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Abstract

Mutations in TRPC6 are a cause of autosomal dominant focal segmental glomerulosclerosis

in humans. Many of these mutations are known to have a gain-of-function effect on the non-

specific cation channel function of TRPC6. In vitro studies have suggested these mutations

affect several signaling pathways, but in vivo studies have largely compared wild-type and

Trpc6-deficient rodents. We developed mice carrying a gain-of-function Trpc6 mutation

encoding an E896K amino acid change, corresponding to a known FSGS mutation in

TRPC6. Homozygous mutant Trpc6 animals have no appreciable renal pathology, and do not

develop albuminuria until very advanced age. The Trpc6E896K mutation does not impart sus-

ceptibility to PAN nephrosis. The animals show a slight delay in recovery from the albumin

overload model. In response to chronic angiotensin II infusion, Trpc6E896K/E896K mice have

slightly greater albuminuria initially compared to wild-type animals, an effect that is lost at later

time points, and a statistically non-significant trend toward more glomerular injury. This phe-

notype is nearly opposite to that of Trpc6-deficient animals previously described. The Trpc6

mutation does not appreciably impact renal interstitial fibrosis in response to either angioten-

sin II infusion, or folate-induced kidney injury. TRPC6 protein and TRPC6-agonist induced

calcium influx could not be detected in glomeruli. In sum, these findings suggest that a gain-

of-function Trpc6 mutation confers only a mild susceptibility to glomerular injury in the mouse.

Introduction

Focal and segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome in

adults, frequently progresses to end-stage kidney disease, and has few effective treatment
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options [1–3]. Studies over the last 25 years have uncovered a substantial genetic component

in the pathogenesis of FSGS [4–9]. Several dozen genes are implicated in the development of

autosomal recessive and dominant forms of congenital nephrotic syndrome and FSGS [10].

Among these, gain-of-function mutations in TRPC6 are known to cause autosomal dominant

FSGS in humans [11–17].

Canonical transient receptor potential 6 (TRPC6) is a member of the transient receptor

potential (TRP) superfamily of cation channels [18, 19]. TRPC6 is a non-specific cation chan-

nel activated downstream of Gαq coupled receptors [20], including angiotensin II receptor 1

[13], and functions as a receptor-operated calcium effector [21]. Multiple TRPC6 mutations

have been reported in cases of autosomal dominant, predominantly adult onset, FSGS [12–17,

22]. The plurality of these have a gain-of-function (GOF) phenotype, and cluster to the inter-

face of the N-terminal ankyrin repeat domain with the C-terminal rib helix and coiled-coil

[23–25], disrupting an inhibitory calcium-binding site [26]. In vitro studies demonstrate that

overexpression of TRPC6 GOF mutants activates several signaling pathways [27, 28], and

induces cytotoxicity [29–31]. The relevance of these findings to disease pathogenesis, however,

remains uncertain.

An animal model genetically recapitulating TRPC6 gain-of-function disease has not been

reported to date. Transgenic overexpression of either wild-type, or gain-of-function, mutant

Trpc6 in podocytes causes only modest albuminuria and mild histological changes in mice,

with no clear difference between wild-type and mutant Trpc6 animals [32]. As Trpc6 is widely

expressed, including in mesangial cells, renal tubular epithelial cells, smooth muscle cells, and

fibroblasts [13, 33–35], the relative importance of TRPC6 activity in podocytes versus other

cells types in the pathogenesis of FSGS is unclear. While TRPC6 has been shown to be upregu-

lated in several acquired proteinuric diseases [36–38], whether increased channel expression

mediates similar pathologic effects as mutant TRPC6 is unknown. Studies utilizing Trpc6
knockout animals have provided conflicting data as to a role for the wild-type channel in renal

disease, with some reporting amelioration of disease [29, 35, 37, 39–41], and others increased

susceptibility [42, 43].

In the present study, we characterize the renal consequences of introducing a gain-of-func-

tion E896K mutation [44], corresponding to the human TRPC6 E897K FSGS mutation [12],

into the mouse Trpc6 gene. Homozygous Trpc6E896K/E896K mice have no baseline renal pathol-

ogy or proteinuria until advanced age. They show no susceptibility to PAN nephrosis, only

mildly delayed recovery from the albumin overload model, and transiently higher albuminuria

early in an angiotensin II infusion model with an associated trend toward more glomerular

sclerosis. Furthermore, the Trpc6 mutation does not influence recovery from, nor residual

interstitial fibrosis induced by, folate-induced acute kidney injury. In sum, the results suggest

that gain-of-function Trpc6 mutations induce only mild susceptibility to renal disease in the

mouse.

Material and methods

Materials

All chemicals were purchased from Sigma Aldrich unless otherwise specified. GSK1702934A

(GSK) was obtained from Focus Biomolecules and dissolved in DMSO. Fura-2 QBT was from

Molecular Devices. Puromycin aminonucleoside was from MedChemExpress.

