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ABSTRACT The identification and validation of gene-gene interactions is a major challenge in human studies. Here, we explore an
approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant
preproinsulin (hINS<2%Y) in the eye imaginal disc mimics the human disease: it activates conserved stress-response pathways and leads to
cell death (reduction in eye area). Dominant-acting variants in wild-derived inbred lines from the Drosophila Genetics Reference Panel
produce a continuous, highly heritable distribution of eye-degeneration phenotypes in a hINS<26Y background. A genome-wide associ-
ation study (GWAS) in 154 sequenced lines identified a sharp peak on chromosome 3L, which mapped to a 400-bp linkage block within
an intron of the gene sulfateless (sfl). RNAi knockdown of sfl enhanced the eye-degeneration phenotype in a mutant-hINS-dependent
manner. RNAI against two additional genes in the heparan sulfate (HS) biosynthetic pathway (ttv and botv), in which sf/ acts, also modified
the eye phenotype in a hINSC®6Y-dependent manner, strongly suggesting a novel link between HS-modified proteins and cellular
responses to misfolded proteins. Finally, we evaluated allele-specific expression difference between the two major sfl-intronic haplotypes
in heterozygtes. The results showed significant heterogeneity in marker-associated gene expression, thereby leaving the causal mutation(s)
and its mechanism unidentified. In conclusion, the ability to create a model of human genetic disease, map a QTL by GWAS to a specific
gene, and validate its contribution to disease with available genetic resources and the potential to experimentally link the variant to
a molecular mechanism demonstrate the many advantages Drosophila holds in determining the genetic underpinnings of human disease.

LIMITATIONS imposed by human subject research can be
overcome by investigating models of human disease in
experimental organisms. Drosophila can provide genetic in-
sights relevant to human biology and disease, owing to the
conservation of fundamental cellular and developmental
processes. We constructed a fly model of protein-misfolding
disease, by creating a transgene of a diabetes-causing, human
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mutant preproinsulin (hINS®9¢Y) that could be expressed in
the eye imaginal discs and other tissues (Park et al. 2013).
This misfolded proinsulin protein causes the loss of insulin-
secreting pancreatic beta cells and diabetes in humans and
mice (Stgy et al. 2007). When misexpressed in the Drosophila
eye imaginal disc, it disrupts eye development, resulting in
a reduced eye area in adult flies (Park et al. 2013).

In the accompanying article (Park et al. 2013), we crossed
the transgenic line bearing the mutant preproinsulin and an
eye-specific Gal4 driver (GMR >> hINS®%Y) with a subset
of the lines from the Drosophila Genetics Reference Panel
(DGRP). The F1 lines displayed a wide, nearly continuous,
range of heritable eye-degeneration phenotypes, suggesting
a polygenic basis for this genetic background variation (Park
et al. 2013). To investigate the genetic basis of this background
variation, here we performed a genome-wide association
study in a larger set of 154 DGRP lines.

Genetics, Vol. 196, 557-567 February 2014 557


http://flybase.org/reports/FBgn0020251.html
http://flybase.org/reports/FBgn0020251.html
http://flybase.org/reports/FBgn0020251.html
http://flybase.org/reports/FBgn0265974.html
http://flybase.org/reports/FBgn0027535.html
http://flybase.org/reports/FBgn0020251.html
http://flybase.org/reports/FBgn0020251.html
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.157800/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.157800/-/DC1
mailto:martinkreitman@gmail.com
mailto:martinkreitman@gmail.com
mailto:binhe@fas.harvard.edu

Drosophila’s many favorable attributes for mapping quan-
titative trait loci (QTL)—a high density of common variants,
relatively little population subdivision, a decay of linkage
disequilibrium (LD) over a scale of only hundreds of base
pairs, controlled crosses allowing repeat measurements, and
excellent resources for confirmatory genetics—allowed us to
identify a variant in the heparan sulfate (HS) biosynthesis path-
way gene, sulfateless (sfl), contributing to the eye-degeneration
phenotype and then confirm a genetic interaction between
mutant hINS and sfl by RNAi knockdown analysis. Two other
genes in the HS biosynthetic pathway, tout-velo (ttv) and brother
of tout-velo (botv), displayed a similar interaction upon genetic
analysis, implicating HS-modified proteins, or proteoglycans
(HSPG), in the response to misfolded proteins.

We then tested the hypothesis that the intronic sfl variants
act by decreasing gene expression by measuring the relative
expression level of each allele in 15 heterozygotes containing
both alleles. The results are mixed, with seven crosses showing
a difference that is consistent with the hypothesis; however,
overall there is only modest correlation between the genotype
and the expression level, which leaves the causal mutation(s)
and its mechanism yet to be identified.

Although our model of neonatal diabetes in the fly—
transgenic expression of a mutant disease-causing human
insulin allele—is Mendelian, the severity of the disease trait
is exquisitely sensitive to genetic background and behaves as
a complex trait. We discuss the prospects for modeling complex
human disease in the fly with this general approach.

Materials and Methods
Drosophila stocks and crosses

The {GMR-Gal4, UAS-hINS®Y} line was generated by crossing
the GMR-Gal4 line (stock 1104, Bloomington Stock Center)
with the UAS-hINS®%Y line (Park et al. 2013) and obtaining
the recombinant second chromosome, which was balanced
over CyO. DGRP lines were obtained from the Bloomington
Stock Center. RNAI lines against sfl (GD5070), ttv (GD4871),
and botv (GD37186) were from the Vienna Drosophila RNAi
Center. Mutant lines for ttv (ttv®81) and botv (botv>19) were
described previously (Ren et al. 2009).

Eye area measurement

All crosses were reared at 25°. Total eye area was measured as
described in Park et al. (2013). At least 10 images (independent
flies) passing the quality check were collected for each cross.
Raw data are available in Supporting Information, Table S1.

Principal Component Analysis

The whole-genome SNP data set for the 154 DGRP lines
used for genome-wide association study (GWAS) (see Table
S2 for the list of line numbers) was downloaded from the
DGRP website (http://dgrp.gnets.ncsu.edu/, freeze 1). To char-
acterize population structure, 900K SNPs (after LD pruning using
PLINK v. 1.07, with parameter-indep-pairwise 50 5 0.5)
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were used to identify the top 15 principal components (PCs)
(SmartPCA software in Eigensoft v. 3.0, no outlier exclusion).
We then estimated the correlation between the hINS¢Y phe-
notype (line mean) and projection length in the direction of
the top five principle components in each DGRP line to test
whether population structure is a confounding source of asso-
ciation in GWAS.

