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Abstract 

Background Methylmalonic acidemia (MMA) is one of the most common hereditary organic acid metabolism 
disorders that endangers the lives and health of infants and children. Early detection and intervention 
before the appearance of a newborn’s clinical symptoms can control disease progression and prevent or mitigate its 
serious consequences.

Methods 42,004 newborns from two Chinese populations were included in the study. The small molecular 
metabolite analytes were detected from the dried blood spot (DBS) samples by MS/MS. Genetic analysis of 68 Chinese 
MMA cases were performed by whole-exome sequencing and Sanger sequencing. Random forest classifiers (RFC) 
were constructed to improve the MMA screening performance and genotype prediction in two Chinese populations. 
Meanwhile, other six machine learning models were trained to separate MMA patients from normal newborns. Model 
performance was assessed using accuracy, sensitivity, specificity, false positive rate (FPR), and positive predictive value 
(PPV) and the area under the receiver operating characteristic curve (AUC).

Results In the total 42,004 newborn samples, 68 MMA cases were identified by genetic analysis, 42 cases of which 
were caused by variants in MMACHC, 24 cases by variants in MMUT, and two cases by variants in MMAA. Three novel 
variants including c.449T>G (p.I150R) of MMACHC, c.1151C>T (p.S384F) and c.1091_1108delins (p.Y364Sfs*4) in MMUT 
were identified in the MMA patients. RFC for newborn screening of MMA performed best as compared to several 
other classification models based on machine learning with 100% sensitivity, low FPR, excellent PPV and AUC. In 
addition, the subdivision RFC for MMA genotype prediction was constructed with superior performance.

Conclusions It can be seen that RFC is extremely helpful for detection and genotype prediction in the newborn 
MMA screening. In addition, our findings extend the variant spectrum of genes related to MMA.
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Introduction
Methylmalonic acidemia is a group of inborn errors 
of metabolism causing multisystem disease, the 
affected patients may have developmental, metabolic, 
hematological, ophthalmological, neurological, and 
dermatological clinically abnormal findings [1]. MMA 
is a genetically heterogeneous disease, isolated MMA 
can be caused by mutations in MMUT (OMIM# 
609058), MMAA (OMIM# 607481), MMAB (OMIM# 
607568), MMADHC (OMIM# 611935). MMA with 
homocystinuria can be caused by mutations in 
MMACHC (OMIM# 609831), MMADHC (OMIM# 
611935), LMBRD1 (OMIM# 612625), ABCD4 (OMIM# 
603214), HCFC1 (OMIM# 300019). Except for the 
HCFC1 gene, which is an X-linked recessive inheritance, 
other MMA disease-causing genes are autosomal 
recessive. Genotyping children with MMA is of great 
significance.

The incidence of MMA is between 1/48,000 and 
1/250,000, which varies from country to country [2, 3]. 
In China, the most common form of organic aciduria 
is MMA. An estimated 1 in 26,000 infants are born 
with MMA in Shanghai and Beijing, China [4], but the 
incidence rate of MMACHC genotype is up to 1/3920 
in Shandong, China [5]. Nearly, 30 genetic metabolic 
diseases including MMA [6] can be detected by tandem 
mass spectrometry (MS/MS), because MS/MS can 
simultaneously detect dozens of disorders of amino acid, 
organic acid, and fatty acid metabolism with one blood 
sample. Early detection and intervention before the 
appearance of newborn’s clinical symptoms can control 
disease progression, prevent and mitigate the serious 
consequences.