Mice

All animal procedures were approved by the Beth Israel Deaconess Medical Center (BIDMC)

Animal Care and Use Committee, and carried out in accordance with the National Institutes
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of Health Guide for the Care and Use of Laboratory Animals. Trpc6E896K/E896K mice were gen-

erated at the BIDMC transgenic core via established protocols as described [44]. Animals were

backcrossed and maintained on an FVB/NJ (Jackson Laboratory) background. Genotyping of

the Trpc6E896K locus was performed using a custom TaqMan SNP assay. Trpc6-/- mice [45]

were obtained from the Jackson Laboratory. After crossing the mice with C57BL/6J, heterozy-

gous Trpc6+/- mice were crossed to generate Trpc6-/- mice and littermate Trpc6+/+ wild-type

animals. Animals were maintained in a temperature controlled facility with a 12 hour light, 12

hour dark cycle, and had ad lib access to water and standard chow.

For tissue collection, mice were sacrificed by deep anesthesia with inhaled isoflurane on a

warming blanket to minimize distress, followed by terminal cardiac puncture. Serum samples

were obtained by cheek pouch vein or terminal cardiac puncture, and sent to the UAB O’Brien

Center Core C for serum creatinine measurement by isotope dilution LC-MS/MS. Spot urine

samples were collected from mice in unlined cages for up to 3 hours. Albuminuria quantifica-

tion was performed using a mouse albumin ELISA kit (Bethyl Laboratories, Inc. E90-134).

Urine creatinine measurement was performed by quantitative colorimetric assay using the

QuantiChrom Creatinine Assay Kit (BioAssay Systems DICT-500).

Albumin overload model. 8–12 week old, male wild-type (n = 11) and Trpc6E897K/E897K

(n = 15) mice were given daily injections of low-endotoxin bovine serum albumin (BSA, A-

9430, Sigma Chemical Co, St. Louis, MO) in sterile saline (300mg/ml) by intraperitoneal injec-

tion at a dose of 10mg/g body weight on days 1–5 using an established protocol [46]. Urine

samples were collected at baseline, day 2 (prior to the second injection), day 6 (24 hours

after the last injection), day 9 and day 12. Urine albumin and creatinine measurements were

obtained as above.

Puromycin aminonucleoside nephrosis. We utilized the two dose PAN model as

described by Refaeli et al. [47] 8 to 10 week old male mice of various genotypes were utilized:

Trpc6E896K/E896K on an FVB background; and wild type and Trpc6+/E896K F1 offspring of FVB

and 129X1/SvJ (Jackson Laboratory) crossings. Animals were given two doses of puromycin

aminonucleoside (450mg/kg; dissolved in normal saline at 18mg/ml) by intraperitoneal injec-

tion on days 0 and 7. Urine was collected at baseline, and at day 14 and 21; animals were sacri-

ficed and kidneys collected at day 14 or 21.

Angiotensin II infusion model. Three month old male wild-type and Trpc6E896K/E896K

mice (n = 10 each) were implanted with osmotic minipumps (Alzet model 2004; Alza Corp)

loaded with angiotensin II diluted in sterile saline to provide a dose of 1 μg/kg/min. The mini-

pumps were implanted in a dorsal subcutaneous location under isofluorane anesthesia under

sterile conditions. A dose of meloxicam, 1 mg/kg subcutaneously, was given prior to anesthesia

to provide post-operative analgesia; a heating pad was utilized during the operative and post-

operative period to prevent hypothermia. Urine was collected at baseline, and at weeks 2 and 4

of the infusion. Serum was collected at baseline and at the time of sacrifice. At the end of the 4

week infusion period, animals were sacrificed, and heart and kidneys were harvested and

weighed. Tissue samples were processed for histologic analysis. Additional tissue samples were

snap frozen in liquid nitrogen for RNA isolation.

Folate nephropathy model. Three to four month old, male and female, wild-type and

Trpc6E896K/E896K mice (n = 13–19 per group) were administered folate (20 mg/ml in 0.3 M

sodium bicarbonate solution) at a dose of 250 mg/kg by intraperitoneal injection. Serum

samples were collected at baseline (1 week prior to folate administration), 2 days after

folate injection, and at the time of sacrifice. 21 days after folate injection, animals were sacri-

ficed under anesthesia. Kidneys were decapsulated and processed for histology and RNA

isolation.
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Histology

Tissue was transversely bread loafed and immersion fixed in 4% paraformaldehyde at 4˚C for

24 hours. After washing in PBS, samples were further processed for paraffin embedding, sec-

tioning, and staining by the BIDMC Histology Core. Three-micron sections stained with

H&E, PAS, and Sirius Red were analyzed using an Olympus BX60 microscope equipped with a

digital DP73 camera and cellSens software.

