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Abstract

Saliency detection attracted attention of many researchers and had become a very active
area of research. Recently, many saliency detection models have been proposed and
achieved excellent performance in various fields. However, most of these models only con-
sider low-level features. This paper proposes a novel saliency detection model using both
color and texture features and incorporating higher-level priors. The SLIC superpixel algo-
rithm is applied to form an over-segmentation of the image. Color saliency map and texture
saliency map are calculated based on the region contrast method and adaptive weight.
Higher-level priors including location prior and color prior are incorporated into the model to
achieve a better performance and full resolution saliency map is obtained by using the up-
sampling method. Experimental results on three datasets demonstrate that the proposed
saliency detection model outperforms the state-of-the-art models.

Introduction

Visual attention is a significant mechanism of the human visual system (HVS). It allows
humans to select the most relevant information on visual information from the environment.
Visual attention is modeled as saliency detection in computer vision. Saliency detection is to
find conspicuous areas and regions of input image then output a gray scale image, which is
called saliency map. In recent years, saliency detection has drawn a lot of interest in computer
vision. It provides fast solutions to several complex processes and has attracted a lot of atten-
tion from numerous universities and research institutes. In the past decades many saliency
models have been proposed and widely exploited in image segmentation [1,2], object recogni-
tion [3,4,5], image retrieval [6], image resizing [7], image/video compression [8,9] and image/
video quality assessment [10,11].

Visual psychology studies show that the human visual system mechanism is driven by two
factors: (i) a bottom-up component, which is fast, data driven, and pre attentive, (ii) a top-
down component, which is slow, goal driven, and attentive. Many bottom-up saliency detec-
tion methods have been proposed. This method can provide a lot of useful information and
many successful models have been proposed that have made great achievements. But this kind
of method is only based on low-level information such as color, intensity and orientation. And
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it doesn’t consider prior knowledge about the input image. However, the high-level factors are
necessary for HVS and saliency detection. Top-down based saliency detection is the latest
progress in visual attention area. The appropriate and effective utilization of high-level infor-
mation can improve the performance of current bottom-up based saliency detection models.
While most studies on top-down based saliency detection are still at descriptive and qualitative
level, few completely implemented computational models are available [12]. Inspired by the
works of fusing bottom-up and top-down factors [12,13,14], this paper proposes a saliency
detection model which fuses bottom-up features with adaptive weight and incorporate higher-
level priors to the model.

The remainder of this paper is organized as follows. Section 2 introduces related work
briefly. Section 3 describes the proposed salient region detection model. In Section 4, we evalu-
ate the performance of the proposed model by comparing with state-of-the-art methods. We
conclude the paper in Section 5.

Related Work

IItti et al. [15] used center-surrounded differences across multi-scale image features to define
saliency of image. Tie Liu et al. [16] represented the salient object as a binary mask and formu-
lated the salient object detection problem as a binary labeling task. Then they extended their
method to the sequential image case by exploring the extra temporal information. Zhixiang
Ren et al. [17] proposed a region-based saliency detection method and applied the achieved
saliency map in object recognition task. M. M. Cheng et al. [18] presented a regional contrast
based salient object detection algorithm that evaluated global contrast differences and spatial
weighted coherence scores. They used the saliency maps to accomplish unsupervised salient
object segmentation. Yonghong Tian et al. [19] learned complementary saliency priors for
object segmentation, which was formulated as binary pixel labeling problem by learning two
complementary saliency maps that most likely reveal foreground and background respectively.
Achanta et al. [20] introduced a frequency tuned saliency detection method. Using the color
differences from the average image color to define pixel saliency. Yanfei Ren [21] reported a
saliency map generation method that extracting texture feature and combining a new feature
fusion strategy. F. Perazzi et al. [22] decomposed the input image into perceptually homoge-
neous elements and estimated saliency based on uniqueness and spatial distribution of those
elements. Chen Xia et al. [23] proposed a nonlocal reconstruction-based saliency model, their
model focused more on the original image’s sparsity and uniqueness. Li Zhou et al. [24] pro-
posed a bottom-up saliency detection model. Their model integrated compactness and local
contrast cues using diffusion process to produce a pixel-accurate saliency map. Lei Zhu et al.
[25] computed both local center-surround contrast and global saliency between multisize
superpixels, showed that multi-scale scheme can improve the performance of local saliency
approaches.