Genome-wide association using linear regression

The mean eye area of 154 DGRP lines crossed to the hINS®96Y
line was regressed on each SNP with a minor allele frequency
(MAF) >5% (PLINK 1.07, quantitative trait mode). On the X
chromosome, 1,616,121 autosomal and 256,948 SNPs were
tested. The F1 males inherited their X chromosome from the
common transgene-containing strain. The identity by descent
of this X chromosome allowed us to test whether the X-linked
SNPs in the DGRP sample conformed to a null distribution
assuming no association (although linkage is likely to cause
deviation from this expectation). This was tested in quantile—
quantile (Q-Q) plot analysis.

Association by mixed linear model to control for
genetic relatedness

A Python implementation of EMMAX (Kang et al. 2010; Segura
et al. 2012) was used to estimate the genetic related matrix
(GRM) using inverse variance-weighted SNPs. The GRM is
plotted using the pheatmap package in R to visualize any
cryptic relatedness (Kolde 2011). When performing mixed
linear model regression, we used the GRM estimated from
just the X-chromosome SNPs, for which the mixed model
yields a narrow sense heritability of 0.83 (SNPs with MAF
>0.05). By doing so, we increase our power to detect asso-
ciations at loci on the other chromosomes, because those are
not included in the GRM (Listgarten et al. 2012). The
~250K SNPs on the X chromosome are sufficient for infer-
ring the population structure in the sample and thereby
controlling population stratification. This is evident by the
uniform P-value distribution in the Q-Q plots (Figure S4).
To assess the genome-wide significance threshold while ac-
counting for both the relatedness structure in the data as
well as the nonindependence between SNPs due to LD, we
performed a permutation procedure (details in File S1).

Conditional analysis using sfl intronic SNPs as covariates

To identify possible secondary associations in sfl or elsewhere in
the genome independent of the intronic QTL variants in sfl, we
fit a linear model with the most significant variant, an 18-bp/
4-bp insertion/deletion polymorphism, as a covariate. This
analysis was performed either within the sfI locus or genome
wide. The P-values were corrected for multiple testing using
Bonferroni’s method.

Estimate proportion of variance explained by
common SNPs

We first used GCTA (v. 1.0) to estimate the genetic relatedness
matrix with all SNPs with minor allele frequency >5%
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(-MAF 0.05). We then used the restricted maximum-likelihood
(REML) method implemented in GCTA to estimate the quantity
Vo/Vp (|REML), i.e., the narrow sense heritability.

Expression of sfl and CG32396

Expression profiles in adult tissues were assessed using data
from FlyAtlas (Chintapalli et al. 2007) and modENCODE (Roy
et al. 2010). To assay expression in the eye imaginal discs, we
isolated total RNA from 10 pairs of discs from third-instar
larvae. The individual larva was sexed and dissected in 1X
phosphate buffer saline (PBS); the eye portions of the eye-
antennal disc were collected and the isolated discs immediately
dissolved in 300 pl Trizol (Invitrogen). Total RNA was ex-
tracted according to the manufacturer’s instructions. cDNA
libraries were constructed using (dT),o primers after DNase I
treatment (Invitrogen). Real-time quantitative PCR was per-
formed with primer pairs targeting either sfl or CG32396, with
expression of the gene rp49 as an endogenous reference
(SYBR-Green assay). Primers used for qRT-PCR are listed
in Table S3.

RNAI and validation studies

All RNAi lines were originally from the Vienna Drosophila
RNAi Center as P-element insertion lines on a co-isogenic
w1118 background. Each RNAi line was first tested to de-
termine whether it alone had an effect on eye development
by crossing it to GMR-Gal4 and comparing the eye area of
the F1 males (or females) to the control cross between
w1118 and GMR-Gal4. In all crosses, GMR-Gal4 was used
as the maternal parent. To test its effect on the hINSC96Y-
induced eye-degeneration phenotype, the RNAi line was
crossed to the GMR >> hINS®%¢Y line (used as maternal
parent), so that both hINS®?%Y and the RNAi constructs
are driven by GMR-Gal4. The resulting phenotype was com-
pared to the cross between hINSC6Y females and w1118
males. At least 10 individual flies were measured per cross
and a t-test was used to determine significance at 0.05 level
with multiple testing correction. For mutant lines, GMR-
Gal4 was replaced with w1118 in the first test and used as
a control. The same scheme was used for the second test. It
is worth noting that because the mutants were tested in het-
erozygous states, only dominant interaction with hINSC96Y
are revealed.

sfl expression studies

Six lines carrying the 18-bp indel allele and eight carrying
the 4-bp allele were chosen and paired to form 15 crosses
(Figure S1A). Three sets of 10 late third-instar (wandering
stage) larvae were collected from each cross and dissected in
1X PBS to isolate eye imaginal discs. RNA isolation and
c¢DNA library preparation are the same as described above.
Genomic DNA was extracted from adult flies from the same
cross. Because the 18-bp/4-bp polymorphism is in the intron
of sfl, a SNP in the cDNA that could be used to distinguish
the two alleles in each cross was identified (Figure S1B).
Four such SNPs were chosen and pyrosequencing assays

were designed (primers listed in Table S3). Pyrosequencing
was performed as previously described (Wittkopp 2011).
Briefly, each of the three cDNA and one gDNA sample per
cross were analyzed by pyrosequencing in four replicate PCR
amplifications to determine relative expression. The ratio in
genomic DNA analysis was used to account for amplification
bias. The resulting 12 ratios were first log2 transformed and
analyzed using ANOVA according to the model y; = a +
L; + &; where « is the estimate of the relative expression
ratio, which is expected to be significantly different from
zero when the two alleles are differentially expressed; L; is
a random effect term for the biological replicates (i = 1, 2, 3).
For 13 of the 15 crosses the P-value >0.1; for these crosses
the data were fit to a reduced ANOVA model y; = a + ¢;, from
which the estimate and the 95% confidence interval for the
ratio of expression («) were calculated. In the two cases
where the random effect term was nominally significant
(P < 0.1), a linear mixed-effect model was fit using the
Ime package in R to obtain an estimate and 95% confidence
interval for the same ratio.