Glomeruli were scored for sclerotic lesions (present or absent) on PAS stained sections by

an observer blinded to genotype and treatment. All glomeruli (>100/animal) on a single histo-

logic section containing 2–3 transversely bread loafed portions of a kidney were scored, and

the percentage of sclerosed glomeruli calculated.

To calculate podocyte density, kidney sections were stained for immunofluorescence

microscopy as described previously [48], using rabbit monoclonal anti-WT1 (Abcam,

ab89901) and appropriate fluorophore-labeled secondary antibody (Jackson ImmunoResearch

Laboratories), and counterstained with fluorescently labeled wheat germ agglutinin (Invitro-

gen, W7024) and Hoechst 33342. Podocyte number and glomerular cross-section were

obtained for 20 glomeruli per animal. TRPC6 immunofluorescence microscopy was per-

formed using a rabbit polyclonal antibody (Alomone, ACC-017).

Renal fibrosis was quantified by imaging Sirius Red stained sections under polarized light

using established methods [49]. Ten non-overlapping 20x fields of cortex were captured per

animal, and analyzed using ImageJ. Perivascular areas were excluded from the analysis.

Platelet and glomerular isolation

Mouse platelets were isolated using modified standard procedures [50], as previously outlined

[44]. Washed platelets were resuspended directly in NP-40 lysis buffer containing Complete

protease inhibitors (Roche). Glomeruli were isolated using magnetic bead perfusion as previ-

ously described [48, 51], utilizing high iron content magnetic particles (AMS-40-10H, Sphero-

tech). For western blot, glomeruli were resuspended in NP-40 lysis buffer with protease

inhibitors. For podocyte outgrowth, glomeruli were cultured in 6 well tissue culture plates

with RPMI-1640 supplemented with 10% fetal bovine serum, and 1% ampicillin, penicillin,

and streptomycin [52]. After 10 days of culture, outgrown podocytes were passaged and plated

onto clear bottom 96 well plates for calcium imaging experiments.

Fura-2 calcium imaging

Primary podocyte cultures were subject to Fura-2 fluorescence ratio measurement (Fura-2

QBT kit R8197, Molecular Devices) using a FlexStation III reader with automated pipetting at

the Harvard ICCB-Longwood screening facility in a 96-well format essentially as previously

described [30, 44]. Final concentrations of agonists were as follows: 100 μM ADP, 100 μM

ATP, 50 μM GSK1702934A, 0.5 u/ml thrombin, and 1 μM thapsigargin.

RNA isolation and gene expression

RNA was isolated from snap frozen tissue using RNeasy universal kits, and reverse transcribed

into cDNA with the QuantiTect Reverse transcription kit (both Qiagen). Real-time PCR reac-

tions were run on a QuantStudio 6 Flex machine using PowerUp SYBR Green master mix

(Applied Biosystems) using gene specific primer sets (Table 1). Expression levels were normal-

ized to 18S rRNA, Hprt and Gapdh.
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Western blotting

Lysates were mixed with 4x sample loading buffer containing β-mercaptoethanol and imme-

diately incubated at 95˚C for 5 minutes. SDS-PAGE was performed as previously described

[28]. Western blotting using fluorescence detection was performed using Immobilon-FL

PVDF membrane (Millipore), Chameleon Duo pre-stained protein ladder, Intercept block-

ing buffer, and an Odyssey CLx imaging system (all LI-COR). Primary antibodies against the

following antigens were utilized: Erk1/2 (CST #9107, 1:1000), Podocalyxin (MAB1556, R&D

Systems, 1:500), TRPC6 (Alomone ACC-017, 1:500). Fluorescent secondary antibodies

(IRDye 690RD anti-mouse and anti-rat; IRDye 800CW anti-rabbit; all LI-COR) were used at

1:20,000 dilution.

Statistical analysis

All statistical analyses were performed using GraphPad Prism version 9. The specific statistical

tests utilized for each experiment are specified within the corresponding figure legends. Sym-

bols used for pair-wise comparison adjusted p-values are: ns, p>0.05; �, p<0.05; ��, p<0.01;
���, p<0.001.

Results

Trpc6E896K/E896K mice were viable and fertile, and born at the expected Mendelian ratio when

generated by mating heterozygous animals. Trpc6+/E896K and Trpc6E896K/E896K mice showed no

evidence of developing albuminuria compared to their wild-type counterparts at 6 months of

age (Fig 1A). Even in female animals aged 20 to 23 months, albuminuria did not differ signifi-

cantly between wild-type and knock-in animals (Fig 1B). The fraction of Trpc6E896K/E896K mice

that did develop albuminuria demonstrated mesangial expansion and mesangial hypercellular-

ity, but no appreciable glomerular sclerosis (Fig 1C), similar to age-associated glomerular

changes reported to occur in wild-type female mice in this age range [53, 54].

