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The tumor microenvironment (TME) is populated by abundant cancer-associated
fibroblasts (CAFs) that radically influence the disease progression across many cancers,
including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential
in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of
CAFs into clinic practice face many obstacles, largely due to our limited understanding
of the heterogeneity in their origins, functions, and mechanisms. In recent years,
accumulating evidence has uncovered some cellular precursors and molecular markers
of CAFs and also revealed their versatility in impacting various hallmarks of CRC,
together helping us to better define the population of CAFs and also paving the way
toward their future therapeutic targeting for CRC treatment. In this review, we outline
the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers,
prognostic significance, as well as their functional roles and underlying mechanisms
in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising
therapeutic targets for the treatment of patients with CRC.

Keywords: cancer-associated fibroblast, colorectal cancer, hallmark, tumor microenvironment, therapeutics

INTRODUCTION

Colorectal cancer (CRC), a term referring to colonic cancer and rectal cancer synonymously,
ranks the third most common malignant disease across the world and accounts for 9.2% cancer-
related mortality (Bray et al., 2018). Despite achievements made in the innovative medicines and
therapeutic methods, the success of effective treatment in CRC patients is hindered to some extent
by only targeting tumor cells and ignoring the tumor microenvironment (TME) as an accomplice
in nursing disease progression. Indeed, the TME significantly blunts the therapeutic responses, and
thus, multitargeting tumor cells and co-opted cells simultaneously in the TME compartments is
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thought to improve the efficacy of current therapeutics
(Wu and Dai, 2017). As the predominant architects of the TME,
cancer-associated fibroblasts (CAFs) play a tremendous role in
cancer progression, including CRC (Sahai et al., 2020). In recent
few years, increasing studies have yielded a mass of updated
insights into the biology of CAFs which constitute the CRC.
In this review, we aimed to summarize these advancements
in this field, mainly including the identification of cellular
precursors and molecular markers of CAFs, and verification of
their prognostic significance in CRC patients, as well as numerous
new discoveries in their versatile roles in key hallmarks of CRC
pathogenesis and related novel mechanisms. According to these
latest findings, we also analyzed the therapeutic potential and
prospect of targeting CAFs in future CRC treatment.

CELLS OF ORIGIN OF
CANCER-ASSOCIATED FIBROBLASTS
IN COLORECTAL CANCER

It is now becoming increasingly clear that CAFs can originate
from diverse potential cellular precursors through distinct
mechanisms. As known, normal resident tissue fibroblasts
upregulate the expression of smooth muscle α-actin (α-SMA),
the most common marker of myofibroblasts, and acquire
a myofibroblast-like phenotype upon de novo activation by
numerous soluble factors, such as the transforming growth
factor-β (TGF-β) and platelet-derived growth factor (PDGF)
secreted from the neighboring tumor cells (Vonlaufen et al.,
2008; Yin et al., 2013). While local fibroblasts are commonly
deemed as the dominating origins of CAFs, additional sources
also contribute to the pool of tumor stromal CAFs depending
on tumor histological types. Among them, the best-studied
CAF precursors are mesenchymal stem cells (MSCs), which are
recruited from the adult human tissues including bone marrow
and connective tissues, and constitute a large portion of CAFs in
some cancers such as breast (Weber et al., 2015), prostate (Jung
et al., 2013), gastric (Zhu et al., 2014), and pancreatic cancers
(Kabashima-Niibe et al., 2013). In addition, circulating fibrocytes
recruited from the bone marrow can migrate into the TME and
also give origin to CAFs, as observed in the tumor stroma of
breast cancer (Barth et al., 2002) and gastric cancer (Terai et al.,
2015). Moreover, epithelial cells adjacent to cancer cells are able to
differentiate into CAFs by undergoing epithelial-to-mesenchymal
transition (EMT) (Iwano et al., 2002). Similar to this scenario,
endothelial cells (ECs) represent other progenitors of CAFs
by means of endothelial-to-mesenchymal transition (EndMT)
(Zeisberg et al., 2007). The remaining CAF sources, though
maybe less common, include adipocytes, pericytes, and smooth
muscle cells (SMCs) that possess the capacity to convert into
CAFs by transdifferentiation (Chen and Song, 2019). Collectively,
these categories of cellular precursors diversify CAF population
with overt original heterogeneity.

Cancer-associated fibroblasts are present in high abundance
in CRC (Adegboyega et al., 2002; Powell et al., 2005). Although
the precise origins of CAFs in CRC have not yet been elucidated
explicitly, mounting evidence has suggested that fibroblasts

TABLE 1 | The cellular origins of CAFs in CRC.

Type Location Differentiation
mechanism

References

Fibroblasts Local tissue Stimuli: TGF-β, Nodal,
IL-34;
Regulators: αvβ6, Snail,
TIMP-1, dickkopf-3,
PKCζ

Gong et al., 2013;
Hawinkels et al., 2014;
Li et al., 2018, 2019a;
Peng et al., 2018;
Ferrari et al., 2019;
Franze et al., 2020;
Kasashima et al., 2021

MSCs Bone marrow Cell-cell contacts
mediated by
Notch-Jagged1
signaling

Peng et al., 2014

ECs Endothelium Tubulin-β3 activation
and EndMT

Wawro et al., 2018

HSCs Perisinusoidal CXCR4/TGF-β1 axis
activation

Tan et al., 2020

MCs Mesothelium MMT Gordillo et al., 2020

MSCs, mesenchymal stem cells; ECs, endothelial cells; EndMT, endothelial-to-
mesenchymal transition; HSCs, hepatic stellate cells; MCs, mesothelial cells; MMT,
mesothelial-to-mesenchymal transition.

remain the major sources (Table 1). TGF-β is a classic stimulus
inducing the differentiation of quiescent fibroblasts into CAFs
in the TME. It has been reported that upon induction by CRC
cell-derived soluble factors, the TGF-β signaling is activated in
CAFs, accompanied by increased expression of TGF-β itself,
suggesting a cumulative production of TGF-β within the TME
that promotes the transdifferentiation of resident fibroblasts
into CAFs (Hawinkels et al., 2014). TGF-β is secreted in a
form of latent complex. One study has shown that CRC cell-
secreted latent TGF-β could be activated by integrin αvβ6,
which is expressed on CRC cells, and subsequently activates
fibroblasts to exhibit CAF phenotypes. The integrin αvβ6 appears
indispensable for this process, since fibroblast activation is
disrupted in the absence of integrin αvβ6 (Peng et al., 2018).
These studies indicate that interacting with either tumor cells or
secreted soluble factors enables TGF-β activation and favors the
generation of CAFs in CRC.