Results

Effect of natural variation on hINS<%¢Y-induced
eye phenotype

We crossed the transgenic fly line (w; P{GMR-Gal4}, P{UAS-
hINS®6Y }/Cy0O) as the maternal parent to 178 inbred lines
from DGRP (only 154 were used in the subsequent GWAS
analyses due to genome sequence availability). These lines
represent a spectrum of natural variation, except for recessive
lethal variants, which were eliminated in the formation of the
DGRP. Among several eye phenotypes observed—rough eye,
reduced total area, distortion of the oval shape, and black
lesion spots—we chose total eye area as the phenotype to
carry out a GWAS. We quantified eye area in 10 male prog-
eny from each hINS®°6Y X DGRP cross. We observed a con-
tinuously varying distribution of this phenotype, ranging
from 13 to 86% of wild-type fly eye area (Figure 1). ANOVA
indicated that 58.6% of the variance is between genotypes
[approximately equal to the broad sense heritability (Falconer
1981, p. 115)], indicating a large genetic component. Males
were chosen for measurement and analysis because they
showed a more severe phenotype than females (Park et al.
2013). However, we also measured F1 females for a subset
of 38 lines and found a strong correlation between the two
sexes from the same cross (r = 0.8, Figure S2).

The observed variation in eye degeneration is consistent with
the hypothesis that it reflects differences in cellular response to
the expression of hINS®¢Y, The severity of the eye-degeneration
phenotype is not correlated with body size of the same in-
dividual or the mean eye size of the same line, nor is it
correlated with GAL4 protein levels in eye imaginal discs (Park
et al. 2013). The GWAS described below showed no evidence
for association between eye area and SNPs in or surrounding
the glass (gl) locus, the trans-activator of GMR-Gal4, a result
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Figure 1 Distribution of eye area in hINS?6Y X DGRP crosses. Mean *+1
SD, sorted by the mean, is shown for crosses between the transgenic
{GMR >> hINS<9¢"} line to 178 DGRP lines, and two randomly chosen
DGRP inbred lines (red). Representative photographs of eyes from across
the range of the distribution are shown. The rightmost image is of a non-
transgenic wild-type fly eye.

consistent with Gal4 protein measurements and the fact that
the eye-degeneration phenotype is insensitive to GMR-Gal4
gene dose when hINS®®®Y is present in single copy (Park
et al. 2013, Figure 3). Finally, when we expressed hINSC96Y
in the notum (rather than the eye) and measured the loss of
macrochaetae in F1 crosses to 38 DGRP lines for which we
also collected eye-degeneration data, we observed no corre-
lation between the two traits, indicating that the degenera-
tion phenotypes are not caused by line-specific differences in
mutant insulin expression (Park et al. 2013).

Genome-wide association analysis

To identify candidate genetic loci and variants underlying the
phenotypic variation, we carried out GWAS on the F1 males
from the crosses of hINS®?6Y and 154 DGRP lines. We used
mean eye area as a quantitative trait to perform single-marker
regression for 1.6 million autosomal SNPs, restricted to bial-
lelic sites for which the minor allele frequency is at least 5%.
The result revealed a strong peak on chromosome 3L and-
minor ones on other major chromosome arms (Figure 2C).
The most significant SNP underlying the chromosome 3L
peak has a raw P-value of 2.4 X 10~8 (t-test); the Bonferroni-
corrected P = 0.04.

Population stratification is a potential confounder for
GWAS—it can inflate the test statistic for nonassociated
variants if the population structure correlates with the phe-
notype. We assessed its impact in our study in three ways.
First, we evaluated the Q-Q plots for autosomal and X-linked
variants. Neither showed a systematic shift toward low P-values
compared to the null expectation, which would be expected
if population structure induces false association signals (Figure 2,
A and B). Second, we used principle component analysis
(PCA) to calculate the top eigenvectors explaining the most
genetic variation in the sample. Plotting the phenotype of
each cross against the coordinate of each of the top five eigen-
vectors revealed no correlation between the two (Materials and
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Methods and Figure S3). Third, because all F1 males
inherited their X-chromosome from the GMR >> hINS®96Y
tester line, we expect no association between the phenotype
and X-linked SNPs. Indeed, we found only an excess of low
P-values in autosomal variants, but not in X-linked ones
(Figure 2, A and B). The above analyses suggest that pop-
ulation stratification does not correlate with the trait and
does not influence the results of the association study.
Cryptic relatedness, i.e., unknown genetic relationships
between individuals in a sample, can also confound the as-
sociation analysis due to nonindependence and larger than
expected phenotypic variance (Voight and Pritchard 2005;
Cheng et al. 2010). We estimated the GRM from whole-genome
SNP data using mixmogam (a Python implementation of
EMMAX) (Kang et al. 2010; Segura et al. 2012). We found
that while the majority of the 154 lines are genetically un-
related (Figure S4A), several pairs of lines showed higher
levels of relatedness, e.g., RAL-350/RAL-358 and RAL-352/
RAL-712 (Figure S4B). Next, we performed mixed linear
model (MLM) regression to explicitly account for the cryptic
relatedness as well as population stratification (Yu et al.
2006; Atwell et al. 2010). A permutation procedure specifi-
cally designed to preserve the phenotype covariance structure
is used to establish a genome-wide 5% significance threshold
(File S1). The resulting P-value distribution is qualitatively
similar to the linear regression analysis, and it identified sfl
as significantly associated with the trait under a permutation-
based 5% genome-wide threshold (Figure S4E). The most sig-
nificant SNP (3L:6523119, dm3) has a raw P-value of 1.4 X
1078, Below we focus on identifying the gene(s) underlying
the peak and genetically testing its association with the

phenotype.

sfl modifies eye area phenotype

The peak on chromosome 3L is confined to the third intron
of the gene, sfl (Figure 2D). This intron also contains a nested
gene (CG32396) lying close to the association peak. CG32396
is predicted to encode a protein with a probable tubulin
B-chain. To determine which of the two genes, or possibly
both, is responsible for the association, we examined the
expression pattern of each gene and also used RNAi to knock
down gene expression. sfl is expressed in the eye-antennal
imaginal disc and eye and brain in adults (Figure S5 and
Figure S6). CG32396 has a testis-specific expression pattern
in adults, with very low expression in the adult eye (Figure S5)
and no detectable expression in eye imaginal discs by RT-PCR
(Figure S6 and Figure S7).

RNAi knockdown of either sfl or CG32396 in the eye imaginal
disc had no measurable effect on eye area. In contrast, RNAi
against sfl, but not CG32396, significantly decreased mean eye
area in the presence of hINSC®%Y but not hINSWT (Figure 3).
These results rule out CG32396 as the causal gene and
strongly implicate sfl as the genetic modifier of hINSG6Y-
induced eye degeneration.