Albumin overload model

Wild-type and Trpc6E896K/E896K male mice were compared in their response to the transient

albumin overload model (Fig 1D). A mixed-effects model suggests a statistically significant

effect of genotype on albuminuria across the combined time-points (p = 0.0153). However, by

multiple comparisons, the albuminuria observed in Trpc6E896K/E896K male mice was only statis-

tically significantly higher than controls at day 9, 4 days after the last albumin administration.

Table 1. Primer sequences used for qPCR gene expression analysis.

Target Forward Reverse

GAPDH CGTCCCGTAGACAAAATGG TCAATGAAGGGGTCGTTGA

HPRT GAGGAGTCCTGTTGATGTTGCCAG GGCTGGCCTATAGGCTCATAGTGC

αSMA CTGACAGAGGCACCACTGAA CATCTCCAGAGTCCAGCACA

Collagen I GAGCGGAGAGTACTGGATCG GTTCGGGCTGATGTACCAGT

Fn1 CGAGGTGACAGAGACCACAA CTGGAGTCAAGCCAGACACA

TGF-β TTGCTTCAGCTCCACAGAGA TGGTTGTAGAGGGCAAGGAC

CTGF CCCTAGCTGCCTACCGACTG TTAGAACAGGCGCTCCACTC

KIM-1 TCAGCTCGGGAATGCACAA TGGTTGCCTTCCGTGTCTCT

NGAL (Lcn2) TGATCCCTGCCCCATCTCT GGAACTGATCGCTCCGGAA

18S RNA GCAATTATTCCCCATGAACG AGGGCCTCACTAAACCATCC

Trpc6 ACTGGTGTGCTCCTTGCAG GAGCAGCCCCAGGAAAAT

https://doi.org/10.1371/journal.pone.0272313.t001
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Fig 1. Baseline and albumin overload induced albuminuria in wild-type and Trpc6E896K/E896K mice. A, urine

albumin-to-creatinine ratio (ACR) measurements from six-month old, wild-type (WT), Trpc6+/E896K (Het), and

Trpc6E896K/E896K (KI) males. Shown are individual values, geometric mean and SD; n = 4-9/group. Groups were

compared by one-way ANOVA with Tukey’s multiple comparisons test; all comparisons without statistical significant

differences. B, urine ACR from 20–23 month old, female WT (n = 6) and KI (n = 8) animals. Shown are geometric

mean and individual values; log-transformed ACRs were compared by unpaired t-test. C, glomerular histology of 23

month old, female (i) wild-type, (ii) non-proteinuric KI, and (iii) albuminuric KI mice. Mesangial expansion (arrows)

and mesangial hypercellularity (arrowheads) are apparent in the albuminuric animal. PAS stained sections; scale bar

represents 20 μm. D, albuminuria in WT and KI male mice subject to albumin overload from day 1–5. Shown are

geometric mean, SD and individual values; n = 11 (WT) and 15 (KI). Log-transformed ACRs were compared between

genotypes by mixed-effects analysis with Sidak’s multiple comparisons test. Trpc6E896K/E896K had statistically

significantly more albuminuria compared to wild-type only on day 9.

https://doi.org/10.1371/journal.pone.0272313.g001
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Both groups showed a similar degree of albuminuria a week after injections were discontinued,

when albuminuria had returned back to near baseline. As has been reported by others [55], no

histological sequelae were apparent by light microscopy after the recovery period.

Puromycin aminonucleoside nephrosis

Mice heterozygous for the Inf2R218Q mutation [56], or a Podxl null mutation [47], show dra-

matic sensitivity to glomerular injury in the PAN model. We therefore examined whether the

Trpc6E896K allele might confer a similar susceptibility. Trpc6E896K/E896K mice exposed to the

two dose PAN regimen [47] had only a small increase in proteinuria (Fig 2A) without the

development of glomerular sclerosis (Fig 2B). We also compared Trpc6+/+ and Trpc6+/E896K

animals generated through an F1 cross with Sv/129 animals, as Sv/129 animals show some sus-

ceptibility to PAN. These animals all developed low grade proteinuria (Fig 2C), but histological

analysis revealed no glomerular sclerosis, and only very rare evidence of tubular protein reab-

sorption droplets and proteinaceous casts (Fig 2D). Furthermore, albuminuria did not differ

based on Trpc6 genotype. These results suggest that the Trpc6E896K allele does not affect sus-

ceptibility to PAN.

Angiotensin II infusion

Multiple studies have reported a role for TRPC6 channel activation downstream of angiotensin

II signaling [13, 57–61]. Trpc6 knockout mice develop less albuminuria initially, and trend

toward less renal pathology, compared to wild-type animals, in response to chronic ATII infu-

sion despite a similar response in blood pressure [39]. We therefore exposed Trpc6E896K/E896K

and wild-type male mice to 4 weeks of ATII infusion, and compared their response.