Moreover, like TGF-β, another TGF superfamily member
Nodal has recently been shown correlated positively with α-SMA
expression in human CRC tissues. Through activating TGF-
β/Smad/Snail pathway, tumor cell-derived Nodal facilitates the
transition of normal fibroblasts into CAFs that function to
support the tumor growth of CRC cells in vitro and in vivo (Li
et al., 2019a). Some lines of evidence also show that Snail-positive
fibroblasts display CAFs properties (Li et al., 2018), further
supporting that Snail is an important regulator of CAF formation
derived from fibroblasts. Snail is a TGF-β target gene that
mediates some pro-tumorigenic roles of TGF-β signaling (David
et al., 2016; Moon et al., 2017), and is also necessary for mediating
the pro-tumorigenic effects of fibroblasts on CRC cells (Herrera
et al., 2014). It is therefore reasonable to speculate that Nodal-
mediated CAF formation via Snail signaling could promote
aggressive phenotypes in CRC. Moreover, except Nodal, the
interleukin (IL)-34, a cytokine overexpressed by CRC cells, can
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also stimulate normal fibroblasts to display a cellular phenotype
resembling that of CAFs (Franze et al., 2020). Thus, the crosstalk
between CRC and fibroblasts mediated by soluble factors, such
as Nodal and IL-34, plays a significant role in enhancing CAF
formation in the TME of CRC. Probably, other CRC cell-secreted
factors may also participate in regulating the differentiation of
fibroblasts into CAFs, which warrants further explorations.

Some up-to-date studies have also shown the pivotal roles of
cancer stroma in the development of CAFs in CRC. For instance,
the increased stromal expression of the tissue inhibitor matrix
metalloproteinase-1 (TIMP-1) stimulates the accumulation of
CAFs within CRC tissues partly through transdifferentiation of
resident fibroblasts (Gong et al., 2013). Additionally, dickkopf-3
expressed in the stroma orchestrates a concomitant activation of
Wnt signaling and YAP/TAZ signaling which are coordinated to
generate CAFs in CRC (Ferrari et al., 2019). Moreover, stromal
loss of protein kinase Cζ (PKCζ) promotes generation of a pro-
tumorigenic CAF population in human CRC through a SOX2-
dependent mechanism (Kasashima et al., 2021). Hence, cues for
converting fibroblasts into CAFs in the TME could stem from
both CRC cells and the stroma.

In addition to fibroblasts, recent studies have shown that CAFs
in CRC also originate from other sources including MSCs, ECs,
pericytes, and mesothelial cells (MCs). It is known that bone
marrow-derived MSCs can travel to tumor stroma, where they
differentiate into CAFs. In an in vitro co-culture model, CRC
cells have been reported to induce differentiation of MSCs into
CAFs by cell–cell contacts, which is mediated by Notch-Jagged1
signaling and downstream activation of TGF-β/Smad pathway
(Peng et al., 2014). This study provides a molecular mechanism
explaining the bone marrow-derived MSCs as sources of CAFs in
CRC. Further, ECs undergo conversion into CAFs via the process
of EndMT, which is associated with microtubule cytoskeleton
reorganization. One study has shown a mechanistic perspective
that invasive CRC cells induce the EndMT of ECs to generate
CAFs via upregulation and phosphorylation of tubulin-β3, which
is mainly dependent on TGF-β stimulation (Wawro et al., 2018).
However, whether CRC cells induce transform of ECs in vivo
needs more investigations. Analogous to activation process
following liver damage, the quiescent hepatic stellate cells (HSCs),
a subset of liver-specific pericytes, are activated and differentiated
into myofibroblasts when tumor micrometastases are developed
in liver lobules (Vidal-Vanaclocha, 2008). A recent discovery has
represented data showing that CRC cells are able to interact
with HSCs and promote SDF-1 secretion, which in turn binds
to CXCR4 and induces TGF-β1 expression and secretion in CRC
cells, eventually resulting in HSCs differentiation into CAFs. In
contrast, blockade of this CXCR4/TGF-β1 axis inhibits hepatic
CAFs differentiation and CRC metastases to the liver (Tan et al.,
2020). These findings seemingly underscore a critical role of
TGF-β in mediating the generation of CAFs derived from not
only fibroblasts but also non-fibroblasts in CRC. Interestingly,
some histological observations have described that the source
of CAFs in CRC can also be ascribed to MCs achieved via a
mesothelial-to-mesenchymal transition (MMT) (Gordillo et al.,
2020). Nevertheless, how MCs undergo MMT and following
conversion into CAFs remains largely unclear in CRC. An

RNA-sequencing analysis has revealed that the TGF-β signaling is
related to MMT (Rynne-Vidal et al., 2017). It would be intriguing
to test the possibilities that TGF-β may also be involved in
MMT-mediated differentiation of MCs into CAFs in CRC.

It has been established that the MSCs have the potential
to differentiate into mesenchymal tissues like osteocytes,
chondrocytes, and adipocytes. They also have a differentiation
potential beyond the mesenchymal lineage, such as myogenic,
cardiomyogenic, and neurogenic potentials (Jackson et al., 2007).
Besides, the MSCs were found to be differentiated into ECs
(Oswald et al., 2004) and deeply associated with HSCs (Kordes
et al., 2013). Further, the fibroblasts share many similarities
between MSCs, including differentiation potential (Haniffa et al.,
2009; Soundararajan and Kannan, 2018). Hence, the tight
relationships between these cells may possibly influence the pool
of cellular precursors of CAFs, whereby affecting the generation
of CAFs in CRC. Nevertheless, it should be noted that given
the original heterogeneity of CAFs, the sources of CAFs in
CRC may not be limited to the above-described precursor cells
(Table 1). Techniques like the lineage tracing, a powerful tool
of deciphering cell-fate decisions (Kretzschmar and Watt, 2012),
are expected to be employed in future studies to identify other
cellular origins of CAFs in CRC, which would be very helpful to
understand the complex nature of CAFs in CRC in the TME.