To test if sfl also modifies the hINS®®¢Y-induced pheno-
type in other tissues, we carried out RNAi knockdown of sfl
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Figure 2 Genome-wide scan identifies candidate locus associated with the hINS<®¢Y-induced phenotype. Quantile-quantile (Q—Q) plot reveals an excess of
small P-values on autosomes (A) but not on the X chromosome (B), which is not variable in the mapping population due to cross design. (C) Manhattan plot
shows a strong peak (green) on chromosome 3L. The blue and red horizontal lines indicate raw P < 10> and Bonferroni corrected P < 0.05, respectively.
(D) UCSC browser view of the sfl locus containing the association peak. The intron containing the peak also contains a nested gene CG32396.

in the developing wing (using a dpp-Gal4 driver) and notum
(using an ap-Gal4 driver). In both experiments we observed
more severe phenotypes than that caused by hINS®%Y alone
(Figure S8 and Figure S9). However, the interpretation is
complicated by the fact that sfl knockdown alone causes
mutant phenotypes in these tissues, consistent with previous
knowledge (Lin 2004). At present we cannot distinguish the
alternative hypotheses of additive vs. epistatic interactions
between sfl and hINSC96Y,

Heparan sulfate biosynthetic pathway modifies the
hINS®®¢Y-induced eye degeneration

Sulfateless encodes a bifunctional enzyme in the heparin sul-
fate biosynthesis pathway. An important component of the cell
surface and extracellular matrix (Kirkpatrick and Selleck
2007), HSPGs regulate signaling during development by
influencing the levels and activity of growth factors and
morphogens at cell surfaces and in the extracellular matrix

(Nakato et al. 1995; Hécker et al. 1997; Giraldez et al. 2002;
Fujise et al. 2003; Kirkpatrick et al. 2004). The involvement
of HSPGs in the cellular responses to misfolded proteins
(proteostasis) has not been previously described.

To further examine the hINS®®®Y-dependent interaction
of sfl, we examined RNAi knockdowns and mutants for two
additional genes in the HS biosynthetic pathway, ttv and
botv, producing the glycosaminoglycan polymer that is mod-
ified by sfl (Lin 2004). SNPs in neither of the genes showed
evidence of association in our GWAS (lowest adjusted P >
0.5 in both loci, adjusted for multiple-testing using Bonferroni’s
method). RNAi knockdown of both genes shows a hINSG6Y-
dependent effect on eye area in the same direction as sfl RNAi
(Figure 4). In addition, a mutant allele of botv also showed
a significant dominant enhancement of the eye-degeneration
phenotype. These results implicate HSPGs in modifying the
cellular response to misfolded proteins. Neither of the genes,
however, was identified in the GWAS.
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Intronic variation and sfl expression

We resequenced a 3-kb region containing the GWAS peak in
sfl (and the nested gene CG32396) in 19 of the 154 DGRP
lines and the transgenic hINS®?6Y stock to identify all the
variants in this region. We found that the SNP achieving the
lowest P-value genome-wide was an 18-bp/4-bp-length poly-
morphism (relative to the Drosophila simulans orthologous
sequence) (Figure 5A). We also found three other insertion/
deletion (INDEL) polymorphisms in this region, with sizes
ranging from 4 to 30 bp and the minor alleles (deletion in
all three cases) being present only once or twice in the sam-
ple. In contrast, the 18-/4-bp polymorphism is present at 50%
frequency in the DGRP sample. Below we use the term single-
feature polymorphism (SFP) to refer to both INDEL and single-
nucleotide polymorphism in the sfI locus.

A plot of haplotype structure surrounding the association
peak (Haploview v. 4.2) pinpoints an LD block of 400 bp
(block 66 in Figure 5A, chr31.:6523119-6523518). There are
two major haplotypes in this block, each represented by two
equal-sized groups among the 154 DGRP lines (Figure 5B).
For convenience, we refer to these two haplotypes as the
18-bp or 4-bp allele, although it is worth noting that we do
not have the ability to distinguish between the SFPs within
this block, unless further recombinant individuals are sampled
or generated.

Because all coding variants in sfl lie outside of this 400-bp
LD block, we hypothesized that one or more of these intronic
SFPs are the causal variant(s) and modify the hINS®¥-induced
eye phenotype by altering sfl expression. We tested this hy-
pothesis by examining the correlation between the allelic
states and the allele-specific expression level. We selected
pairs of 4- and 18-bp lines from the respective phenotypic
spectrum, crossed them to obtain F1 individuals heterozygous
for the two alleles, and used pyrosequencing to estimate the
relative expression of the two alleles in eye imaginal discs.
This method allowed us to measure the ratio of expression of
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sfl associated with each allele in the same animal, thereby
controlling for both the trans-environment as well as experi-
mental noise, resulting in highly reproducible results (Figure
S10). Based on RNAi knock-down of sfl, which enhanced the
hINS®¢Y phenotype, we expected the 4-bp allele (associated
with more severe phenotypes in the GWAS) to produce less
transcript than the 18-bp allele.

Allele-specific expression of sfl differed in both magnitude
and direction among the 15 crosses (Figure 6). Seven crosses
supported the hypothesis by exhibiting significantly greater
expression from the 18-bp allele, with an 18-/4-bp ratio
ranging from 1.03 to 2.8 (median 1.15). Two crosses, how-
ever, showed slightly greater expression from the 4-bp allele
(18-bp/4-bp ratios of 0.94 and 0.96). The remaining six
crosses showed no significant differences in expression of
the two alleles in our test. While more strains showed higher
expression of the transcript linked to the 18-bp allele and
the difference in this direction is stronger, the small sample
size and the modest correlation between the allelic states
and the transcription level prevented us from drawing a conclu-
sion. Proving the causal mutation(s) and identifying the mech-
anisms require further experiments making precise changes at
the candidate loci and assaying the effects in the same genetic
background.

Search for additional association by conditional analysis

In light of the above finding, we carried out a conditional
analysis to identify variants that act independently of the
18-/4-bp SFP. To do so, we tested variants other than the
18-/4-bp SFP, either within the sfl locus or genome wide, by
treating the 18-/4-bp SFP as a covariate in a linear regression
model. After accounting for multiple testing, we observed no
significant signals in either case (Figure S11). The lack of
significance genome wide may be attributable to the lack of
power after correcting for multiple testing. The analysis re-
stricted to the 40-kb sfl locus reduces the burden of multiple
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testing by several orders of magnitude, but also fails to iden-
tify a significant association. Considering the large range of
allele-specific expression differences between the 18- and
4-bp alleles observed in the 15 crosses, the additional cis-
acting expression variants must either be low frequency alleles
or have epistatic properties, two situations this analysis would
be underpowered to detect.