Trpc6E896K/E896K animals developed greater albuminuria after 2 weeks compared to wild-type

animals, but this difference did not persist at the end of the infusion period (Fig 3A). Serum

creatinine did not differ between genotypes either at baseline, or at the end of the experiment

(Fig 3B).

Histologic examination of kidney sections revealed rare glomerular lesions and isolated

tubular dilations with proteinacious casts (Fig 3C). Although there was a trend toward more

glomerular lesions in Trpc6E896K/E896K mice, this did not reach statistical significance (Fig 3D).

Podocyte density was lower in angiotensin II treated animals compared to controls (Fig 3E),

but Trpc6 genotype did not affect this parameter. The effect was driven by an increase in aver-

age glomerular cross-sectional area (Fig 3F), with no evidence of significant podocyte loss

(Fig 3G).

Angiotensin II treated animals developed significant perivascular fibrosis, especially in the

heart (Fig 4A). However, interstitial fibrosis of the renal cortex, quantified by birefringence of

Sirius red stained sections imaged under polarized light, showed no difference between control

and ATII treated animals (Fig 4B). Kidney and heart weight, normalized to body weight, simi-

larly were not different between groups (S1 Fig). The relative expression of Trpc6 (Fig 4C), and

several fibrosis (Fig 4D and 4E) and kidney injury (Fig 4F and 4G) genes, was ascertained by

RT-PCR of whole kidney RNA. The expression of Trpc6 and collagen I was higher in angioten-

sin II exposed kidneys compared to wild-type control samples, with Kim-1 and NGAL (Lcn2)

mRNA levels trending higher. However, the expression levels of none of these genes differed

significantly between angiotensin treated wild-type and Trpc6E896K/E896K mice.

Folate nephropathy

As TRPC6 has also been implicated in modulating fibrosis [35, 62–66], we compared

Trpc6E896K/E896K and wild-type mice in the folate nephropathy model (Fig 5). The administration
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Fig 2. Puromycin aminonucleoside nephrosis in Trpc6E896K mutant mice. Various Trpc6 genotype male mice were

subject to two intraperitoneal injections of puromycin aminonucleoside (PA; 450mg/kg) on days 0 and 7. Trpc6E896K/E896K

mice on the FVB background developed a small (<5 fold) increase in albuminuria at day 14 compared to baseline (A). B,

PAS stained histology sections of Trpc6E896K/E896K kidney 14 days after PAN revealed no appreciable (i) cortical, or (ii)

glomerular, pathology. Scale bar represents 50 μm. C, urinary albumin-to-creatinine ratios (ACR) of Trpc6+/+ (WT) and

Trpc6+/E896K (Het) animals on an F1 FVB/NJ x Sv/129 background before and 21 days after PAN induction. D, PAS

stained WT (i, ii), and Het (iii, iv) kidney sections 21 days after PA administration demonstrate largely preserved cortical,
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of a high dose of folic acid leads to tubular injury and AKI in mice [67–69]. Although renal

excretory function largely recovers, residual interstitial fibrosis and other hallmarks of chronic

injury remain. Serum creatinine in both male (Fig 5A) and female (Fig 5B) mice demonstrated a

robust rise two days after folate administration, returning to baseline after 3 weeks. Serum Cr

did not differ significantly between Trpc6 genotypes at any of the time points. Histologic analysis

revealed foci of interstitial fibrosis and tubular atrophy (Fig 5C). The percentage of cortex dem-

onstrating fibrosis showed significant variability within each group, and no significant difference

between Trpc6 genotypes (Fig 5D). Similarly, gene expression analysis of several fibrosis and

kidney injury marker genes did not reveal any significant differences between male wild-type

and Trpc6E897K/E897K kidneys after folate treatment (Fig 5E–5H and S2 Fig). Tubular injury

markers did show upregulation in the folate treated animals compared to controls (Fig 5E and

5F). The results do suggest significant inter-individual variability in the degree of renal scarring

in this model.

Glomeruluar TRPC6 expression and function

Although early reports localized human TRPC6 to the glomerular podocyte [12, 13], in situ
hybridization [33, 35], and single cell RNAseq [70], have not detected substantial Trpc6
mRNA in murine podocytes. We probed murine glomerular lysates for TRPC6 protein by

western blot (Fig 6A), utilizing Trpc6-/- mouse samples as negative controls. Although TRPC6

is readily detectable in murine platelets, glomerular extracts show no specific signal. Immuno-

fluorescence microscopy attempts also failed to demonstrate a specific TRPC6 signal in wild-

type kidney compared to Trpc6-/- tissue (S3 Fig). To ascertain if TRPC6-dependent calcium

influxes might be detectable despite the lack of TRPC6 signal by western blot, we performed

Fura-2 fluorimetry on primary podocytes isolated from Trpc6E896K/E896K glomeruli (Fig 6B–

