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A New Era in Pharmacovigilance: Toward 
Real- World Data and Digital Monitoring
Adam Lavertu1,†, Bianca Vora2,†, Kathleen M. Giacomini2, Russ Altman3,4,* and Stefano Rensi3,*

Adverse drug reactions (ADRs) are a major concern for patients, clinicians, and regulatory agencies. The discovery of 
serious ADRs leading to substantial morbidity and mortality has resulted in mandatory phase IV clinical trials, black 
box warnings, and withdrawal of drugs from the market. Real- world data, data collected during routine clinical care, 
is being adopted by innovators, regulators, payors, and providers to inform decision making throughout the product 
life cycle. We outline several different approaches to modern pharmacovigilance, including spontaneous reporting 
databases, electronic health record monitoring and research frameworks, social media surveillance, and the use of 
digital devices. Some of these platforms are well- established while others are still emerging or experimental. We 
highlight both the potential opportunity, as well as the existing challenges within these pharmacovigilance systems 
that have already begun to impact the drug development process, as well as the landscape of postmarket drug 
safety monitoring. Further research and investment into different and complementary pharmacovigilance systems is 
needed to ensure the continued safety of pharmacotherapy.

The safety of a drug continues to be monitored after approval and 
marketing in an ongoing process of pharmacovigilance.1 This 
postmarket drug safety monitoring is especially important with 
regard to adverse drug reactions (ADRs) that are rare, only oc-
curring in certain subgroups, and/or only develop after long- term 
drug exposure. In some cases, serious ADRs are not recognized 
until long after a drug has been approved for market, as seen in 
the case of thalidomide where its use in pregnant women led to 
congenital malformations. Accordingly, the importance of post-
market monitoring is highlighted by the finding that one- third 
of newly identified safety issues in the postmarketing period are 
added to the warnings and precautions section of the label, the sec-
ond highest tier of severity, indicating the serious nature of newly 
identified ADRs.2

The passage of the 21st Century Cures Act has modernized clin-
ical trials and requires the evaluation of the potential use of real- 
world data (RWD), data collected during routine clinical care in 
the form of electronic health records (EHRs), medical billing, and 
other data generating activities in the regulatory decision making 
and approval process. Real- world evidence (RWE) is the evidence 
of the potential benefits of the medical product in a clinical set-
ting derived from RWD. Results from various study designs and 
analyses, both prospective and retrospective, that use RWD are ac-
cepted as RWE. The US Food and Drug Administration (FDA) 
guidance on RWE describes several contexts in which it can be 
used during the product life cycle, such as proving an unmet med-
ical need, substituting for a control group, as supporting evidence 
for a label expansion, and as a part of postmarketing studies. The 
multiple emergency use authorizations granted to drugs during 

the coronavirus disease 2019 (COVID- 19) pandemic highlights 
a situation where postmarket pharmacovigilance becomes pivotal 
to maintaining long- term patient safety. Collectively, the legislative 
acts and regulatory practices have led to an increased reliance on 
postmarket pharmacovigilance to inform drug safety. Innovation 
in pharmacovigilance is needed to address these challenges and 
complement clinical trials by improving the sensitivity and speci-
ficity of ADR detection and streamlining the process of refining 
RWD into RWE that supports regulatory decision making.

ESTABLISHED PHARMACOVIGILANCE SYSTEMS
Published case reports have been circulated among physicians 
since the late 1960s and continue to serve an important role in 
pharmacovigilance. They are typically rich in information be-
cause physicians are trained in the rigorous evaluation of medical 
histories, drug exposures, and outcomes; additionally, peer review 
provides a form of quality control. However, case reports are fun-
damentally anecdotal data points, and as such cannot support 
conclusions in broader populations. The digitization of written 
media and advent of databases and search engines make it possible 
to collect, store, and rapidly retrieve relevant and comprehensive 
case series, but the data are unstructured text, which is not suitable 
for rigorous quantitative analysis. Despite these limitations, case 
reports published in journals are useful for generating hypotheses, 
and pharmacovigilance studies often start with a search of the rel-
evant case literature.

Medwatch has been the principal means of collecting and ana-
lyzing information about ADRs since 1993 and is used by the FDA 
to collect information on both small molecule drugs and biologics. 
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Data are collected using standardized individual case safety reports 
forms, which are submitted physically or electronically to the FDA 
Adverse Event Reporting System (FAERS). The aggregate data 
are then mined for safety signals, which generate hypotheses for 
further investigation. FAERS has successfully identified previously 
unreported ADRs, with FAERS data contributing to more than 
50% of all postmarket safety- related label changes.3 Table 1 lists a 
selection of additional pharmacovigilance studies in which FAERS 
or other ADR databases have played a prominent role. In addition 
to FAERS, the FDA has event reporting systems for (1) foods, di-
etary supplements, and cosmetics, (2) medical devices, and (3) vac-
cines, via CAERS, MAUDE, and VAERS, respectively.