Machine learning in medical examination and 
diagnosis can provide new ideas for improving diagnosis 
accuracy, guiding treatment decision-making, and 
improving patient management [7–10]. Furthermore, 
some studies have already used these machine learning 
techniques to improve clinical prediction of neonatal 
metabolic disorder-related diseases and have reported an 
improved classification accuracy [11–13]. However, such 
machine-learning models have not been widely used in 
pediatric clinical practice. The most pressing problem 
to be solved is to establish and fine-tune clinically 
acceptable classification models with 100% sensitivity, 
low FPR, and excellent PPV in different large populations 
with different genetic metabolic diseases. As a supervised 
machine learning algorithm, random forest (RF) is 

promising for applications in newborn screening (NBS) 
analysis. As an illustration, a RF classifier (RFC) was 
employed to develop Newborn Screening (NBS) models 
for several metabolic disorders, including ornithine 
transcarboxylase deficiency (OTCD), glutaric acidemia 
type 1 (GA-1), Methylmalonic acidemia (MMA) and 
very long-chain acyl-CoA dehydrogenase deficiency 
(VLCADD) [14]. RFC has been successfully used to 
improve phenylketonuria (PKU) screening performance 
with excellent sensitivity, false positive rate (FPR), and 
positive predictive value (PPV) on 41 MS/MS analytes in 
two Chinese populations [15].

Although the RFC model for MMA screening has 
been reported, the performances of sensitivity and other 
evaluation indicators need further improvement. In this 
study, we developed an RFC for newborn screening of 
MMA with 100% sensitivity, low FPR, excellent AUC, and 
PPV in two Chinese populations. Besides, we established 
an RFC for MMA genotype prediction using RFC with 
satisfied performance.

Materials and methods
Subject selection
A total of 42,624 newborns were collected, with 23,143 
samples obtained from Gansu Provincial Maternity and 
Child-care Hospital in southeastern China between 
2017 and 2020, and 19,481 samples collected from 
Children’s Hospital Affiliated with Shandong University 
in eastern China from 2016 to 2021. All samples 
carrying information on other genetic metabolic 
disorders or treatment were excluded, comprising 51 
MMA patients (46 from Shandong, 5 from Gansu) with 
treatment details and 569 patients (124 from Shandong, 
445 from Gansu) diagnosed with various other 
metabolic disorders. The 51 excluded MMA patients 
included cases where MMA developed during the 
neonatal period and treatment began before screening. 
The 569 individuals excluded due to other metabolic 
disorders had received a definitive diagnosis through 
genetic testing. These disorders included conditions 
such as phenylketonuria, maple syrup urine disease, 
and homocystinuria, among others. The control 
group consisted of non-affected individuals who were 
matched for age, sex, and geographical location. These 
individuals had no known metabolic disorders and did 
not present with any screening abnormalities indicative 
of MMA or other metabolic conditions. Each MMA 
patient has a definite pathogenic mutation confirmed 
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by Sanger or Next-generation sequencing. This study 
protocol was approved by the Ethics Committee of 
the National Research Institute for Family Planning 
(Beijing, China). The personal information for all 
newborn samples was deleted to safeguard each 
person’s privacy.

