decreased

MDA; increased SOD, GSH-Px, CAT activities [227]

Fermented milk

NTVPAKSCQAQPTTM,
EDELQDKIHPF,

QGPIVLNPWDQVKR,
APSFSDIPNPIGSENSE

T-BHP-treated Caco-2 cells Increased cell viability under oxidative stress;
decreased intracellular ROS levels [129]

Whey protein Peptides with Mw ≤ 3 kDa Menadione-treated IEC-18 cells Increased cell viability under oxidative stress (88%) [228]
1 The complete meaning of the abbreviations in the table: cellular antioxidant activity (CAA); lipophilic tert-butyl hydroperoxide (t-BHP), water-soluble 2,2-azobis-(2-amidinopropane)
dihydrochloride (AAPH); reactive oxygen species (ROS); glutathione peroxidase (GSH-Px); malondialdehyde (MDA); superoxide dismutase (SOD); catalase (CAT); oxidized glutathione
(GSSG); glutathione (GSH); molecular weight (Mw).
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Due to the complexity of the human digestive system and internal environment, the evaluation of
PAs should also consider its stability in GI digestion, cell penetration, and the action in the biological
environment. At the same time, because the human body may produce similar peptides when digesting
the same protein, new PAs released from food proteins through simulated digestion may be more
physiologically significant [229–231]. The Pepsin–Pancreatin system is commonly used to simulate GI
digestion in vitro, which is often used to evaluate the stability of PAs in GI [232]. The experiment of
the Caco-2 cell model demonstrated that the transmembrane transport mode of wheat germ peptide
(Mw < 1 kDa) is mainly passive transport, which can exert an effective antioxidant effect through
intestinal epithelium [233]. Three different cases of hydrophobic casein peptides were sequentially
processed through simulated GI digestion and Caco-2 cell model, and the peptide nitrogen was used
to evaluate the bioavailability (BA) and remaining peptide content [234]. The results showed that
the treated highly hydrophobic peptides had excellent BA and certain residual antioxidant activity,
but had poor stability in GI digestion, and two GI-resistant peptides (NTVP and IV) were identified
from this component.

4.3. In Vivo Evaluation

The in vivo evaluation of antioxidants mainly includes the indirect determination of the
degree of protection of bioactivity substances against DNA oxidative damage, lipid peroxidation,
protein oxidative damage, and mitochondrial oxidative damage based on the determination of oxidative
stress biomarkers, and the direct measurement of the antioxidant level of the antioxidant defense
system [235]. Currently, only a few studies have evaluated the effect of food-derived PAs in animal
models. In the model, the animal was fed the tested substance, and the antioxidant activity of the
test substance in the organisms was evaluated by comparing the experimental group and the control.
Khaled et al. verified that Sardine protein hydrolysates (SPHs) have high DPPH free radical scavenging
activity and metal-chelating activity through in vitro chemical experiments, and conducted a series of
animal experiments on them [236,237]. From the results, SPH treatment can reduce the concentration
of MDA and increase the activity of antioxidant enzymes (SOD, GSH-Px, CAT) and high-density
lipoprotein cholesterol.

Active peptides can inhibit or block lipid membranes peroxidation caused by excessive
accumulation of free radicals, protect protein and nucleic acid structures in cells from oxidative
damage, thereby improving antioxidant capacity and inhibiting the occurrence of oxidative fatigue.
Ding et al. found that jellyfish collagen hydrolysate improved the anti-fatigue ability of mice and
increased the activity of SOD and GSH-Px in mice [238]. The decline of exercise endurance is the
most direct and objective indicator of fatigue. Guo et al. prepared sea-horse peptides by enzymatic
hydrolysis that the DPPH radical scavenging rate is 71.89 ± 1.50% and •OH scavenging rate is 75.53 ±
0.98% [239]. Furthermore, the team evaluated the anti-fatigue activity of sea-horse peptides in mice
through the swimming exhaustion experiment according to the changes in blood glucose, blood lactic
acid, serum urea nitrogen and liver glycogen content in mice before and after exercise. The results
show that sea-horse peptides have anti-fatigue activity and its anti-fatigue effect is dose-dependent.