MARKERS OF CANCER-ASSOCIATED
FIBROBLASTS IN COLORECTAL
CANCER

A number of markers that are highly expressed in CAFs,
such as the α-SMA, fibroblast activation protein alpha (FAP),
fibroblast-specific protein 1 (FSP-1), platelet-derived growth
factor receptor-α (PDGFRα) and PDGFRβ, have already been
widely used to identify or isolate CAFs from the pool of
fibroblasts present in the whole body (Nurmik et al., 2020).
However, a critical issue remains as CAFs are composed of
heterogeneous population of cells, and accordingly, markers of
CAFs are vastly heterogeneous in different CAF subpopulations
and consequently show low specificity. To date, there are
no specific or reliable markers for CAFs in various tumors.
Despite this dismay, many progresses have been witnessed
over the last decade in seeking potential markers of CAFs
in CRC and elucidating their relations to disease progression
(Table 2). For example, the cell-surface molecule CD10 (Zhu
et al., 2016) and the interleukin (IL)-11 (Nishina et al., 2021)
might serve as possible markers of CAFs in CRC, although more
lines of evidence are required to consolidate this possibility.
Theoretically, candidate biomarkers of CAFs may be those
molecules displaying significantly different expression levels
between CAFs and normal counterparts. It is well accepted
that compared with normal fibroblasts, differences in genetic,
epigenetic, morphology and secretions are evident in CAFs
in CRC (Mrazek et al., 2014; Wen et al., 2015). A proteome
profiling of CAFs and normal fibroblasts purified from colon
tissues has identified LTBP2, CDH11, OLFML3, and FSTL1
as selective biomarkers of CAFs (Torres et al., 2013). Aside
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TABLE 2 | Candidate markers of CAFs in CRC.

Name Description Confirmed
material

References

IL-11 IL-6 family cytokine Animal CRC
model

Nishina et al.,
2021

CD10 Cell surface zinc
metalloendopeptidase

Human CRC
specimen

Cui et al., 2010;
Zhu et al., 2016

LTBP2
CDH11
OLFML3
FSTL1

ECM protein
Adhesion molecule
ECM-related protein
Extracellular
glycoprotein

Animal CRC
model;
Human and
mouse CRC
specimen

Torres et al., 2013

ADAMs Proteases Human CRC
specimen

Mochizuki et al.,
2020

Exosomal
ncRNAs

RNA molecules Human CRC
specimen

Herrera et al.,
2018

Tenascin C
ED-A FN
SDF1

ECM glycoprotein
ECM protein
Chemokine

Human CRC
specimen

De Boeck et al.,
2013

ECM, extracellular matrix; CDH11, cadherin-11; ADAMs, a disintegrin and
metalloproteinases; ncRNAs, non-coding RNAs; ED-A FN, fibronectin ED-A
domain; SDF1, stromal-derived factor-1.

from these proteins, CAFs from colon tissues of CRC patients
show increased expression in several species of a disintegrin
and metalloproteinases (ADAMs), including ADAM9, ADAM10,
ADAM12, and ADAM17 (Mochizuki et al., 2020), as compared
with normal fibroblasts. Moreover, normal fibroblasts and
CAFs have significant differences in their protein expression
profiles among 7 patient pairs, with 145 differentially expressed
proteins revealed by the proteomic data, and 15 differentially
expressed molecules shown by a secretomic analysis (Atanasova
et al., 2020). Interestingly, by performing the next generation
sequencing, a significant number of non-coding RNAs (ncRNAs)
in exosomes were also found as potential biomarkers present
in CAFs-derived exosomes (Herrera et al., 2018). Furthermore,
a differential secretome approach of CAFs and bone marrow-
derived precursors has identified in clinical CRC specimens a
series of candidate biomarkers such as tenascin C, fibronectin
ED-A domain and stromal-derived factor-1 (SDF1) that are
associated with a CAF-specific phenotype (De Boeck et al.,
2013). These comparative studies replenish the repository of
candidate markers of CAFs in CRC, which need verifications by
more investigations.

Along with the appearance of a growing body of potential
markers of CAFs, accumulating evidence has also related some
markers to the roles involved in CRC progression. Collagen I,
PDGFR-β and α-SMA have been known as molecular markers
of CAFs, and in advanced CRC, their expression varies in
CAFs and is significantly associated with vessel markers CD31
and CD34, indicating that individual CAFs may have different
expression patterns and effects on venous invasion of advanced
CRC (Nishishita et al., 2018). In consistence, the expression
of CAFs markers, like α-SMA, CD10, podoplanin and FSP1,
is correlated with lymph node metastasis in the submucosal
invasive CRC, therefore may allow for stratification of patients
with high risk of lymph node metastasis (Sugai et al., 2018).

Furthermore, a transcriptomic analysis has also shown that CAF
markers, such as α-SMA, PDGFR-β, FAP, FSP-1, are expressed
in a higher level in stroma-high compared to stroma-low CRC
tissues, particularly with higher FAP expression in the invasive
part of tumors (Sandberg et al., 2019), together suggesting that
these molecular markers, as indicative of CAFs, could play a
promotive role in CRC progression.

Although the research approaches mentioned above have
yielded a cohort of promising candidate markers for CAFs,
novel selection methods based on cellular functions such as
lineage tracing and single-cell sequencing will be preferable for
improving the identification and targeting of CAFs in CRC in a
more specific manner.

CANCER-ASSOCIATED FIBROBLASTS
IN COLORECTAL CANCER PROGNOSIS

Cancer-associated fibroblasts accumulated in large numbers in
the TME are often associated with high-grade malignancies and
poor prognosis across different human cancers. The prognostic
impact of CAF-derived markers or gene signatures has also
been demonstrated in CRC (Herrera et al., 2013b; Paulsson and
Micke, 2014). For example, the expression of CAF markers,
including α-SMA, FSP1, and FAP, is associated with the clinical
outcome of a cohort of 289 CRC patients, and surprisingly,
the combination of these CAF markers with M2 macrophage
markers, CD163 and DCSIGN, identifies significant differences
in the survival of advanced-stage patients, demonstrating a
prognostic involvement of interrelationships between markers of
CAFs and M2 macrophages in CRC patient survival (Herrera
et al., 2013a). Specifically, the common and high intratumoral
expression of FAP is associated with poorer prognosis of CRC
patients, which emphasizes FAP as an independent negative
prognostic factor (Wikberg et al., 2013). In general, CAFs serve
as a useful prognostic biomarker in CRC, but it should be
noticed that podoplanin, α-SMA or S100A4 expressing CAFs
have been shown to be associated with different prognosis in CRC
(Choi et al., 2013), which possibly indicate varying prognostic
significances conferred by different populations of CAFs. On
the other hand, a CAF-derived 5-gene classifier selected from
108 differentially expressed genes, including CCL11, PDLIM3,
AMIGO2, SLC7A2, and ULBP2, is significantly associated
with increased relapse risk and death from CRC across all
validation series of stage II/III patients (Berdiel-Acer et al.,
2014). In addition, a recent study has reported that the 1,25-
dihydroxyvitamin D3 [1,25(OH)2D3]-associated gene signature
in CAFs predicts a favorable clinical outcome in CRC (Ferrer-
Mayorga et al., 2017). This association may be explained by a
protective effect of the active vitamin D metabolite 1,25(OH)2D3
against CRC via regulation of CAFs. Besides, a CAF-related
gene osteopontin (OPN) was also found to be a predictive
biomarker for metastatic CRC patients treated with first-line
FOLFIRI/bevacizumab in two independent randomized phase
III trials (Puccini et al., 2018). Moreover, GREM1 and ISLR are
newly identified CAF-specific genes, and their stromal high levels
in CRC patients are associated with poor and favorable survival,
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respectively, which is mechanistically attributed to their inverse
regulation of the bone morphogenetic protein (BMP) signaling
in the stroma (Kobayashi et al., 2021). This finding also suggests
that the status of this pathway could be considered as a predictive
factor for CRC survival.