Metabolic analytes of the newborn screening
The small molecular metabolite analytes were detected 
from the dried blood spot (DBS) samples by MS/
MS. There are 45 features in total including 10 amino 
acids metabolic analytes, including Alanine (Ala), 
Glycine (Gly), Proline (Pro), Valine (Val), Methionine 
(Met), Phenylalanine (Phe), Tyrosine (Tyr), Citrulline 
(Cit), Ornithine (Orn), Arginine (Arg); 31 fatty 
acids metabolic analytes, including Free carnitine 
(C0), Acetyl-carnitine (C2), Propionyl-carnitine 
(C3), Dicarboxybutyl-carni tine (C5OH+C4DC), 
Butyryl-carnitine (C4), Dicarboxypropyl-carnitine 
(C4OH+C3DC), Octenoic-carnitine (C5), Isohexenoyl-
carnitine (C5:1), Pentadecanedioyl-carnitine 
(C5DC+C6OH), Hexanoyl-carnitine (C6), Octenoic-
carnitine (C8:1), Octanoyl-carnitine (C8), Decadienoic-
carnitine (C10:2), Decenoic-carnitine (C10:1), 
Decanoyl-carnitine (C10), Dodecenoyl-carnitine 
(C12:1), Dodecanoyl-carnitine (C12), Tetradecadienoic-
carnitine (C14:2), Tetradecenoic-carnitine (C14:1), 
Tetradecanoyl-carnitine (C14), Hydroxytetradecanoyl-
carnitine (C14OH), Hexadecenoic-carnitine (C6:1), 
Hexadecanoyl-carnitine (C16), Hydroxyhexadecenoic-
carnitine (C16:1OH), Hydroxyhexadecanoyl-carnitine 
(C16OH), Octadecadienoic-carnitine (C18:2), 
Octadecenoic-carnitine (C18:1), Octadecanoyl-carnitine 
(C18), Hydroxyoctadecenoic-carnitine (C18:1OH), 
Hexanedioyl-carnitine (C6DC), Hydroxyoctadecanoyl-
carnitine (C18OH); and the ratios of 4 fatty acids, 
which are Propionyl-carnitine/Free carnitine (C3/C0), 
Propionyl-carnitine/Acetyl-carnitine(C3/C2), Propionyl-
carnitine/Hexadecanoyl-carnitine (C3/C16), and 
Phenylalanine/Tyrosine (Phe/Tyr). Phe/Tyr is a common 
indicator in NBS, and C3/C2, C3/C0, and C3/C16 are 
closely related to MMA [16]. Descriptive statistical 
information for each of the 45 features utilized in this 
study is provided in Additional file 1: Table S1.

Genetic analysis of MMA patients
Genomic DNA preparation
A total of 2–3 ml of blood samples were collected from 
the probands and their parents. Genomic DNA was 
extracted using the Tiangen Biotech DNA extraction kit 
(Beijing, China).

Whole‑exome sequencing (WES)
Whole exome sequencing was performed using an 
Agilent SureSelect Human All Exon V6 Kit (Agilent 
Technologies Inc., USA) on an Illumina NovaSeq 
6000 platform (Illumina Inc., CA, USA). This capture 
sequencing provides approximately 99% coverage of the 
target sequence, with an average depth > 20× coverage 
of 99%. Variants were described according to the 
nomenclature recommended by the Human Genome 
Variation Society (www. hgvs. org/). Variant frequencies 
were searched for in the GnomAD (http:// gnomad. broad 
insti tute. org/), Exome Sequencing Project (ESP, http:// 
evs. gs. washi ngton. edu) and SNP (dbSNP) (http:// www. 
ncbi. nlm. nih. gov/ proje cts/ snp) databases. Candidate 
variants were confirmed in the parents of each family 
by Sanger sequencing. Variants were checked in the 
Human Gene Variant Database (www. hgmd. cf. ac. uk) 
and ClinVar database (www. ncbi. nlm. nih. gov/ clinv ar/). 
InterVar (http:// winte rvar. wglab. org/) software was used 
to evaluate the pathogenicity of all variants according to 
the standards and guidelines of the American College of 
Medical Genetics and Genomics (ACMG) [17].

Data analysis
The results obtained from WES were compared 
with the reference genome (GRCh37/hg19), and the 
detected high-quality variants were annotated with 
variant information according to the PGenomics 
platform (https:// pgeno mics. cn), a national shared 
service platform for human genetic resources. What’s 
more, PGenomics platform can combine information 
on the clinical phenotype, inheritance pattern, family 
codisjunction, and pathogenicity of the various point of 
the affected children to screen the detected candidate 
variation point and score them comprehensively by 
bioinformatics software; the higher the score, the higher 
the correlation. All the candidate causing variants were 
checked manually.

Sanger sequencing
Candidate variants were confirmed in the parents in 
each family by Sanger sequencing. PCR products were 
bi-directionally sequenced using the BigDye Terminator 
v3.1 Cycle Sequencing Kit (Applied Biosystems, USA) on 
an ABI 3500DX Genetic Analyzer (Applied Biosystems) 
after purification on 2% agarose gels.