Discussion
sfl and hINS®¢Y-induced eye degeneration

Statistical (GWAS) and genetic (RNAi) evidence support a role
for sfl as a natural genetic modifier for hINS®®%Y-induced eye
degeneration. Although we conducted a GWAS for dominant-
acting modifiers in a relatively small sample of lines (154)
considering the large number of segregating common SNPs
(1.6 million), we found statistical support for a QTL in sf in
a mixed model analysis, which addresses effects of both pop-
ulation structure and genetic relatedness in the sample. One
possible reason that the sfl QTL achieves statistical signifi-
cance is because the two alternative alleles occur at a ~50%
frequency in the sample, where GWAS is maximally powerful.

RNAi knockdown experiments showed that perturbation
of sfl expression, and also two other genes in the HS biosyn-
thesis pathway, has a measurable effect on eye degeneration,
but only in the presence of hINSC6Y expression, indicating
a specific interaction between protein misfolding and HS bio-
synthesis (also see Park et al. 2013). RNAi against CG32396,
the gene nested inside the intron of sfl, had no effect on eye
area in both the absence and presence of hINSC9%Y, suggest-
ing that the hINS®®¢Y-induced eye-degeneration phenotype is
not simply a consequence of RNAi expression. We caution,
however, that genetic proof of sfl as modifying the phenotype
in this population will require additional studies.

A direct test for sfl and the intronic variation being causal
would be to genetically engineer two lines in the same ge-
netic background, differing only at the sfl locus. A potential

caveat of this approach lies in the assumption that the dif-
ferential activity of the two alleles is independent of the
genetic background (i.e., no epistasis), which, if violated,
will lead to a false-negative result (Chandler et al. 2013).
We used instead an indirect approach by examining the
correlation between the allelic states and the expression
level. To take into account the genetic background differences,
we measured allele-specific gene expression of 18- and 4-bp
sfl alleles in 15 different “controlled” genetic backgrounds,
but keeping the background the same for the two alleles by
comparing their expression ratios in heterozygotes. The
results are mixed: the ratio of expression from the 18-/4-
bp alleles differed in the 15 crosses, ranging from 2.8 to 0.94
(Figure 6); nearly half (7/15) showed greater expression
from the allele associated with the 18-bp variant, consistent
with the expectation based on the RNAi result; two showed
a small difference in the contrary direction (18-/4-bp ratio =
0.94 and 0.96); and the remaining six were insignificant in
our test. This marked heterogeneity in expression means we
can neither accept nor reject the hypothesis of a causal role
for the intronic variants and the expression level of sfl.
Hence we are also not able to conclude that expression
difference is the mechanism underlying the genotype-
phenotype association, although it remains a possibility. Fu-
ture experiments employing genome-editing technologies
will allow better resolution of the mechanism(s) underlying
the association (Jinek et al. 2012; Gratz et al. 2013; Ran
et al. 2013).

Finally, we investigated whether additional eQTLs exist
in sfl or in other genes acting epistatically with sfl. Likely due
to lack of power, a conditional analysis failed to identify
additional variants in the sfl locus or elsewhere in the ge-
nome. However, it is now well established that gene expres-
sion is a highly polygenic trait in Drosophila melanogaster,
with many eQTLs contributing to expression variability both
in cis and in trans (Brem et al. 2002, 2005; West et al. 2007),
and intralocus genetic complexity influencing a quantitative
trait has long been known, as in the Adh example (King et al.
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2012). In the 40-kb region spanning the sfl locus alone,
1358 SNPs are present among the 14 lines used in this
experiment, which individually or in combination could in-
fluence expression of the gene. Thus, predictions based on
one or two strongly associated variant(s) is not adequate. A
polygenic risk predictor may be needed to summarize con-
tributions even from a single locus.

HSPG function and misfolded protein response

Our study identified the HS biosynthesis pathway (sfl, ttv, and
botv) as a modifier of eye degeneration induced by expression
of a misfolded human proinsulin protein. Although we do not
yet know whether this response is to a specific misfolded
protein (hINS®9¢Y) or whether it applies to a broader class of
misfolded proteins, our discovery now implicates the HSPGs in
the regulation of cellular proteostasis.

We propose that genetic variation in HS biosynthesis
influences the response to misfolded protein through its bio-
logical activity in vesicular trafficking of misfolded protein.
HS-modified proteins (HSPGs) are abundant components of
cell surfaces and extracellular matrices and are best under-
stood for their roles in cell signaling and in functioning as
coreceptors, processes integral to normal development
(Hacker et al. 2005; Kirkpatrick and Selleck 2007). HSPGs

vl
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MZ2  lelic D', which quantifies the asso-
16 ciations between adjacent blocks.
014

are also involved in endocytocis (Ren et al. 2009; Stanford
et al. 2009) and vesicular trafficking (Nybakken and Perri-
mon 2002; Sarrazin et al. 2011), roles that may link them to
cellular response to misfolded proteins (Higashio and Kohno
2002; Kim et al. 2009; Kimmig et al. 2012).

HSPGs may also influence membrane trafficking indi-
rectly, perhaps by regulating signaling events that impinge
on trafficking processes. The generation of phosphatidylinositol
(3,4,5) triphosphate [PtdIns(3,4,5)P3] by type I phosphoi-
nositide (PI) 3-kinases is affected by a number of growth
factors and cytokines, many of which are influenced by HSPGs
as accessory molecules. PtdIns(3,4,5)P; affects a number of
trafficking events, including endocytosis and autophagy
(Downes et al. 2005).

In a yeast study of the mutant protein folding assistant,
protein disulfide isomerase (Pdila’), the authors found that
more than 50% of the 130 genes identified as synthetic-lethal
were related to vesicle trafficking, while only 10 belonged to
the canonical unfolded protein response (UPR) pathway (Kim
et al. 2009). In another study, Kimmig et al. (2012) found an
enrichment of vesicle-trafficking-related genes among those
that changed expression significantly after induction of ER
stress. Both studies indicate that a global regulation of vesicle
trafficking is important to a cell’s response to unfolded or
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Figure 6 Pyro-sequencing measure of sf/ allele-specific transcript ratio in
18-/4-bp heterozygotes. (A) Schematic diagram of the pyrosequencing ap-
proach. Colored lines represent transcripts (mRNA) associated with either
the 18 or the 4bp allele, expressed at different levels. Common primers
were used to amplify both transcripts of the gene of interest from the cDNA
library made from eye imaginal disc tissues. Pyrosequencing was carried out
on the amplified products. (B) A pyrogram of a heterozygote with the
polymorphic site (G/C) that is diagnostic for the 18-/4-bp indel highlighted.
The ratio of the two peaks (light intensity, y-axis) are used to calculate the
relative ratio of the two alleles. (E, enzyme; S, substrate; A/C/G/T, nucleo-
tides). (C) Log2-transformed ratio of 18-/4-bp allele expression in 15 crosses
between randomly paired 18- and 4-bp lines. Estimates of the ratio and
95% confidence intervals are plotted. The dotted line corresponds to equal
expression from the two alternative alleles.

misfolded protein. Activation of UPR has also been shown to
affect ER-to-Golgi transport via stimulation of COPII vesicle
formation from the ER (Higashio and Kohno 2002). We pro-
pose that either natural variation or genetic perturbation of
HS biosynthesis influences the global regulation of vesicle
trafficking, which in turn affects the cell’s ability to process
an excess of unfolded or misfolded protein. Prolonged ER stress
may then lead to apoptosis.