6D). We utilized GSK1702934A (GSK), a TRPC3/6 agonist [71, 72], as it induces calcium

influx in mouse platelets in a TRPC6-dependent manner, with Trpc6E896K/E896K platelets dem-

onstrating a significantly larger response compared to wild-type platelets [44]. GSK failed to

induce any significant change in Fura-2 fluorescence compared to vehicle control. ADP, ATP,

and thrombin, utilized as positive controls, all induced Fura-2 responses in these cells, consis-

tent with prior reports [73–77]. In sum, we have been unable to demonstrate the presence of

TRPC6 protein, by western blot, immunofluorescence microscopy, or GSK-induced calcium

influx in murine glomeruli. We cannot exclude the possibility of low levels of TRPC6 channel,

which are not responsive to GSK, being present.

Discussion

TRPC6 mutations are a cause of autosomal dominant FSGS in humans [12, 13]. The plurality

of these mutations lead to a gain-of-function phenotype at the level of the channel [12–17, 22].

In the current study, we report on the renal phenotype of mice carrying a mutation encoding

for a gain-of-function alteration in the TRPC6 protein. Even in the homozygous state and at

advanced age, these animals show minimal renal pathology relative to their wild-type counter-

parts, and no segmental glomerular sclerosis. Furthermore, compared to wild-type animals,

they display only mild or no significant differences in their response to several renal stress

models. Specifically, they demonstrate slightly delayed resolution of albuminuria in the

and glomerular architecture, with very rare (estimated<1% of renal cortex cross sectional area) proteinaceous casts

(arrows), and tubules with protein reabsorption droplets (arrowheads). Scale bars represent 200 μm (i, iii), and 20 μm (ii,

iv). ACRs (A, C) are shown as geometric mean, SD and individual values. Log-transformed ACRs were compared for

statistical analyses by paired t-test or two-way ANOVA.

https://doi.org/10.1371/journal.pone.0272313.g002
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Fig 3. Effect of Trpc6 genotype on glomerular response to angiotensin II infusion. Wild-type and Trpc6E896K/E896K

(KI) male mice were subject to ATII infusion for 4 weeks. A, urine albumin-to-creatinine ratio (ACR) measurements

demonstrate development of robust albuminuria in both groups. KI mice developed slightly greater albuminuria at 2

weeks compared to wild-type, an effect that did not persist at 4 weeks. Shown are median and individual values; n = 10/

group. Log-transformed ACRs were compared between genotypes by two-way ANOVA with Sidak’s multiple

comparisons test. B, serum creatinine measurements at baseline and after 4 weeks of ATII infusion. Shown are mean

and individual values; n = 10/group; no statistically significant differences between genotypes. C, example of renal

pathology in a KI mouse after ATII infusion. Shown is a PAS stained section demonstrating a segmental glomerular

lesion (arrow), tubular atrophy with cystic changes and proteinaceous casts (asterisks), and protein reabsorption

droplets (arrowheads). Scale bar represents 20 μm. D, percentage of glomeruli showing evidence of segmental lesions

in control wild-type males (Ctrl; n = 4), and wild-type (WT) and Trpc6E896K/E896K (KI) males subjected to ATII

infusion (n = 10 each). Shown are median and individual values; differences between groups did not reach statistical

significance by Kruskal-Wallis test with Dunn’s multiple comparisons. Glomerular podocyte density (E), glomerular

area (F), and podocyte number per glomerular cross-section (G) were measured. Shown are mean and individual

averages per animal in untreated control animals (Ctrl; n = 4) and ATII treated wild-type and knock-in animals (n = 5

each). 20 glomeruli were measured per animal. One-way ANOVA analysis with Tukey’s multiple comparisons test.

https://doi.org/10.1371/journal.pone.0272313.g003
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albumin overload model, only transiently higher albuminuria and a trend toward more glo-

merular lesions in response to angiotensin II infusion, no enhanced susceptibility to PAN, and

no significantly different response to folate-induced AKI and subsequent fibrosis. In sum,

these findings suggest that the Trpc6E896K/E896K mutant mouse does not readily phenocopy the

renal pathology associated with gain-of-function TRPC6 mutations in humans.