Metabolic data sets and data processing
The entire study population was stratified into two 
distinct categories: individuals diagnosed with MMA 
and healthy controls devoid of the condition. Within the 
assemblage of MMA subjects, three primary genotypes 

http://www.hgvs.org/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://evs.gs.washington.edu
http://evs.gs.washington.edu
http://www.ncbi.nlm.nih.gov/projects/snp
http://www.ncbi.nlm.nih.gov/projects/snp
http://www.hgmd.cf.ac.uk
http://www.ncbi.nlm.nih.gov/clinvar/
http://wintervar.wglab.org/
https://pgenomics.cn
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were identified: MMUT, MMACHC, and MMAA. Upon 
through completion of the specified preprocessing 
procedures, the data set originating from Shandong 
province, encompassing a cohort of 41 MMA patients 
(MMACHC, 26; MMUT, 14; and MMAA, 1) and 19,270 
normal newborns, underwent a rigorous randomization 
process, with a 7:3 allocation ratio, to establish both 
training and validation sets in MMA screening. As a 
result, the training data set comprised 13,486 normal 
newborns and 31 MMA patients, while the validation set 
consisted of 5784 normal newborns juxtaposed against 
10 MMA patients. Separately, an independent testing set 
was derived from Gansu Province, incorporating a total of 
22,693 samples, including 27 MMA patients (MMACHC, 
16; MMUT, 10; and MMAA, 1) and 22,666 normal 
newborns. Due to the scarcity of MMAA genotype data, 
the two patients with MMAA genotypes were excluded, 
and only 66 patients (Shandong, 40; Gansu, 26) carrying 
MMACHC and MMUT genotypes were selected for 
constructing the subdivision model of MMA genotype 
prediction. Following the training of various models 
on the training set, the performance of each model is 
measured and judged using the validation set. Therefore, 
the validation set can be used for model selection. The 
testing set is only used once after training to evaluate the 
generalization of the model. Figure 1 depicts the general 
process of data analysis in MMA screening and genotype 
prediction, offering a comprehensive overview of the 
sequential stages involved, from initial data acquisition to 
the final evaluation stage.

Models training
Seven machine learning models were trained to separate 
MMA patients from normal newborns, including Linear 
Regression (LR), Support Vector Machine (SVM), 
Decision Tree (DT), Stochastic Gradient Descent (SGD), 
Multi-Layer Perceptron (MLP), and RFC. The 45 feature 

variables were input into the machine learning models as 
continuous variables. For all machine learning models, 
these 45 features were directly input into the models 
without undergoing any further transformation. All 
models were optimal models after parameter adjusting 
and were computed using Scikit-learn 1.0.1 in Python 
3.8.5.

Random forest classifier
RFC is a combined classifier algorithm proposed 
by Breiman in 2001 [18]. It is a supervised learning 
algorithm and an ensemble learning algorithm based 
on the decision tree. The RFC constructs an ensemble 
of k trees, each trained on a bootstrapped data set 
subset via Bagging. At each node split, a random subset 
of features is considered to enhance diversity. Trees 
are grown to maximize node purity without pruning. 
Prediction involves aggregating outputs from all k trees 
for improved decision-making.

To achieve the optimal RFC model, the number of trees 
in the forest, a maximum depth, a minimum split size, 
and a minimum leaf sample size were fine-tuned by the 
Python library’s “Grid Search” in this study. Due to the 
imbalance between MMA and non-MMA samples, we 
generated category weights with high weights for small 
number of samples and low weights for large number of 
samples. The ideal criterion for clinical practice in MMA 
screening is to simultaneously detect all MMA patients 
with excellent PPV. Each decision tree determines the 
MMA or non-MMA status of its own sample when one 
is added to the MMA screening model. By combining 
the disease status of each decision tree and employing 
a straightforward voting method with the minority 
following the majority, the model decides whether the 
sample is an MMA patient.

Similarly, each decision tree determines the MMACHC 
or MMUT status of its own sample when one is added 

Fig. 1 General process for building an MMA screening and MMA genotype prediction model on MS/MS data
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to the MMA genotype prediction model. By combining 
the MMACHC or MMUT status of each decision tree 
and employing a straightforward voting method with the 
minority following the majority, the model decides whether 
the genotype of the MMA patient is MMACHC or MMUT.