Genetic architecture of the hINS<®%Y-induced
eye-degeneration phenotypes

Phenotypic heterogeneity that is dependent on the genetic
background is a common phenomenon and, in humans,
imposes a significant challenge in both diagnosis and treatment.
Our fly model provides a tractable system for studying the
genetic and molecular basis for such phenotypic heterogeneity,

but with limitations imposed by the sample size of the study.
To assess the power for identifying QTL using this population,
we did a simple calculation for a t-test-based statistic at P =
0.05 level, with Bonferroni’s correction for multiple testing,
which indicates that we have 66% power to identify a variant
at 50% population frequency, with an effect size of 1.0 (mea-
sured as the shift in phenotypic mean in units of standard
deviation of the trait; see Table S4). This example was chosen
to match the estimates for the 18-/4-bp indel polymorphism
in the sfl intron in the sample of 154 crosses. Any variant with
a smaller effect size and/or lower frequency than the 18-/4-
bp polymorphism would likely have been missed in this study.

Sulfateless was the only QTL identified as genome-wide
significant in this study (Figure 2 and Figure S4); its associ-
ation with the trait is robust with respect to population struc-
ture and cryptic relatedness (Figure S3 and Figure S4). This
does not mean, however, that the genetic architecture for the
hINS®®®Y.induced eye phenotype involves a single locus.
Rather, we have several reasons to believe that the genetic
architecture must involve many loci. First, the distribution of
the phenotype, i.e., eye areas expressed as line means, sug-
gests a non-Mendelian genetic basis (Figure 1). Second, while
ANOVA estimates that nearly 60% of the total phenotypic
variance is between crosses, <20% within the 60% (i.e.,
<12% of the total variance) can be attributed to the sfl locus.
Even this 20% estimate, because it is derived from the same
population used to identify the locus, is liable to be an over-
estimate due to the Winner’s curse effect (Garner 2007).

To estimate what percentage of the between-cross vari-
ance can be explained by the additive effects of common
variants combined, we applied the GCTA tool, which uses
a mixed linear model method, to the line means of the 154
crosses (Yang et al. 2011). The result showed that 83% (stan-
dard error 37%) of the variance between crosses could be
attributed to common, autosomal variants with minor allele
frequencies >5%. Analysis using GEMMA (v. 0.94beta),
which used a Bayesian method, achieved nearly identical
results (posterior mode 0.83, SE 0.41). We then did the same
analysis with GCTA, but including the 18-/4-bp indel poly-
morphism as a covariate to remove the effect of sfl, to esti-
mate the remaining additive heritability. As a result, we got
62% (SE 47%). The large standard error as a result of the
limited sample size leaves the proportion of variance ex-
plained by all common SNPs undetermined. However, the esti-
mates are encouraging and suggest that a potentially large
proportion of phenotype variance may be explained by addi-
tional loci, which require larger sample size to identify.

Relationship to common, complex diseases

While our fly model is of a monogenic form of diabetes, it
exhibits a complex genetic architecture when placed on
a diverse set of genetic backgrounds. We posit that fly
models of monogenetic disease are suitable subjects for the
genetic dissection of common disorders in humans.

One role of the Mendelian mutation is to sensitize the fly
to allow phenotypic effects of background genetic modifiers
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to become visible. Although common disorders are normally
considered as lacking a major mutation, a careful consider-
ation suggests that this view is inaccurate. What common
disorders lack are large-effect mutations shared by a sub-
stantial proportion of the affected individuals. For many
iseases, perturbation may be required to boost the expressivity
of additive genetic variation that would otherwise be cryptic,
i.e., below a disease-causing threshold. Such a perturbation
could be genetic, such as driver mutations in cancer, but could
also be environmental, such as diet and lifestyle changes in
the case of cardiovascular disease and type 2 diabetes. Con-
sistent with this view, it has been proposed that recent ge-
nome evolution and rapid environmental as well as cultural
changes in human history have decanalizing effects on phys-
iology, which release cryptic genetic variation and underlie the
rising incidence of common human disorders (Gibson 2009).

A genetic screen for naturally occurring modifiers in a
sensitized background, such as the one we employed here,
should apply equally well in the study of Mendelian or complex
disease. Were this not the case, two different classes of genetic
modifiers would have to be posited. An intriguing question,
which we found little empirical evidence for or against, could
be addressed in the fly by constructing a series of sensitized
backgrounds utilizing different disease-causing mutant hINS
alleles of varying effect on disease [e.g., neonatal diabetes vs.
maturity-onset diabetes of the young (Stgy et al. 2007)] and
comparing the composition of naturally occurring modifiers.

Advantages of a fly model of complex disease

A primary mutation can manifest itself in different ways and
with tissue-specific effects (Mefford et al. 2008), possibly a
consequence of its interdependence with the individual’s
genetic background. The binary Gal4-UAS system enables
the creation of a series of models using the same disease
mechanism, but directed to different tissues with high tissue
specificity. The ability to construct and study multiple re-
lated models in parallel can provide insight into the basis
of disease heterogeneity. In the accompanying article we
show, for example, that the developing eye and notum have
different sets of genetic background modifiers of hINSC96Y-
dependent disease (Park et al. 2013). Sex-specific differences
in disease risk and severity are also readily modeled in the fly.
In both the fly and mouse model of hINS®¢¥-induced disease,
males consistently show more severe disease phenotypes (Wang
et al. 1999; Park et al. 2013).