The idea of integrating top-down factor to saliency estimation was first proposed by Itti and
Koch [26] in 2001. They found that there was a link between visual attention and eye move-
ment. In recent years, many top-down saliency models had been presented. Xiaohui Shen et al.
[13] incorporated low-level features with higher-level guidance to detect salient objects. In
their model, original image was represented as a low-rank matrix plus sparse noises, which
were used to indicate non-salient regions and salient regions respectively. Zhenzhong Chen
etal. [27] considered the high-level cue imposed by the photographer and integrated the defo-
cus map of the image with low-level features. Tao Deng [28] introduced a top-down based
saliency model regarding vanishing points of road as top-down guidance and applying it in
traffic driving environment. Xiaoguang Cui et al. [29] proposed a top-down visual saliency
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Fig 1. Result of SLIC superpixels oversegmentation with different number of superpixels.

doi:10.1371/journal.pone.0149328.g001

detection method to process optical satellite images, which measured the local similarity of a
pixel to its neighbor pixels.

Yin Li et.al [30] found that the existing salient object benchmarks have serious design flaws
because of overemphasizing the stereotypical concepts of saliency, which called the dataset
design bias. Center bias was the tendency of subjects looking at the screen center more often
[31]. In their view, the most significant bias was center bias. Yin Li et.al had done an excellent
work that make researchers think more about dataset design problem, and that might open up
a new filed in saliency detection. However, their conclusions had not been widely accepted.
Existing benchmarks are still used by many recent published work [32,33,18]. In this paper,
benchmarks including THUS10000, MSRA1000, and DB-Bruce are used to test the perfor-
mance of our proposed model.

The Proposed Model

Approach to our proposed model is divided into five main parts: colors saliency map, texture
saliency map, saliency map fusion, integration of high-level prior and full resolution saliency
map. At first, Input image is segmented into N sub-regions by utilizing SLIC superpixels overseg-
mentation algorithm [34]. The SLIC superpixels algorithm uses K-means clustering approach to
generate superpixels in CIELAB space, which is fast, memory efficient and adhere to boundaries.
Fig 1 shows the sample result of SLIC superpixels oversegmentation. Then we calculate Color
saliency map and texture saliency map based on region contrast method and fuse the two maps
by adaptive weight. Next, higher-level priors including color prior and location prior are incorpo-
rated into the model to get a better performance. Lastly, we use the up-sampling method to get
tull resolution saliency map. The main process of the proposed model is illustrated in Fig 2.

Color Saliency Map

For a sub-region r,, we compute color feature map by the following formula:

Su(r) = o(r, r)lIL — LI° (1)
ik
o(r,, ) = exp(=D,(r;,1,))/C, (2)

I; is the mean color of all pixels in sub-region r;, D,(r;, t¢) is the Euclidean distance between
sub-region r; and ry, C; is scale factor that make sure ¥; . x w(r;,re) = 1.
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Fig 2. lllustration of the main phases of the proposed model. (a) Oversegmentation of input image; (b) Color saliency map; (c) Texture saliency map; (d)
Fuse color and texture saliency map; (e) Final saliency map that incorporate high-level priors.

doi:10.1371/journal.pone.0149328.9002

Texture Saliency Map

We calculate the texture saliency map based on the method of [21]. The saliency value of each
region is given as follows:

Selr) =" o(r,1)D,(r,.7,) (3)

Dy(r;, 1) refers to the Euclidean distance on texture feature value between the two sub-
regions, which is given by:

D,(ror) = S5 Ft ) (6)Dut 0 t) (4)

m=1 n=1

I, and [, respectively represent the number of texture type in region r; and ry, f(t;,,) is the
frequency of the m-th texture feature among all texture features in region r;. The frequency of a
texture feature reflect the differences between textures, which can be used to measure the
weight of this texture feature.

Saliency Map Fusion

The color saliency map and texture saliency map are linearly combined with adaptive weights,
which are adjusted adaptively to the DoS (degree-of-scattering) and eccentricity of each feature
map [14]. The final saliency value S(r;) of region r; is given by:

S(r;) = a8 (1:) + BS,..(r:) (5)

Scoi(r;) and Sy, (r;) are color saliency and texture saliency of region r; respectively. o and
are the weights of color saliency and texture saliency respectively.

The DoS of saliency map can be used to determine the weighting parameters because the
salient region are small and dense in general. The DoS of saliency map is defined as the variance
of spatial distances between the centroid of saliency map and all sub-regions. The following
three steps are used to calculate DoS:

Firstly, the centroids of color saliency map H*" and texture saliency map H' are calculated
with the method proposed in [35]. The centroid eccentricities of saliency maps are used to
select the centroid of color saliency map or texture saliency map as the final centroid, which

PLOS ONE | DOI:10.1371/journal.pone.0149328 February 18,2016 4/14
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are defined as:

|H® — H]|

E° = - _
[ — |+ [~ H]

O € {col, tex} (6)