Apart from CAF markers or gene signatures, accumulating
studies also have revealed other prognostic markers that are
expressed in CAFs of CRC. In an immunohistochemical
evaluation of 110 CRC patient cases, the ubiquitin carboxyl-
terminal hydrolase L1 (UCH-L1) in CAFs was shown to
be an independent prognostic factor for predicting shorter
survival and a higher incidence of recurrence and lymph
node metastasis (Akishima-Fukasawa et al., 2010). Additionally,
protein expression of the lysyl oxidase-like 2 (LOXL2) in
CAFs of CRC was identified to be associated with poor
outcome of CRC patients and as a prognostic biomarker
particularly for stage II patients (Torres et al., 2015). Further,
the expression of an immune checkpoint molecule CD70 was
detected on the majority of CAFs in invasive CRC specimens
and shown significantly correlated with clinicopathological
parameters such as metastasis, differentiation and advanced
stage, and consequently, CD70-positive CAFs were defined as
poor prognostic markers for CRC (Jacobs et al., 2017). In concert,
another immunohistochemical evaluation of 269 primary CRCs
also uncovers that CAFs exhibit various CD70 expression, which
predicts worse survival in CRC patients (Inoue et al., 2019).
CAFs are known to secrete different cytokines. One study
using a cytokine chip has found that CAFs in CRC secrete
the c-type lectin domain family 3 member B (CLEC3B), and
that CRC patients with combined expression of CLEC3B and
α-SMA have worse survival than those with either CLEC3B or
α-SMA expression alone (Zhu et al., 2019), offering CLEC3B as
a potential valuable CAF-based biomarker for CRC prognosis.
Furthermore, some proteins deregulated in the CAFs of CRC also
show significant prognostic value. In distant metastases, PTEN
expression in CAFs was detected lost in some CRC patients,
which was linked closely to a worse prognosis (Kwak et al., 2014).
On the contrary, another report has documented that STAT3 is
activated in CAFs of human CRC, and pSTAT3 expression in
CAFs is negatively correlated with the survival of CRC patients,
illustrating it as a prognostic marker (Heichler et al., 2020).
Together, these numerous studies as outlined above reinforce the
concept that CAFs and CAF-derived factors have a prognostic
significance in human CRC (Table 3).

THE VERSATILE ROLES OF
CANCER-ASSOCIATED FIBROBLASTS
IN COLORECTAL CANCER

Cancer-associated fibroblasts are indispensable architects in the
TME that play fundamental roles to radically influence multiple
malignant behaviors. Over the recent decade, increasing lines
of evidence have revealed the versatility of CAFs in CRC
biology, including tumorigenesis, proliferation, angiogenesis,
invasion and metastasis, stemness, therapy resistance, and tumor
immunity (Figure 1). In this section, we will discuss these pivotal

TABLE 3 | Prognostic impact of CAFs in CRC patients.

Name CRC prognosis Clinical
case

References

CAF marker

α-SMA Poorer DFS and OS 591 Choi et al., 2013;
Herrera et al., 2013a

FSP1 Poorer DFS and OS 289 Herrera et al., 2013a

FAP Poorer DFS and OS 738 Herrera et al.,
2013a; Wikberg
et al., 2013

Podoplanin, S100A4 Poorer DFS and OS 302 Choi et al., 2013

CAF gene signature

CCL11, PDLIM3,
AMIGO2, SLC7A2,
ULBP2

Poorer DFS 108 Berdiel-Acer et al.,
2014

Vitamin D receptor Better PFS and OS 658 Ferrer-Mayorga
et al., 2017

Osteopontin variant Better DFS and OS 451 Puccini et al., 2018

GREM1 Poorer DFS and OS 556 Kobayashi et al.,
2021

ISLR Better DFS and OS 556 Kobayashi et al.,
2021

CAF-derived protein

UCH-L1 Poorer RFS and OS 110 Akishima-Fukasawa
et al., 2010

LOXL2 Poorer DFS and OS 121 Torres et al., 2015

CD70 Poorer OS 269 Inoue et al., 2019

CLEC3B Poorer OS 225 Zhu et al., 2019

PTEN Better OS 181 Kwak et al., 2014

pSTAT3 Poorer OS 375 Heichler et al., 2020

DFS, disease-free survival; OS, overall survival; PFS, Progression-free survival;
RFS, recurrence-free survival.

roles of CAFs in the regulation of pathogenic processes during
CRC development and progression.

Tumorigenesis
It is well recognized that CAFs play a critical role in
modulating tumorigenesis. However, the role and mechanism
of CAFs in CRC tumorigenesis are still poorly understood.
Emerging studies have unveiled several CAF-based regulators
and signaling pathways that could control CRC development. For
instance, the myofibroblast MyD88-deficient mice were found
resistant to AOM/DSS-induced intestinal tumorigenesis, and the
STAT3/PPARγ pathway activated by the MyD88 signaling in
myofibroblasts was demonstrated to contribute to this phenotype
(Yuan et al., 2021). Further, periostin, a multifunctional
extracellular matrix protein, is induced in fibroblasts by STAT3
activation, which ultimately facilitates CRC development in
AOM/DSS and genetically modified mice (Ma et al., 2020). It
has also been recently shown that the constitutive activation
of STAT3 in the CAFs of CRC promotes tumorigenesis, and
in contrast, STAT3 inactivation reduces the development of
CRC in a mouse model established with AOM/DSS (Heichler
et al., 2020). Hence, these findings may identify a crucial role
of CAFs’ STAT3 signaling in facilitating CRC tumorigenesis. In
addition, the selective loss of PKCζ in colonic fibroblasts induces
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FIGURE 1 | Principal roles and related mechanisms of CAFs in CRC hallmarks. Those depicted in deep blue are negative regulators, whereas those depicted in red
are positive regulators controlling CAFs’ roles in CRC. CTL, Cytotoxic T lymphocyte; NK cell, natural killer cell; PD-L1, programmed death ligand 1; Treg cell,
regulatory T cell; ICAM-1, Intercellular adhesion molecule-1; VCAM-1, Vascular cell adhesion molecule-1.

a CAF phenotype in vitro and promotes intestinal tumorigenesis
in vivo, which depends on the activation of SOX2 that drives
the generation of a CAF population (Kasashima et al., 2021).
Moreover, the bone morphogenetic proteins (BMPs) are key
growth factors secreted by CAFs. A recent study has discovered
that the stromal BMP signaling balanced by GREM1 and ISLR
functions to drive CRC carcinogenesis (Kobayashi et al., 2021).
These findings provide further supportive evidence depicting
CAFs as a positive regulators in assisting CRC development.