Feature importance
Gini impurity is the likelihood of incorrectly classifying a 
randomly chosen element in a data set based on its class 
distribution. The feature importance in RF represents the 
total reduction of Gini impurity on all nodes split based 
on the feature. The lower the Gini impurity, the higher the 
purity, the higher the order of the collection, and the better 
the classification effect.

Model performance
This work uses RFC to solve a binary classification problem. 
To see the accurate and incorrect class of each MMA status 
of the sample, the confusion matrix is employed (Table 1).

We employed an imbalanced data set for MMA 
screening. Since there are significantly more non-
patient records than there are MMA patient records, 
accuracy cannot be the only metric. Then we assessed the 
performance of the classification using accuracy, sensitivity, 
specificity, false positive rate (FPR), and positive predictive 
value (PPV), as shown in Eq.  (1). In addition, the area 
under the receiver operating characteristic curve (AUC) 
was utilized to evaluate the performance of the model, and 
the area under the receiver operating characteristic (ROC) 
curve is called AUC:

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
,

Sensitivity =
TP

TP+ FN
,

The Pearson chi-square test is used to test whether two 
categorical variables are independent of each other. It is 
a hypothesis-testing technique based on the chi-square 
distribution.

Results
Genetic analysis of MMA patients
In the total 42,004 newborn samples, we identified 68 
MMA cases by genetics analysis, 42 cases were caused by 
variants in MMACHC, 24 cases were caused by variants 
in MMUT, and two cases were caused by variants in 
MMAA. In the MMACHC gene, a total of 20 different 
variants were detected, among which c.609G>A and 
c.656_658delAGA had the highest frequencies, 50% 
and 15.9% respectively. In the MMUT gene, a total 
of 30 different variants were detected, among which 
c.729_730insTT had the highest frequencies (8.3%), 
followed by c.626dupC (6.3%), c.1106G>A (6.3%), and 
c.278G>A (6.3%). In two patients with MMA caused 
by variants in the MMAA, a homozygous variant 
c.1076G>A/c.1076G>A was detected in one case, and a 
compound heterozygous variant c.988C>T/c.734-7A>G 
was detected in another case (Additional file 2: Table S2).

Among the variants detected in this study, the 
variant c.449T>G of MMACHC, c.1151C>T and 
c.1091_1108delins of MMUT were novel that not have 
been reported. According to the American College of 
Medical Genetics guidelines, c.449T>G of MMACHC 
was categorized as “pathogenic”, c.1151C>T of MMUT 
was categorized as “pathogenic” and c.1091_1108delins 
of MMUT was categorized as “pathogenic” (Table 2).

Model selection for the newborn screening
It can be seen that DT, LR, and RFC in the validation 
set meet the basic requirements of MMA screening, 

(1)Specificity =
TN

FP+ TN
,

FPR =
FP

FP+ TN
,

PPV =
TP

TP+ FP
.

Table 1 Confusion matrix in MMA screening

Hypothesized class True class

MMA Non-MMA

MMA True positives (TP) False positives (FP)

Non-MMA False negatives (FN) True negatives (TN)

Table 2 Pathogenicity analysis of novel variants

Gene Nucleotide change Amino acid change Pathogenicity Conservative ACMG evidence

MMACHC c.449T>G p.I150R Likely pathogenic Yes PM2, PM3, PP3, PP4

MMUT c.1151C>T p.S384F Likely pathogenic Yes PM2, PM3, PP3, PP4

MMUT c.1091_1108delins p.Y364Sfs*4 Pathogenic Yes PVS1, PM2, PM3, PP3, PP4
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that is, the sensitivity is 100%. Two classifiers, LR and 
RFC, have achieved 100% sensitivity in the training, 
validation, and testing set (Table 3). The PPV and AUC 
of the RFC are higher than those of other classifiers, 
and the values in the testing set are 33.75% and 
99.92% respectively. It follows that the RFC is the most 
appropriate model for MMA screening.