H is the mean position of the centroid of color saliency map and texture saliency map. The
centroid of the saliency map with a lower eccentricity is the final centroid because its reliability
is better. The final centroid H is determined by the following formula:

Hml, Ecol S Etex
H{ )

Htex , Ecol > Etex

Secondly, we select salient regions by an adaptive threshold T, and the Threshold T is
defined as the mean saliency of saliency map:

T = Zi:l S (8)

S; is the saliency value of region r;, N is the number of sub-regions. The regions whose
saliency value meet S; > T is defined as salient regions. Then we compute the average distance
between the final centroid and all salient regions which is given as follow:

SN
_ . — H
3 = HI o
SN
Sy is the number of salient regions, p,, is the position of salient region #, n € [1, Sy].
Finally, the variance of spatial distances between the final centroid H and all salient regions
is calculated, which is defined as:

S (lp, - H| - d)’

D=
SN

(10)

We define the DoS of saliency map by knowing that a higher variance implies higher DoS,
and vice-versa. The formula is given as:

O

D
DoS° = D D O € {col, tex} (11)

As mentioned above, the saliency map with higher DoS is assigned with a lower weight.
Therefore, we set the o and j by following formula:

o =1 — DoS
{ (12)

B =1— DoS*

Integration of High-level Prior

Based on human perception, we incorporate location prior and color prior to the saliency
detection model.

For location prior, the objects near the image center are more attractive, which has been
proven by many eye tracking datasets [36]. The location prior map is Gaussian distributed
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Comparison on MSRA 1000
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Fig 3. Evaluation of texture (S1), color (S2), fuse texture and color with average weight (S3) and adaptive weight (S4), and final saliency map (S5).
doi:10.1371/journal.pone.0149328.9003

based on the distance of the sub-regions to the image center, its formula is given as:
P,(r) = exp(—d(r;,c)/0,") (13)

For color prior, warm colors such as red and yellow are more conspicuous. Similar to [13],
we obtain a 2-D histogram distribution H(r;) of sub-regions in #R-nG color space. Different to

[13], we set nR = ;-5 , nG = 275 Then the corner regions are regarded as background and
its histogram distribution H(B) is generated as well. We get the values from the two histograms

h;and hg. And color prior is given as follow:

P (r,) = exp((h; — hy)/a,%) (14)
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Fig 4. Precision and recall rates of the compared models on THUS10000.

doi:10.1371/journal.pone.0149328.g004

Lastly, the above two prior maps are fused into the last saliency map S;, which is assigned as:

S, = S(ri).Pl(ri).Pc(ri) (15)

Full Resolution Saliency Map

To get full resolution saliency map, we assign the saliency value to each pixel by using the up-
sampling method proposed in [14] and [35]. The saliency value of a pixel §J is a weighted linear
combination of the saliency S; and other sub-regions, which is given as:

N
S = S, (16)

7 =1
And the w;; is Gaussian weight to ensure the process is both local and color sensitivity. It is
defined as below.
1 1 2 9
wji :Iexp(_i(a”(:j_cr'” +prj_piH )) (17)
i

aand b are parameters that control the sensitivity to color and position. Similar to [14], we
seta =1/30 and b = 1/30.
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Experiments

In this section, we conduct experiments on three datasets in order to evaluate the performance
of the proposed model. We compare our model with these existing works: frequency tuned
method (FT) [20], low-rank matrix recovery based method (LR) [13], graph-based method
(GB) [37], Itti’s method (IT) [15], region-contrast method (RC) [38], AC [39], context-aware
method (CA) [40], spectral residual approach (SR) [41], MSS [42]. The datasets we use are
THUS10000(provided by M. M. Cheng [18]), MSRA-1000 (provided by Achanta) and
DB-Bruce [43] (S1 Dataset).

The saliency map is segmented according to the fixed threshold T which ranges from 0 to
255. The regions whose saliency values are higher than Trare regarded as salient regions. There
are 256 binary segmentations by thresholding the saliency map with 256 threshold values. We
calculate precision rate by the formula as follows:

[y
precision = ﬁ (18)

Adaptive Threshold on THUS10000

Bl Precision
0.9 |Recall

-F measure

0.8_ .......... e i -

Al W W
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o3rl M BN HE EE BE BE BE BN RN
o2rl M B HE EE BE BE BE BN EE
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0

Our

Fig 5. Precision, recall, and F-measure results from adaptive thresholds on THUS10000.

doi:10.1371/journal.pone.0149328.9005
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tp is the number of pixels inside the salient regions of both saliency map and ground truth
map, sm is the number of pixels inside the salient regions of saliency map. Recall rate is given as:

_p
recall = p (19)

gt is the number of pixels inside the salient regions of ground truth map. Then the F-mea-
sure is defined as:
(1 4 p*)precision x recall

Fm = 2 .. (20)
p~ X precision + recall

Similar to [20], we set % = 0.3 to weigh precision over recall.