While CAFs have been generally perceived to be driving forces
for tumorigenesis, they also retard tumorigenesis via largely
unknown mechanisms (Gieniec et al., 2019). CAFs have been
reported to support tumorigenesis through mediating tumor-
enhancing inflammation in an NF-κB-dependent manner, and
a proinflammatory NF-κB gene signature in CAFs promotes
tumorigenesis in models of pancreatic and skin cancers (Erez
et al., 2010). Nevertheless, using an animal model of colitis-
associated cancer (CAC) and sporadic colon tumors initiated
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by AOM, lines of direct genetic evidence have been obtained,
which uncover an unexpected tumor-suppressive role of NF-
κB signaling in CAFs that confers anti-tumorigenic effects and
suppresses intestinal tumorigenesis in vivo (Pallangyo et al.,
2015). Given the high plasticity in CAFs, this disparate finding
may be attributed to distinct functions of NF-κB signaling
depending on the activation status of CAF subpopulations. In
any case, these results shed new light on the CAF regulation of
CRC tumorigenesis.

Proliferation and Angiogenesis
Except cellular autonomous properties, the progression of
malignant tumors also relies on the active involvements of CAFs.
In a non-contact co-culture system, the conditioned media (CM)
from CAF cultures was found to enhance the proliferation of
CRC cells stronger than those from normal fibroblasts (Nakagawa
et al., 2004). CAFs indeed promote proliferation of CRC in vitro
and tumor-bearing mouse models in vivo (Li et al., 2019a).
The proliferative advantage endowed by CAFs could be at least
partially explained by the CAF-secreted periostin (Kikuchi et al.,
2008), CAF-enhanced metabolism of CRC cells (Zhou W. et al.,
2017), and CAF-derived IL-6 (Xu et al., 2021). The mechanistic
insights into CAF-promoted CRC proliferation are provided by
other non-negligible clues, which show that the microRNA-31
(Yang et al., 2016), the long non-coding RNA UCA1 (Jahangiri
et al., 2019), and some signaling pathways, including PI3K-Akt
(Yamamura et al., 2015), FGF-1/-3/FGFR4 (Bai et al., 2015),
HGF-MET (Wen et al., 2020), and ERK5/PD-L1 signaling axes
(Zhang M. et al., 2020), also act as important modifiers mediating
the pro-proliferative effects of CAFs on CRC. These distinct
molecular mechanisms support the notion that CAFs can form
a favorable microenvironment for the proliferation of CRC cells.
Instead, CRC cell-derived hydrogen sulfide was found to enhance
CAF cell proliferation (Coletta et al., 2014), possibly postulating
a reciprocal interaction between CAFs and CRC cells that may
enhance the tumor cell proliferation more robust.

Tumor angiogenesis establishes new microvessels that support
cancer cell proliferation by providing nutrients and oxygen.
During this complex process, many angiogenic factors, especially
the vascular endothelial growth factor (VEGF), play a vital role
(Lugano et al., 2020). In CRC tissues, CAFs are important sources
of IL-6, which enhances VEGF production, whereby inducing
tumor angiogenesis (Nagasaki et al., 2014). In accordance with
this, the eicosapentaenoic acid was proved to suppress CRC
angiogenesis via reducing the secretion of IL-6 and VEGF
from CAFs (Ando et al., 2019). Moreover, it has been shown
that IL-6-activated STAT3 in fibroblast subpopulations regulates
the transcriptional patterns associated with angiogenesis, and
blockade of proangiogenic signaling impedes CRC growth in
genetically modified mice with constitutive STAT3 activation in
fibroblasts (Heichler et al., 2020). This study suggests that STAT3
might be a downstream target that mediates the proangiogenic
effect of CAF-produced IL-6 on CRC. Except IL-6, CAFs-derived
Wnt2 can also increase tumor angiogenesis in CRC, owing largely
to Wnt2-upreglated expression of some proangiogenic proteins
(Unterleuthner et al., 2020). Based on these discoveries, it is
tempting to speculate that the transcriptional reprogramming

initiated by CAF-secreted IL-6 or Wnt2 could shift the balance
toward proangiogenic signals in favor of tumor angiogenesis
and proliferation.

Epithelial-to-Mesenchymal Transition,
Migration, Invasion, and Metastasis
The malignant progression of cancer is a dynamic process
depending not solely on genetic alterations, but also on additional
regulations by the TME (Brabletz et al., 2005). A molecular
profiling analysis of CAFs isolated from human CRC has
delineated them as major participators in promoting CRC
metastasis (Potdar and Chaudhary, 2017). The maturity of
CAFs was also associated significantly with cancer invasion for
CRC patients (Shin et al., 2019). Moreover, an earlier study
has reported that compared with the CM of normal colonic
fibroblasts or CAFs from primary tumors, the CM of CAFs from
liver metastasis leads to more aggressive phenotypes, including
the epithelial-to-mesenchymal transition (EMT), migration and
invasion (Berdiel-Acer et al., 2011). These reports suggest that
CAFs serve to accelerate the malignant progression of CRC. Yet,
the functional contributions to this process and the molecular
mechanisms are not fully clear.