Fig 4. Fibrotic response to angiotensin II infusion. A, histology of control and ATII treated kidneys and heart

demonstrating the development of perivascular fibrosis. Sections stained with Sirius Red; scale bar equals 20 μm. B,

percentage of Sirius Red stained renal cortex demonstrating birefringence in control wild-type male animals (Ctrl),

and wild-type and Trpc6E896K/E896K (KI) males subjected to ATII infusion. Shown are median and individual values; no

significant pairwise comparisons by one-way ANOVA with Tukey’s multiple comparisons. Relative gene expression

analysis demonstrated upregulation of both Trpc6 (C) and Collagen I (D) mRNA in kidneys subjected to ATII

infusion. Fibronectin (E) showed no significant change, while Kim-1 (F) and NGAL/Lcn2 (G) demonstrated a trend

toward increased expression upon ATII treatment. Shown are mean and individual values; Brown-Forsythe one-way

ANOVA with Dunnett’s multiple comparisons. Only statistically significant pairwise comparisons are shown.

https://doi.org/10.1371/journal.pone.0272313.g004
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Angiotensin II signaling through AT1 receptor is thought to be a central driver in the devel-

opment of proteinuria and renal injury [78]. In vitro, TRPC6 has been shown to be activated

downstream of Gαq-coupled receptors [20], and AT1 receptor in particular [13, 57–61]. In a

prior study, Trpc6-/- mice demonstrate slightly lower albuminuria compared to wild-type

Fig 5. Trpc6 genotype does not influence response to folate nephropathy. Serum creatinine in WT and KI, male (A)

and female (B), mice was elevated 2 days after folate administration, and recovered to baseline levels after 3 weeks.

Shown are median and individual values; n = 13-19/group. There were no statistically significant differences between

genotypes at any of the time-points; two-way ANOVA with Sidak’s multiple comparisons test. C, renal histology at day

21, demonstrating areas of tubular atrophy and interstitial fibrosis surrounded by relatively preserved cortical

architecture. Shown are H&E stain of a male wild-type kidney section (left), and Sirius Red stain of a female KI kidney

section (right); scale bar equals 100 μm. D, the percentage of Sirius Red stained renal cortex area demonstrating

birefringence 21 days after folate-induced AKI was compared between wild-type (n = 12) and KI (n = 9) male mice.

Shown are mean and individual values; no differences between groups by unpaired t-test. The relative mRNA

expression levels of renal injury related genes, Kim-1 (E) and Ngal/Lcn2 (F), and fibrosis genes, collagen I (G) and

fibronectin (H), were compared between male control (Ctrl), and WT and KI folate-nephropathy kidney samples

(n = 4-6/group). Shown are mean and individual values; Brown-Forsythe one-way ANOVA with Dunnett’s multiple

comparisons. Only statistically significant pairwise comparisons are shown.

https://doi.org/10.1371/journal.pone.0272313.g005
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animals after 2 weeks of ATII infusion, a difference that is no longer significant after 4 weeks;

and a non-statistically significant trend toward less glomerular injury [39]. The results pre-

sented here, comparing wild-type and Trpc6E896K/E896K murine responses to ATII infusion,

neatly complement these previous results in Trpc6 knockout animals. Trpc6E896K/E896K mice

show an increase in proteinuria compared to wild-type animals 2 weeks, but not 4 weeks, after

the initiation of ATII treatment. Furthermore, there was a trend toward more glomerular

lesions in the mutant mice, though the difference did not meet statistical significance. We did

not perform blood pressure studies, and so are unable to address whether, as the earlier study

[39] did, there was no effect of Trpc6 genotype on the development of hypertension. Taken

together, these results suggest that TRPC6 channel activity contributes, at least transiently, to

the development of proteinuria and glomerular lesions in response to high levels of angioten-

sin II.

TRPC6 has been implicated in the development of fibrosis in several organs [35, 62–66, 79].

In the kidney, both genetic [35, 64], and pharmacologic [63], inhibition of TRPC6 is reported

to dampen the fibrotic response in the unilateral ureteral obstruction model. We were

Fig 6. Characterization of TRPC6 expression and GSK1702934A response in murine podocytes. A, platelet and

glomerular lysates from wild-type (WT) and Trpc6-/- (KO) female animals were analyzed by SDS-PAGE and Western

blot. Anti-TRPC6 antibodies (top) detected a major band around 105 kD in WT, but not KO, platelets. No

corresponding specific band is seen in glomerular lysates. A faint band of a size similar to TRPC6 is seen in both WT

and KO glomerular samples, suggesting a non-specific signal. Podocalyxin (Podxl, middle) and Erk1/2 (bottom) blots

are shown as loading controls. B, time-course of Fura-2 fluorescence ratio (340/380) in primary podocytes cultured

from Trpc6E896K/E896K (KI) glomeruli. After 30 seconds (dashed vertical line), cells were stimulated with vehicle (Veh),

GSK1702934A (GSK; 50 μM), ADP (100 μM), ATP (100 μM), thrombin (Thr; 0.5 u/ml), or thapsigargin (Thap; 1 μM).

Shown are mean ± SD; n = 4 using podocytes from 2 different animals. Post-stimulation (C) peak Fura-2 fluorescence

ratio, and (D) area under the curve (AUC, arbitrary units) were calculated. Shown are the mean and values from

individual experiments. RM one-way ANOVA with Dunnett’s multiple comparisons test to vehicle control.

https://doi.org/10.1371/journal.pone.0272313.g006
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therefore somewhat surprised that the Trpc6E896K/E896K mice do not show an increased fibrotic

reaction after folate-induced AKI. It is possible that mechanistically, the effects of the gain-of-

function Trpc6 mutation on kidney function are not simply the opposite of deleting Trpc6.