The final RFC in MMA screening model used 121 trees 
in the forest, a maximum depth of 4, and a minimum leaf 
sample size of 46. In the testing set, the AUC of the ROC 
curve reaches 0.9992 (Fig.  2A). The confusion matrix 
illustrating the predictive performance of the MMA 
screening within the testing set is presented in Fig.  2B. 
These results demonstrate the validity of the RFC as a 
clinically accepted screening tool for MMA screening.

Table 3 Evaluation results of various classifiers for MMA and all bold numbers represent better performance

LR linear regression, SVM support vector machine, DT decision tree, SGD stochastic gradient descent, MLP multi-layer perceptron

Data sets Models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) AUC (%)

Training set RFC 99.42 100.00 99.42 28.44 99.93

LR 99.36 100.00 99.36 23.91 99.75

SVM 99.48 100.00 99.48 23.91 99.75

DT 99.45 100.00 99.44 22.68 99.82

SGD 99.48 95.46 99.48 23.08 99.73

MLP 100.00 100.00 100.00 100.00 100.00

Validation set RFC 99.48 100.00 99.48 25.00 99.75

LR 99.40 100.00 99.39 35.19 99.62

SVM 99.40 94.74 99.41 34.62 99.63

DT 99.00 100.00 99.00 23.00 100.00

SGD 99.43 84.21 99.48 34.78 99.69

MLP 99.78 36.84 99.98 87.50 93.39

Testing set RFC 99.77 100.00 99.77 33.75 99.92
LR 99.52 100.00 99.52 19.71 99.88

SVM 99.67 85.19 99.68 24.21 99.34

DT 99.68 88.89 99.70 25.81 94.27

SGD 99.72 96.30 99.73 29.55 99.86

MLP 100.00 37.00 100.00 88.00 93.00

Fig. 2 A ROC curve using RFC analysis for MMA screening model in the testing set; B confusion matrix of the testing set for MMA screening using 
RFC
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Figure  3 shows the importance ranking of all 45 
features in MMA screening model. It can be known four 
of the top-ranked features, C3/C2, C3, C3/C0, and C3/
C16, play critical roles in MMA screening.

The positive cases of MMA screening are determined 
by C3 acylcarnitine > 4.95  µmol/L or C3/C2 ratio > 0.27 
in traditional clinical practice. PPV is 4.54% using 
the traditional screening method in the testing set. 

RFC reduced MMA false positive samples from 
568 to 53 (9.33%) while PPV increased from 4.54 to 
33.75% (Pearson’s chi-squared test, p = 0.0005) in 
Table  4. Moreover, the RFC demonstrated exceptional 
discriminatory power with a specificity of 99.77% and 
a sensitivity of 100%, ensuring that no actual MMA 
cases were overlooked in the screening process. This 
compelling evidence underscores the RFC’s profound 

Fig. 3 Importance of 45 small molecular metabolite analytes in MMA screening using RFC

Table 4 Distribution and evaluation of RFC and traditional screening methods in independent testing set

Methods TP FP TN FN Sensitivity (%) Specificity (%) PPV (%)

RFC 27 53 22,613 0 100.00 99.77 33.75

Traditional screening 27 568 22,098 0 100.00 97.49 4.54



Page 8 of 11Yin et al. European Journal of Medical Research          (2024) 29:540 

impact on elevating the precision and effectiveness of 
MMA screening, affirming its capability to significantly 
bolster diagnostic accuracy.