In recent years, increasing studies has indicated that an
intense biochemical cross-talk between CRC cells and CAFs
is forged by the CAF-secreted numerous factors, which is
critical for tumor progression into a metastatic malignancy. For
example, the secreted glycoprotein stanniocalcin-1 (STC1) was
identified to mediate the function of the platelet-derived growth
factor (PDGF) receptor signaling in increasing the migration,
invasion and metastasis of CRC (Pena et al., 2013). Typically,
the hepatocyte growth factor (HGF) can activate cancer cell
invasion and metastasis. Consistently, it was reported that the
migration of CRC cells could be promoted by the Ras-related
protein Rab-31 (RAB31) through regulating HGF secretion in
the tumor stroma (Yang et al., 2020). Human CRC-derived CAFs
also enhance the adhesion of CRC cells to ECs by secretion of
HGF (Zhang et al., 2019a). Additionally, HGF contributes to
EMT induction in CRC cells by CAFs’ secretomes (Wanandi
et al., 2021). Moreover, studies have shown that CAFs secrete the
fibroblast growth factor 1 (FGF1) to increase CRC cell invasion
via FGFR3 signaling (Henriksson et al., 2011), as well as the
stromal cell-derived factor-1 (SDF-1) to promote CRC metastasis
to distant organs via the C-X-C chemokine receptor type 4
(CXCR4) axis (Peng et al., 2018). Combining another research
which shows that by secreting the LOXL2, CAFs stimulate the
focal adhesion kinase (FAK) pathway and consequently induce
the EMT and metastasis of CRC cells (Xuefeng et al., 2020),
those research progresses characterize these signaling as vital
mediators in transducing CAFs’ notorious effects on malignant
behaviors of CRC. Other CAF-secreted factors that have recently
been shown to promote the EMT, migration and invasion of
CRC include the CLEC3B (Zhu et al., 2019), activin A (Bauer
et al., 2020), and Wnt2 (Aizawa et al., 2019). However, how Wnt
signaling regulates CRC progression is still in controversies, since
a phenotypic switch of CAFs induced by Wnt was reported to
inhibit EMT in CRC, implying that the Wnt signaling may induce
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subtypes of CAFs with differential activities in CRC progression
(Mosa et al., 2020). Furthermore, CAFs-derived exosomal miR-
17-5p (Zhang Y. et al., 2020) and LINC00659 (Zhou et al.,
2021) were found to promote CRC metastasis, and invasion
and migration, respectively. These advancements also manifest
that CAFs could promote CRC progression through secreting
exosomes to influence adjacent cancer cells.

Recently, growing study efforts have been devoted to
understanding how metabolic reprogramming is mechanistically
involved in CAF-promoted CRC progression. In orthotopic
CRC models, the activated CAFs have been discovered to
promote a metabolic switch favoring glutamine consumption
in CRC cells, which results in increased number of organ
metastases (Tommelein et al., 2018). On the other side, CAFs
were uncovered to undergo a lipidomic reprogramming in order
to accumulate and accordingly secrete more fatty acids, and
CRC cells were confirmed to take up these lipids metabolites,
eventually leading to their potentiated migration (Gong et al.,
2020). Keeping in line with this, CAFs were proved to promote
the migration and invasion of CRC cells, and drive the peritoneal
metastasis via activating fatty acid oxidation and modulating
glycolysis (Peng et al., 2021). These results provide further
insights into CRC progression regulated by CAFs.

Some divergent mechanisms also emerge to underlie the roles
of CAFs in CRC progression. At the invasive borders of CRC,
CAFs specifically express endoglin, with its levels correlated
positively with disease stages and poor metastasis-free survival.
Functionally, endoglin neutralization inhibits CRC cell invasion
in vitro and decreases metastatic spread of CRC cells to the liver
(Paauwe et al., 2018), suggesting a significant role of endoglin-
expressing CAFs in promoting CRC progression. Moreover, the
activation of RNA editing of the antizyme inhibitor 1 (AZIN1) in
CAFs was revealed to enhance the invasive potential of CAFs in
CRC (Takeda et al., 2019). It is also worth to note that CAFs can
induce CRC cell migration and invasion by a contact-dependent
manner (Knuchel et al., 2015). Actually, CRC cells are not
bystanders upon encountering the interaction with CAFs. It has
been shown that CRC cells express the structural maintenance
of chromosomes 1A (SMC1A), a subunit of cohesion, which
functions to recruit CAFs, whereby promoting CRC metastasis
(Zhou P. et al., 2017). Additionally, when interacting with CAFs,
the activation of the phospholipase D in CRC cells is required to
mediate the pro-migration effects (Majdop et al., 2018). However,
it remains unclarified how SMC1A and phospholipase D exert
their functions during these processes. Another clue is that in the
circulation system, the tumor cell clusters play a primary role in
cancer metastasis, which can be enhanced by the interaction with
clusters of CAFs (Hurtado et al., 2020). It would be therefore very
tempting to test whether SMC1A and phospholipase D regulate
cluster interactions between CRC cells and CAFs, whereby
enhancing the effect of CAFs on CRC metastasis.

Stemness and Therapy Resistance
Cancer-associated fibroblasts stimulate an EMT-driven gain of
cancer stemness through a paracrine interplay between CAFs and
prostate cancer cells (Giannoni et al., 2010), and also constitute
a supporting niche for cancer stemness in lung cancer through

a paracrine IGF-II/IGF1R signaling (Chen et al., 2014). These
studies indicate that CAFs can maintain cancer stemness in some
cancer types. In truth, this function of CAFs can be applied to
CRC as well, wherein CAFs can upregulate netrin-1 to increase its
stemness in vitro and in mice (Sung et al., 2019). Being clinically
relevant, the expression of CRC stemness markers are also
upregulated by CAF secretomes from CRC patients (Wanandi
et al., 2020). It has also been documented that CAFs promote
CRC stemness by transferring exosomal lncRNA H19, which acts
as a miR-141 sponge to suppress its inhibitory effect on stemness
(Ren et al., 2018), therefore consolidating the role of CAFs in
increasing stemness in CRC. Similarly, this mechanism is analog
to that found in a variety of solid tumors, with their stemness
regulated by CAF-secreted exosomes (Huang et al., 2019).

Functionally, cancer stem cells (CSCs) are believed to be a
driving force behind tumorigenesis and also play major roles in
tumor resistance and recurrence. In CRC patients, a significant
increase in the number of CAFs was observed after cytotoxic
treatment, and CSCs were shown to be promoted by CAFs
via augmented secretion of specific cytokines, including IL-17A,
which in turn lead to increased resistance to chemotherapy
(Lotti et al., 2013). Coincidently, it is established that CAFs
could promote chemoresistance by supporting a niche to sustain
cancer stemness (Su et al., 2018). In regard to CRC resistance to
chemotherapeutics, CAFs and CAF-derived exosomal miR-24-
3p have been validated to accelerate resistance of CRC cells to
oxaliplatin, 5-fluorouracil and methotrexate (Goncalves-Ribeiro
et al., 2016; Yadav et al., 2020; Zhang et al., 2021). Also, in
the presence of CAFs, tumor cells show reduced sensitivity
to cetuximab, a monoclonal antibody therapy targeting the
epidermal growth factor receptor (EGFR) (Garvey et al., 2017).
A recent finding has discovered that cetuximab increases CAFs’
EGF secretion, which is sufficient to render neighboring cancer
cells resistant to cetuximab in combination with chemotherapy
for metastatic CRC patients (Garvey et al., 2020). Moreover, CAF-
derived exosomal miR-93-5p or miR-590-3p has been shown to
rescue CRC cells from radiation-induced apoptosis (Chen et al.,
2020, 2021), and the promoted CRC stemness was demonstrated
to account for the radioresistance imposed by CAF-derived
exosomes (Liu L. et al., 2020). Thus, these discoveries build
a mechanistic connection between CAF-maintained cancer
stemness and therapy resistance in CRC.