This has been our experience in platelets [44]. Alternatively, TRPC6-dependent fibrosis path-

ways may be activated specifically downstream of ureteral obstruction, and not involved in the

models tested here. Consistent with this possibility, Trpc6 knockout in rats does not alter the

age-related development of tubulointerstitial fibrosis [80]. Future studies in other fibrosis

models will be needed to address these questions.

Genetically recapitulating autosomal dominant forms of FSGS in mice has frequently failed

to induce glomerular pathology. In addition to the Trpc6E896K mutation described here, neither

the Actn4K256E [81, 82], nor the Inf2R218Q [52], mutations induce a renal phenotype when pres-

ent in heterozygous form in mice. Homozygous Actn4K255E/K255E animals, though, do develop

severe glomerular pathology [81]. And both heterozygous and homozygous Inf2 mutant mice

show enhanced sensitivity to injury in several injury models [52, 56]. In the case of Trpc6, the

homozygous knock-in animals show only a transient, and slightly, higher degree of albuminuria

in the albumin overload and angiotensin II infusion models. The Trpc6E896K mutation, unlike

the Inf2R218Q mutation [56], does not induce susceptibility to PAN. Of note, transgenic overex-

pression of Trpc6 mutants, including E896K, in podocytes induces only minimal albuminuria

in mice, which is not significantly different from that seen upon overexpression of wild-type

Trpc6 [32]. The reason for the relative lack of a renal phenotype in the Trpc6E896K/E896K animals

remains unclear. The E896K mutation is a gain-of-function mutant, as we have separately dem-

onstrated in platelets [44]. There is a report of differences in Trpc6 mRNA expression between

mouse strains [33], and strain-specific susceptibility to kidney, and glomerular, injury are well

known [55, 83–85]. It is certainly plausible that a different genetic background, or environmen-

tal insult, is necessary to elicit the pathologic effects of Trpc6 mutations. Alternatively, it is possi-

ble that glomerular or renal TRPC6 expression differs between humans and mice, and accounts

for our findings. Review of single cell RNA expression data speaks to this possibility [70, 86, 87].

And although we did not examine TRPC6 expression in human samples, we were unable to

detect the protein in murine glomeruli, or detect a GSK-inducible, Fura-2 measurable, calcium

influx in murine glomerular outgrowths. Future studies comparing glomerular TRPC6 expres-

sion in different mammalian species could prove informative.

In summary, introducing a gain-of-function mutation, corresponding to a human FSGS

disease mutation, into murine Trpc6 fails to recapitulate the human glomerular disease pathol-

ogy. Homozygous Trpc6E896K/E896K mice do demonstrate transiently, and mildly, higher albu-

minuria in the albumin overload and angiotensin II infusion models, but do not display a

predilection for PAN, or increased interstitial fibrosis after recovery from folate-induced AKI.

It remains unclear if Trpc6 mutations require an as yet unidentified environmental or genetic

hit to induce glomerular disease in mice, or if mice are intrinsically not suitable to model

TRPC6-mediated human FSGS.

Supporting information

S1 Fig. Trpc6 genotype does not influence kidney and heart weight after angiotensin II

treatment. Kidney (A) and heart (B) weights, normalized to total body weight, did not differ

between control wild-type male animals (Ctrl), and wild-type and Trpc6E896K/E896K (KI) males

subjected to ATII infusion for 4 weeks. Shown are median and individual values (n = 4-10/

group); no pairwise comparison showed a statistically significant difference by one-way

ANOVA with Tukey’s multiple comparisons test.

(TIF)
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S2 Fig. Gene expression in folate-nephropathy kidneys. The relative mRNA expression levels

of several fibrosis and renal injury related genes, and Trpc6, was compared in WT and KI male

folate-nephropathy kidney samples (n = 6/group). There were no statistically significant differ-

ences between genotypes for any of the genes; multiple unpaired t-tests.

(TIF)

S3 Fig. Immunofluorescence microscopy of wild-type and Trpc6-/- kidneys. A, kidney sec-

tions from wild-type (i, iii), and Trpc6-/- (ii, iv) mice stained with rabbit anti-TRPC6 antibody

(ACC-017, Alomone). Wheat germ agglutinin (WGA), and Hoechst were used as counter-

stains. TRPC6 staining specific to the wild-type kidney could not be identified. B, wild-type

kidney sections were stained with TRPC6 antibody (i, iii) or with anti-rabbit secondary anti-

body only (ii, iv). Green channel signal was not due to non-specific secondary antibody stain-

ing or tissue auto-fluorescence.

(TIF)

S1 Raw images.

(PDF)
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