RFC for MMA genotype prediction
The RFC for MMA genotype prediction used a forest of 
25 trees, a maximum depth of 4, a minimum split size 
of 2, and a minimum leaf sample size of 1. The AUC of 
the ROC curve reaches 1.00 in the independent testing 
set (Fig.  4A). The confusion matrix of MMA genotype 
prediction in the independent testing set is depicted in 
Fig.  4B. It can be easily discovered the MMA genotype 
prediction model achieves excellent performance in 
the testing set. Of the 26 MMA patients, all patients 
are correctly predicted. These findings imply that the 
prediction of the MMA genotype can also benefit from 
the RFC. Figure  5 displays the importance ranking 
of all 45 features in the MMA genotype prediction 
model. It highlights that the top three ranked features-
Met, C16:1OH, and Cit-play critical roles in accurately 
predicting MMA genotypes.

Discussion
In MMA screening, our RFC can detect all the MMA 
cases with lower the frequency of false positives. In 
all the training, validation, and testing sets, 100% 
sensitivity ensures that no MMA instances are missed. 
RFC performed best compared with other popular 
classification models including LR, SVM, DT, SGD, 
MLP, and RFC. In contrast to previous classification 
models, RFC demonstrated definite advantages. In the 
testing set, PPV greatly outperformed the conventional 

medical approach. The sensitivity needs to be 100% in the 
clinical situation to ensure that all MMA patients can be 
identified. This rule states that while LR, SVM, DT, and 
MLP algorithms perform well in the training data set, 
SVM, DT, and MLP struggle in the validation and testing 
set. Meanwhile, LR likewise performs exceptionally well, 
only slightly less than RFC.

RFC yields superior results in MMA screening and 
genotype prediction due to its utilization of ensemble 
learning. This method combines multiple decision 
trees to construct a more robust model, which helps 
reduce overfitting and improve generalization, thereby 
enhancing predictive accuracy. Additionally, the RFC 
provides a measure of feature importance that guides 
variable selection, enabling a focus on the most relevant 
predictive factors.

Gang Peng et al. [19] trained an RF analysis to enhance 
the prediction of true and false positives about MMA. 
Their model achieved performance in 96.12% sensitivity, 
91% AUC, and 28.86% PPV in MMA screening. However, 
in our model, the performance of MMA screening was 
improved with 100% sensitivity, 99.92% AUC, and 33.75% 
PPV. Furthermore, our model completely eliminated 
the error rate, correctly classifying all 66 MMA patients 
without misclassification, unlike the 16% error rate 
observed in Peng et al.’s study where 15 out of 95 mut(0) 
(MMUT) patients were incorrectly classified as CblC 
(MMACHC), CblF (LMBRD1), or CblD (MMADHC).

A significant factor contributing to the excellence of 
our RFC models in terms of sensitivity, specificity, AUC, 
and PPV is the inclusion of two additional features, C3/
C0 and C3/C16. These features, along with C3 and C3/

Fig. 4 A ROC curve using RFC analysis for MMA genotype prediction in dependent testing set; B confusion matrix of the independent testing set 
for MMA genotype prediction using RFC
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C2, were found to be highly important, as indicated 
by their lower Gini impurity. The absence of C3/C0 
and C3/C16 in the RFC model could potentially lead 
to missed diagnoses of MMA patients and genotype 
misclassifications, as observed in [19]. According to 
the ranking of feature importance and excellent RFC 
performance in this study, C3/C0 and C3/C16 showed 
an essential function in MMA screening model. Our 
observations indicate that the primary cause of false-
positive results in newborn screening is the levels of the 
primary MMA screening indicators C3, C3/C0, C3/C2, 
and C3/C16 being 5 to 10 times higher, or even higher, 
compared to those in patients with correct negative 
identifications.

The MMA genotype prediction model was applied to 
distinguish between MMACHC and MMUT genotypes. 
This model identified Met, C16:1OH, and Cit as the 
three most significant metabolic features. Met, a 
crucial amino acid, is typically reduced in MMACHC 
mutations; C16:1OH, a marker of mitochondrial 
dysfunction, is elevated in MMACHC mutation 
carriers; and Cit, a key intermediate in the urea cycle, 
whose levels reflect adjustments in energy metabolism 
related to the TCA cycle, is evident in both genotypes. 
These metabolites serve as effective diagnostic and 
monitoring biomarkers due to their significant changes 
in the presence of MMACHC and MMUT mutations.