Tumor Immunity
The immunomodulatory effects of CAFs on CRC have been
observed in a progressive rat model, in which T lymphocytes and
monocytes were found outside the myofibroblast-surrounded
tumors (Lieubeau et al., 1999). Recent findings have also shown
that the levels of CAFs markers such as α-SMA, thrombin
and fibronectin are significantly higher in CRC than in normal
colonic mucosa, and α-SMA expression is negatively correlated
with the number of tumor-infiltrating lymphocytes (TILs),
while fibronectin displays positive coexpression (Zadka et al.,
2021), and that CAF phenotypes are also correlated with CD8+
T-cell infiltration (Johnson et al., 2020), hence underscoring the
importance of CAFs in regulating CRC immunity. CAFs are
also positively correlated with PD-L1 expression in CRC tissues,
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and through secreting CXCL5, CAFs are able to promote PD-L1
expression in cancer cells (Li et al., 2019b). And moreover,
a significant association has been validated between elevated
Treg amounts and CD70-expressing CAFs (Jacobs et al., 2017).
These observations illustrate CAFs as regulators of tumoral
immunosuppression of the T cell response.

Monocytes affect the TME and induce immune tolerance
(Ugel et al., 2021). CAFs have been shown to increase the
recruitment of monocytes into the CRC TME via various
mechanisms. Firstly, CRC CAFs exhibit upregulated ICAM-
1 expression and affinity for monocytes, as such, increasing
their interaction to elongate monocyte residence in CRC tissues
(Schellerer et al., 2014). Secondly, CRC CAFs promote the
adhesion of monocytes by upregulating VCAM-1 expression in
CRC cells. Thirdly, CAFs can also attract monocytes by secreting
IL-8 (Zhang et al., 2019b). Subsequently, CAFs promote M2
polarization of macrophages to suppress the activity of natural
killer (NK) cells in CRC (Zhang et al., 2019b), favoring the escape
from attack by the tumor immunity.

Notably, it has been reported that CAFs can regulate
immune checkpoint in CRC. CAFs in human CRC tissues
constitute the major population expressing CD73, a molecule
acting as an immune checkpoint to suppress immune activation
through the A2A receptor, and importantly, CD73 expression
on CAFs is enhanced via A2B-mediated feedforward circuit
triggered by tumor cell death, which enforces the CD73
immune checkpoint and consequently counteracts the antitumor
immunity in CAF-rich CRC (Yu et al., 2020). Taken together,
these immunosuppressive activities of CAFs on CRC have
significant clinical impacts, rendering CAFs to be potential
therapeutic biomarkers as well as targets for CRC.

CANCER-ASSOCIATED FIBROBLASTS
AS THERAPEUTIC TARGETS IN
COLORECTAL CANCER TREATMENT

As discussed above, the increasingly deep understanding into the
CAFs’ exquisite regulation of CRC pathogenesis achieved over
recent years by pioneering studies has sparked vast inspirations
to develop some potential mechanism-based targeted therapies,
which can be classified according to their respective effects
directed to each functional role of CAFs in impacting CRC, as
illustrated in Figure 2.

A number of preclinical studies have described the tight
control of CRC tumorigenesis by CAFs, implicating that
there are some druggable targets in CAFs that possess the
potentialities for CRC prevention or intervention. For example,
MyD88 signaling in CAFs contributes crucially to colitis-
associated CRC carcinogenesis via promoting macrophage M2
polarization (Yuan et al., 2021). Interestingly, interfering with
this pathway by a novel synthetic inhibitor TJ-M2010-5 has been
demonstrated to prevent colitis-associated CRC in mice (Xie
et al., 2016). These clues suggest that inhibiting MyD88 signaling
in CAFs with synthetic inhibitors may be used as a therapeutic
modality for treating CRC. Moreover, CAF-secreted periostin
is revealed to promote CRC tumorigenesis and proliferation

(Kikuchi et al., 2008; Ma et al., 2020). Some clinical trials by
inhibition of periostin function are ongoing to test its therapeutic
effects on periostin-related diseases (Kudo, 2019). Encouragingly,
an earlier study has shown that the benzyl-d(U)TP-modified
DNA aptamers targeting human periostin inhibit breast cancer
growth (Lee et al., 2013). Hence, these studies prompt that
targeting periostin may inhibit CRC development. Moreover,
through loss-of-function approaches, the constitutive activation
of STAT3 in CAFs is also shown to accelerate CRC tumorigenesis
in mice (Heichler et al., 2020). A series of STAT3 inhibitors and
analogs have been identified and show considerable anti-CRC
effects (Chalikonda et al., 2021). Hopefully, these agents could
be exploited to suppress CRC tumorigenesis by inhibiting STAT3
in CAFs. Further, the enhanced CRC tumorigenesis in vivo
by the deletion of CAFs’ PKCζ supports a revised paradigm
holding a view that the PKC family acts as a tumor suppressor
(Newton and Brognard, 2017). As a result, restoring rather
than inhibiting PKCζ activity in CAFs could be a strategy to
restrict CRC. The disruption of stromal BMP signaling using
small molecule agonists/activators, such as DMH1, a highly
selective small-molecule inhibitor of BMP receptor (Owens
et al., 2015), also represents a possible avenue to interfere CRC
development, since its balance could drive CRC carcinogenesis
(Kobayashi et al., 2021).

Cancer-associated fibroblasts-secreted IL-6 and ensuing
STAT3 activation promote CRC proliferation and angiogenesis.
Because targeting IL-6 are effective in some inflammatory
diseases in clinical trials (Kang et al., 2019). It is very tempting
to assess whether therapeutic agents blocking IL-6 also yield
satisfactory outcomes for CRC patients. In addition, inhibitors
of signaling axes, including PI3K-Akt, FGF-1/-3/FGFR4, HGF-
MET, and ERK5/PD-L1, also hold promise to combat CRC, due
to the fact that they can mediate the pro-proliferative effect of
CAFs on CRC. In the process of tumor angiogenesis in CRC
tissues, CAFs-derived Wnt2 and its elevated proangiogenic
signals play an important role. Besides, autocrine Wnt2 signaling
in CAFs also promotes CRC progression (Kramer et al., 2017).
Noticeably, targeting CAF-secreted Wnt2 was recently reported
to restore anti-tumor immunity (Kang et al., 2019). These
findings classify Wnt2 as a promising stromal target to confine
CRC progression. Future studies are needed to test the effect
of Wnt2 neutralizing antibodies toward CRC. The result may
be predictably satisfactory, because an earlier study has already
shown a therapeutic effect of an anti-Wnt2 monoclonal antibody
against malignant melanoma (You et al., 2004).