Generally, the in vivo experiment is more sensitive and closer to the actual system of the organism,
but it has the disadvantages of long experiment time, high cost and cumbersome process. This is why
the evaluation of the antioxidants usually carried out in the order in vitro to in vivo, and from the
chemical environment to the biological environment. Meanwhile, the toxicity and dose–response of
antioxidant peptides should be considered to ensure the authenticity and reliability of the results.

5. Potential Application of Food-Derived PAs

5.1. Functional Ingredients to Stabilize Food Quality

Since mixed peptides or pure peptides can reduce oxidative changes during food processing or
storage, they are expected to be added as functional ingredients to food systems [240]. The protective
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effect of PAs on the food matrix is mainly reflected in the inhibition of lipid oxidation of high-fat foods
(such as food emulsions, meats, sauces, beverages), thereby delaying the loss of food nutrients and
suppressing the production of harmful substances [241,242]. Studies have shown that certain PAs
derived from foods (such as squid [243], mussels [244], oysters [15], shrimp muscle [245]) have the
same or better ability to inhibit lipid peroxidation as the fat-soluble antioxidant α-tocopherol. In the
linoleic acid model system, the tripeptide (WPP) isolated from the clam protein hydrolysate showed
lipid peroxidation reduction ability similar to GSH [246]. In the sardine minced meat model system,
the squid protein hydrolysate prepared by Papain has similar lipid oxidation inhibition ability as
ascorbic acid [247]. Zein hydrolysate has been proven to effectively inhibit lipid oxidation, reduce the
production of hydrogen peroxide and TBARS, and significantly improve the oxidative stability of
model oils [248]. Moreover, this hydrolysate has no negative effect on the quality of the emulsion,
and may become an effective antioxidant in food emulsion [249]. QITEGEDGGG (Caragana seed
protein source) can effectively inhibit the oxidation of linoleic acid (inhibition ratio: 60.37%), delay the
auto-oxidation rate of walnut oil, and produce a synergistic effect with tertiary butylhydroquinone
(TBHQ) and vitamin C [250]. It is worth noting that the antioxidant properties of pure peptides have
been verified by re-synthetic peptides. Milk-derived protein hydrolysates and peptides can be used to
prevent lipid oxidation in muscle foods [251,252]. Casein calcium peptide (2.0%) added to beef paste
homogenate can inhibit about 70% of the lipid oxidation in the homogenate, which helps to prevent
the generation of odors in meat products, thereby extending the shelf life [253]. The crude peptide
extract from lamb ham significantly reduces the content of thiobarbituric acid reactive substances and
cross-linking of proteins in lamb cake, and also improves the color, texture and microbial stability of
the product [254]. The protein hydrolysates and peptides derived from marine biological such as Kirin
gelatin skin [255], Amur sturgeon skin gelatin [256], Heilongjiang fish skin [257], silver carp [258,259],
shellfish [260], can be used as bifunctional ingredients (antioxidants and cryoprotectants) to delay the
lipid oxidation and protein denaturation of the seafood products [261]. Gelatin hydrolysates prepared
from cuttlefish skin (0.5 mg/g) can delay lipid oxidation of turkey sausage at 4 ◦C for up to 10 days [262].
After dipping with the hydrolysis of shrimp waste, the whole crocodile fish skin can maintain the color
at 4 ◦C for 10 days [263]. The protein hydrolysate processed by Savinase or Protamex by-product of eel
can be added to the meat emulsion as a preservative to inhibit the growth of microorganisms within
11 days at 4 ◦C [264]. The gelatin water-soluble chitosan film containing squid Maillard peptide can
effectively preserve the fresh bluefin tuna and prolong the storage period to 8 days at 4 ± 1 ◦C [265].
Compared with protein hydrolysates and mixed peptides, the preparation process of pure peptides
is more complicated and the cost is relatively high, resulting in less research on the maintenance of
food quality. Therefore, the application of PAs as functional components must fully consider their cost.
In addition, the protein hydrolysis process or the selection of specific peptides may cause changes in
their composition and structure, and may produce other adverse substances that affect food quality.
Therefore, before a PA is commercialized, it is necessary to evaluate its stability during food processing
and storage and the potential safety or sensory problems it may cause [266].