Fig. 5 Importance of 45 small molecular metabolite analytes in MMA genotype prediction using RFC
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In the classification problem of practical applications, 
the proportion of samples with different labels is likely to 
be unbalanced for the data set. If the algorithm training is 
directly used for classification, the training effect may be 
relatively poor. By adding the balanced category weight, 
the category weight will be inversely proportional to their 
frequency in the data, which can effectively solve the 
problem of sample imbalance. Due to the considerable 
disparity in data volume between positive and negative 
samples, we defined class weights for significantly 
imbalanced data in this study. Class weights are employed 
in the tree induction process to weigh Gini impurity in 
order to split [20]. This strategy is crucial as it enhances 
the capability of the MMA screening model, enabling it 
to maintain high accuracy in predicting the majority class 
while significantly improving the detection sensitivity for 
the minority class (MMA positive cases). By adopting 
this approach, the model treats all classes more equitably 
and, based on a limited number of rare disease samples, 
optimizes its ability to identify and distinguish rare cases. 
Consequently, it leads to an overall enhancement in 
diagnostic accuracy and practical utility.

Our research has some points worth discussing as well. 
First of all, the number of positive samples in the data 
set is insufficient due to the extremely low incidence of 
MMA. To validate the model, it is necessary to balance 
the number of negative and positive samples in the data 
set. Then, we recognized that the number of MMA 
patients included in our study was relatively small, 
so the RFC of MMA genotype prediction should be 
validated in more MMA patients. At the moment, the 
MMA genotype in our study consists of only two types: 
MMACHC and MMUT. Some rare disease-causing genes 
were not found in the two regions in this study, such as 
HCFC1 and ABCD4. This might because in China, the 
MMA patients that caused by HCFC1 less than 10 cases 
[21–23], and no MMA patients has been reported caused 
by ABCD4.

In the future, more MMA genotypes, including 
MMACHC and MMUT, will be collected in order to 
predict more MMA genotypes. At last but not least, a 
variety of factors can cause abnormalities in screening 
indicators. When applying tandem mass spectrometry 
technology to disease screening, an appropriate reference 
value range should be selected according to the different 
gestational ages and birth weights of newborns, blood 
collection time, and season. The interpretation of the 
measured value is frequently ambiguous in low birth 
weight and premature neonates, and there is currently no 
unambiguous reference value, which is bound to affect 
the predicted outcomes. Thus, it is a pressing issue to 
figure out how to reasonably reduce erroneous results 
and enhance screening effectiveness.

In addition, genotyping children with MMA is of 
great significance. After the genotyping is confirmed, 
it can accurately guide follow-up treatment and 
provide prenatal diagnosis and genetic counseling. 
We identified one novel variant in MMACHC and two 
novel variants in MMUT, which enlarged the variant 
spectrum of MMA-related genes. These findings help 
inform the genetic diagnosis of MMA and add to the 
theoretical basis for the prevention of MMA.

In the screening for MMA, differentiation from 
propionic acidemia (PA) is crucial, PA exhibits the 
same screening abnormality as MMA (e.g. C3, C3/
C2). It is difficult to distinguish MMA from PA by MS/
MS alone, and GC/MS is needed to further distinguish 
them. However, our study did not perform GC/
MS to distinguish them, and this study only focused 
on MMA, which is the limitation of this study. For 
participants with abnormal C3, C3/C0, C3/C2 and 
other test indicators, if they were genetically diagnosed 
as non-MMA patients, we excluded them from the case 
group and control group. Further analysis is needed 
in the future to improve the disease-specific genotype 
prediction.

In conclusion, machine learning-based RFC can 
improve MMA screening performance with 100% 
sensitivity, low FPR, and excellent PPV in two Chinese 
populations. Similarly, RFC can accurately predict 
MMA genotype with very good performance. In 
conclusion, RFC is promising for the clinical application 
of MMA screening and MMA genotype prediction.
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