The PDGF receptor signaling functions to transduce the pro-
metastatic signals from CAFs into CRC cells, and inhibition
of this signaling has proven useful for treating patients with
some tumors (Heldin, 2013). Whether PDGF/PDGF receptor
antagonists will be beneficial for reducing metastasis and
prolonging survival for CRC patients is an ongoing and
future study direction for the management of patients with
metastatic CRC (Advani and Kopetz, 2019). Moreover, signaling
pathways induced by HGF, FGF1, SDF-1, and FAK are
profoundly involved in CAFs’ roles in enhancing the malignant
behaviors of CRC, providing them as potential targets to
obstruct disease progression. These topics have been intensively
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FIGURE 2 | Therapeutic strategies that target CAFs for CRC treatment. A variety of inhibitors, agonists, or neutralizing antibodies targeting different signaling
pathways or molecules that contribute to CAFs’ versatile roles are proposed to interfere some key processes during CRC pathogenesis for clinical treatment.

reviewed or discussed elsewhere (Tommelein et al., 2015;
Jeong, 2018; Parizadeh et al., 2019). Additionally, the metabolic
reprogramming in CAFs that aids to expedite CRC progression
also offers attractive targets for therapeutic intervention. For
instance, the fatty acids synthase (FASN) is crucial for fatty
acids synthesis and is significantly increased in CAFs, which is
responsible for CAF-induced CRC cell migration in vitro and
in vivo (Gong et al., 2020). These results suggest that the FASN
of CAFs may be a target for anti-metastasis in CRC treatment.
Recently, the first FASN inhibitor (TVB-2640) has completed
the phase 1 clinical trial for solid tumors (Angeles and Hudkins,
2016). This successful translation from bench to clinic may open
new opportunities for expanding the utility of FASN inhibitors to
inhibit CRC metastasis. Further, the selectively high expression
of endoglin in CAFs and its correlation with metastasis and
poor survival in CRC patients will lead to the exploration of

testing it as a therapeutic target. The coincidence is that the
endoglin neutralizing antibodies such as TRC105 are being
tested in clinical studies in cancer patients as a monotherapy or
incorporated into combinatory therapies (Liu Y. et al., 2020).
These studies will enable us to learn the prospect of treating
malignant CRC through targeting endoglin-expressing CAFs.

The CAF-increased chemoresistance in CRC can be achieved
via CSC self-renewal that is promoted by CAF-derived IL-17A,
and accordingly, targeting IL-17A signaling impairs CSC growth
and overrides chemoresistance (Lotti et al., 2013). The anti-IL-
17A was approved by FDA for the treatment of psoriasis in
2015, proving its effectiveness clinically (Chen and Kolls, 2017). It
therefore would be of clinical significance to examine the impact
of anti-IL-17A on improving the efficacy of chemotherapy for
CRC. The exploitation of immunomodulatory activities of CAFs
as promising targets for CRC treatment cannot be ignored either.
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For example, by applying the therapeutic anti-EGFR humanized
antibody cetuximab, the inhibition of NK cell function by the
CAFs of CRC can be relieved (Costa et al., 2018), and neutralizing
CD73 enhances antitumor immunity in CAF-rich CRC (Yu
et al., 2020), therefore visualizing the therapeutic potential of the
strategic targeting of CAF-mediated immune suppression.

Although the versatile pro-tumoral functions of CAFs
performed during CRC development and progression make
them to be attractive and promising therapeutic targets that can
be harnessed for CRC treatment, the total depletion of CAFs
unexpectedly results in more aggressive tumors (Ozdemir et al.,
2014; McAndrews et al., 2021), demonstrating that different
CAF subpopulations have opposite roles in cancer. Truly, CAFs
in CRC tissues exhibit divergent phenotypes which can be
differentiated at least by expression profiles and functions, as
evidenced by transcriptional heterogeneity (Li et al., 2017) and
functional heterogeneity (Herrera et al., 2013b). Since attempts
to therapeutically target CAFs have been obstructed by our poor
understanding of their heterogeneity (Kobayashi et al., 2021),
future breakthroughs in translating basic sciences into CAF-
based therapies will be witnessed with the better understanding of
CAF heterogeneity, which can improve the therapeutic outcomes
of cancer patients by targeting specific CAF subsets that promote
cancer progression.

CONCLUSION

Cancer-associated fibroblasts are crucial components of the
TME which interacts intensively with proliferating tumor
cells, together creating a developing tumor, including CRC.
Currently, the first-line treatment options for advanced CRC are
chemotherapy combined with targeted therapy. Despite some
achievements in improving patients’ survival rates, the success of
treatment is limited by targeting tumor cells alone. This dilemma
has redirected more research attentions into investigating on
the roles of the TME in the progression of CRC and their
underlying mechanisms, in an effort to discover novel and more
effective therapeutic strategies and targets for improving the
available therapies. With the CAFs becoming the study focus,
many advancements in our understanding of the CAF biology
in CRC pathogenesis have been obtained in recent decade.
We now know that the CAFs in CRC have heterogeneous
precursors and markers, and also show a clinical significance in

predicting patients’ prognosis. Mounting analyses in preclinical
models have unveiled versatile roles and distinct mechanisms of
CAFs that profoundly promote many key malignant behaviors
of CRC, including tumorigenesis, proliferation, angiogenesis,
invasion and metastasis, stemness and therapy resistance,
and simultaneously attenuate tumor immune responses. These
findings indisputably support the notion that CAFs can be
considered as a prominent therapeutic target of stroma-based
therapy in CRC treatment. However, targeting specific CAF
subpopulation that promote cancer progression encounters a
huge challenge in clinic, as little is known about a myriad of
functions of different CAF subsets originated from their high
heterogenetic nature. To address this difficulty, novel techniques
like the lineage tracing and single-cell sequencing should be
applied in the future to distinguish targetable subpopulations
from the whole pool of CAFs within tumors. As such, the
selective eradication of the tumor-promoting CAF subsets will
be realized and then implemented in combination with the
current therapeutic rationales for the better treatment of CRC
and even other cancers.
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