5.2. Human Health Promotion and Disease Treatment

PAs have broad application prospects in promoting human health and preventing and treating
diseases related to oxidative damage [267]. Some dietary supplements or skincare products that use PAs
(such as GSH, carnosine, and anserine) as the main functional ingredients have been commercialized.
However, most of the PAs extracted from food proteins are still in the experimental stage. As described
in Sections 4.2 and 4.3, some cell models and animal experiments have shown that PAs have a
significant protective effect on cells under oxidative stress. PAs have the effects of anti-fatigue,
improving memory and vascular health [268], protecting the liver [269,270], reducing ROS-related
pro-inflammatory reactions [221,271] and preventing atherosclerosis [272,273], which provides a
basis for their application in nutritious foods, functional foods, dietary supplements and other
fields [274]. Cuttlefish-purified peptides can obviously inhibit the oxidation process of linoleic acid,
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effectively protect the DNA damage induced by •OH radicals, and have no toxic effect to cells at
higher concentrations [159]. In addition, some studies have confirmed that PAs have certain potential
in the treatment of cancer [275], malaria [276], hypertension [277,278] and blood diseases [224],
and are expected to become therapeutic drugs. Bioactive peptides derived from rapeseed protein (LY,
RALP, GHS) can significantly inhibit the secretion of NO, il-6 and tumor necrosis factor stimulated
by lipopolysaccharide, and then repair the damage of spontaneously hypertensive cells caused by
oxidative stress, which has potential application value in protecting the body from oxidative and
inflammatory damage [279]. At present, due to the lack of animal model experiments and human
clinical trials, the research progress of antioxidant peptides in terms of bioavailability is minimal,
which limits their commercialization process. On the other hand, in the application process of the
food matrix, the influence of food ingredients and processing conditions on the bioavailability of
PAs, as well as the production cost, biological activity, efficacy and safety of peptide-containing foods
should be considered [280–282]. Before the development of large-scale foods containing PAs, it must
be confirmed that the addition of these peptides will not cause negative effects and still retain their
antioxidant activity.

6. Conclusions

PAs have considerable potential application value in human health promotion, disease treatment
and food preservation. At present, the preparation, performance evaluation and commercial production
of food protein-derived PAs have received extensive attention from researchers, which has greatly
promoted the development of the field of natural antioxidants. However, due to the immature
research in various fields of PAs, further development is needed. Enzymatic hydrolysis is still the
main way to produce PAs from food proteins. The introduction of bioinformatics technology is
expected to gradually develop the preparation of natural PAs into a predictable and controllable
process. In addition, the combination of in silico and biochemical experiments is expected to become a
promising strategy for developing and modifying food protein-derived PAs. Meanwhile, due to the
advantages of unique food flavor and reduced production costs, microbial fermentation and other food
processing methods have become indispensable means for the development of PAs, but its related
mechanism of action still needs further research. The role of PAs in the prevention and treatment of
oxidative stress-related diseases has been controversial. Animal experiments on bioavailability and
food safety of PAs are still relatively few. Therefore, the actual effects and side effects of PAs should
be further studied before clinical trials. In recent years, using food processing by-products as raw
materials for the production of PAs has become a hot spot for researchers and related companies,
which can effectively reduce production costs and environmental pressure. In addition, it is of great
practical significance to effectively optimize and improve the processes of hydrolysis, separation and
purification in industrial production to improve production efficiency.
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