Drosophila models of human disease provide a useful alter-
native to the study of complex disease in patient populations.
First, many models of human disease have been established in
the fly, most notably neurodegeneration and cancer (Bilen and
Bonini 2005; Gonzalez 2013). We predict that natural var-
iation will influence the severity of disease phenotypes in all
of them. Second, many models of disease can be created by
expression of a mutant allele, which makes them suitable for
F1 screens between a tester stock and inbred population
collections, such as we employed here. Our study shows that
dominant genetic variation for disease severity is abundant.
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This outcrossing design also avoids unwanted effects of in-
breeding on traits and better mimics the natural heterozygos-
ity of low-frequency variants. Third, this experimental design
facilitates repeated measurement of a disease phenotype,
thereby increasing the power to detect a causal association
(Mackay et al. 2009). Fourth, LD is low in D. melanogaster
and SNP are 20-40X more abundant than in humans. Finally,
both forward and reverse genetics can be applied to investi-
gate the biology and pathway genetics of candidate variants.
For all these reasons we believe fly models will prove useful
in understanding the genetic architecture of complex human
disease.
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Figure S1 Pyro-sequencing cross and assay design. (A) Cross design for pyro-sequencing. Six 18bp and eight 4bp lines

were randomly chosen from the 154 DGRP lines used in GWAS. The Bloomington center stock number is listed. In
each cell, the order of the letter/number indicate the direction of the cross. For example, Al indicates that males of
#28240 was crossed to virgin females of #28190. (B) pyro-sequencing assays. Four SNPs were selected within the
transcribed regions so as to distinguish alleles associated with the 18/4 bp indel polymorphism.
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Figure S2 Correlations of eye area between F1 males and females within the same cross. Mean + 1 s.d. are plotted
for a subset of 38 lines. The least square linear fit is indicated.
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Figure S3 Population structure assessed through principal component analysis (PCA) using 900K autosomal SNPs
after LD pruning. (A) 154 DGRP inbred lines projected onto the plane spanned by the first two principal components
(PC1, PC2). The points are colored according to the phenotype severity in the hINS®%Y crosses (red: severe, or first
25%; blue: intermediate, 25%-75%; green: mild, 75%-100%, percentiles in eye area distribution from small to large).
(B) projection onto PC1 grouped by their phenotype severity showed no correlation between the two.
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Figure S4 Mixed linear model regression accounting for cryptic relatedness. (A) The heat map shows a 154 x 154

matrix representing the centered genetic relatedness matrix (GRM) estimated using EMMAX. The boxed area is
shown in detail in (B), with their line ID (RAL#) indicated on the right and bottom. The GRM was used in a mixed linear
model to perform genome wide association in the 154 lines. And the resulting p-values for autosomal and X-linked
variants are plotted as Q-Q plot in (C) and (D), with the red line indicating matches between the data and the null
(uniform) p-value distribution. (E) Manhattan plot showing the —log10 p-values against the chromosomal coordinates.
No association is expected on the X chromosome. The blue dotted line indicates a Bonferroni corrected P < 0.05,
while the red solid line indicates a 5% genome-wide significant level based on 500 permutations.
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Figure S5 FlyAtlas expression report for CG32396 and sfl. (A) CG32396 (B) sfl. Figure obtained through FlyBase.
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Amplification Plot
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Figure S6 qRT-PCR quantification of mRNA levels for CG32396 and sfl in eye imaginal disc samples. Two inbred lines
from DGRP were randomly chosen and eye imaginal disc samples were prepared from either 6 male or 6 female
larvae, resulting in 4 biological samples. QRT-PCR were performed for each sample and three genes (RP49 -- red curve,
sfl -- yellow, and CG32396 -- green). Shown is the amplification plot: x-axis -- cycle number; y-axis -- base-line
corrected relative fluorescence intensity proportional to the amount of amplicons. Both RP49 and sfl were detected
starting in the 18-20th cycle, while amplification didn't happen for CG32396 until after 32 cycle. In addition, multiple
melting points were detected for CG32396 assays, but not in the other two genes.
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Figure S7 Relative quantity of mRNA quantified by qRT-PCR in male and female larvae. In each category, the first
three bars represent three independent female larvae sample (whole larva), each assayed with three technical
replicates. The height of the bar represent the mean and the full range of RQ values were indicated by the error bars.
The next three bars correspond to three independent male larvae assayed for the same gene. kI-3 and Pp1-Y2 are
both located on the Y-chromosome and are known to have a testis-specific expression level. The RQ values were
measured using RP49 gene as the internal control, and the first female larva sample (F-1) as the reference, whose RQ
is set to one.
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Figure S8 Depletion of sfl by RNAI in the developing wing expressing hINS®Y driven by dpp-Gal4. For both females
and males, dpp >> hINS®Y or Dpp >> sfl RNAi expression alone reduces wing area between the L2 and L4 longitudinal
veins relative to the posterior-most sector of the wing (bordered by L5). This reduction is more severe in the sfl
knockdown genotype than in the hINA®SY-expressing genotype. Co-expression of sfl RNAi and hINS ¥ by dpp-Gal4
results in the obliteration of the L3 vein and further relative reduction of the L2-L4 area.

(A): Wild type wing showing the measured regions of wing used to quantify the effects of both sfl RNAi and hINSc9%6Y
expression in dpp-Gal4 domain (L3-L4 intervein sector). Quantification of the (B) female or (E) male wing phenotypes
generated by transgenes dpp-Gal4; dpp-Gal4 >UAS-hINSC®Y; (C, G) dpp-Gal4 >> UAS-sfl RNAi; and (D, H) dpp-Gal4
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>>UAS-sfl RNAi; UAS-hINSC®Y, The values represent the ratio of the third posterior cell (in pink color) divided by the
L2-L4 intervein sector (in green color) wing area. ***, P < 0.001; Mann-Whitney U test.

Females: dpp-Gal4 (n= 15; Mean= 0.62), dpp-Gal4 >UAS-hINSC3®Y (n= 15; Mean=0.65), dpp-Gal4 >> UAS-sfl RNAi (n=
23; Mean=1.3) and dpp-Gal4 >>UAS-sfl RNAi; UAS-hINS®®Y (n=22; Mean=1.76).