Evaluation of Texture, Color, and Final Saliency Map

In this section, we evaluate the performance of the texture saliency map, color saliency map,
saliency map fusing the texture and color saliency with average weight and adaptive weight
respectively and final saliency map on MSRA-1000. Fig 3 shows the average precision recall
curves of above five saliency maps. The curves show that the fused saliency map using adaptive

Comparison on MSRA1000
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o
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O
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0
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Fig 6. Precision and recall rates of the compared models on MSRA-1000.

doi:10.1371/journal.pone.0149328.g006
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weight has better performance than using average weight. And the final saliency map that
incorporate high-level prior achieve the best performance among the five saliency maps.

Comparison on THUS10000

Fig 4 shows the evaluation results of the proposed method compared with nine kinds of differ-
ent state-of-art saliency detection approaches on THUS10000 data set. The average precision
recall curves display that our model outperforms other salient region detection models at every
threshold and any recall rate. The average precision, recall, and F-Measure of different methods
with an adaptive threshold are shown in Fig 5. The proposed method achieved the highest pre-
cision, recall and F-measure. The three benchmarks consistently prove that our method is
superior to other nine models.

The proposed method highlighted the salient object regions effectively with well-defined
boundaries and suppressed the background regions.

Comparison on MSRA-1000

Fig 6 shows the evaluation results of the proposed method compared with nine kinds of differ-
ent state-of-art saliency detection approaches on MSRA-1000 data set. The average precision
recall curves display that our model outperforms other salient region detection models at every
threshold and any recall rate. The average precision, recall, and F-Measure of different methods

Adaptive Threshold on MSRA1000

Bl Precision
| JRecall

0.8

0.6

0.4

0.2

0

RC AC CA LR SR MSS Our

Fig 7. Precision, recall, and F-measure results from adaptive thresholds on MSRA-1000.

doi:10.1371/journal.pone.0149328.9007
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ROC curves on DB-Bruce
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Fig 8. ROC curves of the compared models on DB-Bruce.

doi:10.1371/journal.pone.0149328.9008

with an adaptive threshold are shown in Fig 5. The proposed method achieved the highest pre-
cision, recall and F-measure. The three benchmarks consistently prove that our method is

superior to other nine models.

Comparison on DB-Bruce

DB-Bruce is an eye tracking dataset including 120 images with eye fixation data. We adopt it to
evaluate the prediction performance of the proposed model. Here, we use the receiver

Table 1. Units for the AUC Comparison on DB-BRUCE Database.

Method FT IT GB RC CA LR SR MSS Our
AUC 0.6774 0.7158 0.6934 0.7208 0.6809 0.7335 0.5442 0.7208 0.8013

doi:10.1371/journal.pone.0149328.1001
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(a) Img (b) FT (c)IT (d)GB (e) RC (f) AC (g) CA (h)LR (1) SR (]) MSS (k) Our (1) GT

Fig 9. Visual comparison of saliency maps. (a) original images, (b) frequency tuned method (FT) [20], (c) Itti’'s mettod (IT) [15], (d) graph-based method
(GB) [37], (e) region-contrast method (RC) [38], (f) AC [39], (g) context-aware method (CA) [40], (h) low-rank matrix recovery based method (LR) [13], (i)
spectral residual approach (SR) [41], (j) MSS [42], (k) our method, (1) ground truth.

doi:10.1371/journal.pone.0149328.9009

operating characteristic (ROC) curve and the area under the ROC curve (AUC) [44] to evaluate
the performance of saliency detection models. As shown in Fig 7, the ROC curves of our model
outperforms other models. Fig 8 provides the comparison results for ROC curves and Table 1.
gives the AUC results. As shown in Table 1, the AUC of our method is highest among the com-
pared models.

Conclusion

The model presented in this paper considered both color and texture feature in order to over-
come some shortcomings of the global contrast based models and models based on color fea-
ture only. We also introduced a more effective and logical fusion method to adjust the weights
of different feature maps adaptively. We integrated high-level priors including location prior
and color prior to the model to obtain a better saliency map. The experimental results show the
superiority of our model in comparison with the existing models in terms of visual effect
(shown in Fig 9). In the future, we will study on more complex data set, as the data set eliminat-
ing center bias. This will make huge challenge to the existing saliency detection methods, may
even open up a new research direction of saliency detection.

Supporting Information

S1 Dataset. Dataset demo of THUS10000(provided by M. M. Cheng [18]), MSRA-1000
(provided by Achanta) and DB-Bruce [43].
(ZIP)
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