Males: dpp-Gal4 (n= 15; Mean=0.59), dpp-Gal4 >UAS-hINS®%Y (n= 15; Mean=0.64), dpp-Gal4 >> UAS-sfl RNAi (n=23;
Mean=1.2 ) and dpp-Gal4 >>UAS-sfl RNAi; UAS-hINSCY (n= 29; Mean=1.68).
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Figure S9 Depletion of sfl by RNAI in the developing notum expressing hINS®Y driven by ap-Gal4. For both females
and males, ap > hINSCY or ap > sfl RNAi expression alone reduces notum area and causes loss of dorsal
macrochaetae. Co-expression of sfl RNAi and hINS®Y by ap-Gal4 results in greater destruction of the notum and
macrochaetae in both sexes. However, in the male the notum and additional dorsal structures are obliterated and this
phenotype is lethal.

ap-Gal4 > hINS®%Y (A) female and (D) male;

ap-Gal4 > sfl RNAI (B) female and (E) male;

ap-Gal4>> hINSC%Y, sfl RNAI (C) female (F) male
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Figure S10 log2 transformed ratios between transcript levels associated with 18bp/4bp alleles. The allele-specific
expression ratios were measured in F1 hybrid individuals by pyro-sequencing, with three (or four) biological replicates
and four (or three) pyro-technical replicates, to obtain a total of 12 measurements. In each of the 15 crosses, the
technical replicates were plotted in a single column, with different columns representing the biological replicates. In
the titles of each panel, the last three digits in the stock number were shown for lines used in the cross.
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Figure S11 Conditional regression analysis to detect additional SNPs associated with the phenotype of interest. (A)
within the sfl locus; (B) all chromosomes. The intronic 18/4bp polymorphism in sflis included in the linear model as a
covariate. The two dotted lines in (A) correspond to a single test 0.05 level (red) and the multiple testing corrected
0.05 level using Bonferroni's method (blue). The red line in (B) represents the Bonferroni corrected 0.05 level.
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File S1

Mixed Model Permutation Test

When (cryptic) relatedness or population structure is present in a sample, then naive permutation test that
randomizes the phenotype values can result in inflated type-1 error (Churchill & Doerge, 2008). To address this
concern we employ a permutation scheme that preserves an estimated phenotypic covariance structure as estimated
using a mixed model. The idea, which is inspired by (Miiller et al., 2011), is to apply a transformation to the
phenotypes so that they become (approximately) independent, permute them, and then transform them back. We
can show that under the mixed model assumptions, this transformation is the Cholesky decomposed inverse
phenotypic covariance matrix, as estimated from using a mixed model. Hence, we transform the phenotypes as

follows:

Y* = cholesky(V™1)'Y,
where Y denotes the phenotype vector and the V the estimated phenotypic covariance matrix. Under the model,
Var(Y*) = ], which allows us to permute those values, and then apply the inverse transformation to obtain
permuted phenotypes that preserve the estimated structure as follows:

Yperm = cholesky(V)'Y" perm.

Interestingly, this approach is similar to the approach of (Aulchenko et al., 2007), where they permuted the residuals
after regressing out the genomic BLUP. The difference is that we do not attempt to remove the effects of family and
population structure (as inferred by a mixed models) but instead apply a transformation that preserves the
(estimated) phenotypic covariance structure. Finally, in the context of mixed model association mapping it is possible
to perform the permutation test very efficiently by applying this transformation to the genotypes as well. Then the
least square estimate using these transformed quantities (phenotypes and genotypes) is (trivially) identical to the
generalized least square estimate as obtained from EMMAX (Kang et al., 2010). For obtaining a 5% genome-wide
significance threshold we performed 500 permutations and redid the genome-wide association using the EMMAX

algorithm. This permutation test is implemented in the mixmogam software (Segura et al., 2012).
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Tables $1-S2

Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.157800/-/DC1

Table S1 Raw data

Table S2 DRRP lines used in this study

Table S3 Sequence primers used in this study

Name

sfl_F1

sfl_R1
CG32396_F1
CG32396_R1
kl-3F1
kl-3R1
Pp1-Y2F1
Ppl-Y2R1
RP49-F1
RP49-R1

1336F1
1336R1
1336S1
2789F1
2789R1
278951
2854F1
2854R1
285451
1885F1
1885R1
1885S1

Sequence (5'->3')

qRT-PCR
TCGATACGGGCGTGTTTAATGGAC
TTGATAATGGGTGCGGGATGCG
AGCGGAGATTGGGTCGAAATGAG
CATGTGAAATCACGTGCCAGAAAG
ATGGCAAACGTAGACCCACCTC
GTACCGGCGGACGATTCTTTAG
TTTGTTGTCACGGCGGTCTCAG
ACGTCACATGGTCGGGCTAATTG
CGGATCGATATGCTAAGCTGT
GCGCTTGTTCGATCCGTA

Pyro-seq
CGGGCGGCAATCAACATAA
CGGTCACGGAGCTACCAAATT
CTCATTAAGCAGCCG
GACTGCGACCAGATGATGTGAG
CTTCCCTCGTGCCATGATGATA
TTCCCGAGAATCCCA
CGGGAAAATACTATCATCATGGC
GTGCGAAAACCAGTTGAACTC
TCCTGAACGTTCTGC
TAATGGACTTATTCAACGCGACAC
TGTGTTTGCCACCAGAGTTG
CGGCAGTTGATAATGG
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Table S4 Power calculation for GWAS with 154 lines

Minor Allele Effect Size*

Frequency 0.75 1 1.25 15 2
0.01 0.00 0.00 0.00 0.00 0.00
0.05 0.00 0.00 0.01 0.03 0.26
0.1 0.00 0.02 0.12 0.39 0.94
0.2 0.02 0.19 0.63 0.94 1.00
0.3 0.06 0.45 0.90 1.00 1.00
0.4 0.11 0.60 0.96 1.00 1.00
0.5 0.13 0.66 0.97 1.00 1.00

* Effect size is measured as the shift in the phenotype mean in units of s.d. for the trait

The calculation is done using the t-distribution. The R-code is attached below:
myPower.t <- function(effect.size=1,alpha=0.05,m,n){
## Power for GWAS t test

## calculate power for a t test comparing two populations with equal variance but unequal sample sizes

## m, n: sample size of each allele class, not to be confused with m above
df = m+n-2
A = 1/sqrt(1/m+1/n) ## factor for calculating t statistics
T = qt(1-alpha/2,m+n-2)
T1 <- T-effect.size*A
beta <- pt(T1,m+n-2)
return(1-beta)
}
## plot power of GWAS t test ##
alphal=.05/1.37e6
power <- NULL
effect.size <- ¢(0.75,1,1.25,1.5,2)
freq <- ¢(0.01,0.05,0.1,0.2,0.3,0.4,0.5)
N = 154 # size of GWAS mapping population
for(p in freq){
m = as.integer(N*p)
n=N-m
power <- rbind(power, sapply(effect.size,function(x) myPower.t(x,alphal,m,n)))
}

dimnames(power) <- list("freq"=freq,"effect.size"=effect.size)
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