However, FAERS case reports as a source of data are limited by 
incompleteness, bias, and inconsistency. Prescribing decisions are 
often influenced by factors that affect clinical outcomes, such as 
comorbidities, insurance, and access to primary care, information 
that is not available in the publicly available FAERS data. The 
Institute for Safe Medical Practices found that over half of the re-
ports in FAERS were missing basic information, such as age, gen-
der, exposure date, and outcome. Additionally, FAERS does not 
measure the total number of exposures in the population, so there 
is no “denominator” to estimate the frequency of adverse events. 
Although adverse events are generally under- reported, stimu-
lated reporting driven by news, social media, and advertising can 
increase reporting rates for certain drugs. Incorrect hypotheses 
generated from erroneous or incomplete adverse event report data 
can be costly, with false- positives resulting in resources wasted on 
unnecessary studies and false- negatives leading to harm to patients.

EMERGING PHARMACOVIGILANCE SYSTEMS
Another component of the data revolution within health care 
has been the adoption of information technology by the health 
insurance industry and the adoption of EHRs by healthcare sys-
tems as a result of the 2009 Health Information Technology for 
Economic and Clinical Health (HITECH) Act. Insurance claims 
capture prescription and medical diagnoses across healthcare pro-
viders, with the caveat that they do not directly measure outcomes. 
EHRs contain rich information, such as clinical notes, images, 
and laboratory test values; however, they are often locked within 

institutional silos on systems that are unique for each provider in-
stitution and suffer from bias related to their primary purpose, a 
clinical and legal record (Figure 1).

The Sentinel initiative extends the pharmacovigilance capabili-
ties of the FDA by leveraging EHR systems and insurance claims 
data in distributed data networks of partner institutions.4 The 
Sentinel system is used to study specific drug- event outcomes 
and, more recently, is being used to generate drug safety signals. 
Analyses can be submitted to the partner network and run inde-
pendently at each site and results can then be combined to provide 
comprehensive safety profiles. The integration of these various 
data sources has allowed for a more comprehensive and synergistic 
pipeline and capabilities. A general workflow is presented in the 
top row of Figure 2. Sentinel required the development and im-
plementation of a common data model and data quality assurance 
standards to ensure interoperability of data and reliability of an-
alytical findings. Current efforts have been primarily focused on 
billing and claims data. Several new data partnership networks and 
consortia have emerged, such as PedsNet and the Open Health 
Data Science Informatics (OHDSI) network, that are improving 
and extending the governance, interoperability, and data steward-
ship frameworks pioneered by Sentinel. For example, the OHDSI 
network has adopted the OMOP’s Common Data Model for 
standardizing identifiers for diseases, procedures, drugs, and other 
components of a patient’s health record and has created a network 
of hospitals standardized to this data model. This enables an anal-
ysis designed at one member institution to be quickly replicated in 
other healthcare systems within the OHDSI network with mini-
mal need to readjust the analysis. For instance, an analysis designed 
at Stanford could be run at hospitals in Israel, South Korea, and 
Australia, quickly finding support for or discrepancies in the find-
ings of a single institution. Patient Centered Outcome Research 
Institute (PCORI) is establishing data networks, as well as proce-
dures for evaluating and ensuring the relevance and reliability of 
data. The FDA is piloting demonstration cases for the use of RWE 
in regulatory decision making.

An example of a new drug approval that relied on RWE, is 
Avelumab, a monoclonal antibody directed against programmed 
death ligand 1. Avelumab was approved based on a single arm, 

Table 1 Select examples of successful pharmacovigilance studies in which ADR and RWD database studies played a 
prominent role

Drug(s) Effect(s) Source(s) Citation

Acetaminophen Liver injury HER 15

Agomelatine Liver injury Lit review 16

Gabapentin, pregabalin Liver injury, hematological disorders ADR database 17

Apixaban Liver injury Case report, ADR database 18

Ketoconazole Liver injury Lit review, ADR database 19

Methadone Arrhythmia Lit review, ADR database 20

Ranolazine Seizure Sentinel 21

Levetiracetam, phenytoin Angioedema OHDSI 22

Citalopram Arrhythmia EHR 23

Hydroxyzine Arrhythmia Lit review, ADR database 24

ADR, adverse drug reaction; EHR, electronic health record; OHDSI, Open Health Data Science Informatics; RWD, real- world data.

MINI-REVIEW



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 109 NUMBER 5 | May 2021 1199

phase II trial where historical controls were identified from EHRs 
and were used to characterize the natural history of the disease.5 
Additionally, Aspirin Dosing: A Patient- Centric Trial Assessing 
Benefits and Long- Term Effectiveness (ADAPTABLE), a clinical 
trial evaluating the optimal dose of aspirin in patients with ath-
erosclerotic cardiovascular disease, has utilized PCORnet EHRs 
and claims data at multiple stages of their study, from identifying 
patients who meet the inclusion/exclusion criteria to capturing 

primary and secondary study end points.6 The ADAPTABLE 
trial represents the first randomized trial within PCORnet and, as 
such, has also developed new methodologies to take advantage of 
the data with the PCORnet data infrastructure.

The primary purpose of EHRs is to inform clinical decisions 
and/or support administrative functions (i.e., documentation to 
support billing). As a result, issues such as human/coding errors 
or bias may affect how information is captured prior to analysis. 

Figure 1 Overview of pharmacovigilance methods at varying stages of development. Established (green, left), emerging (yellow, middle), and 
experimental (red, right) pharmacovigilance data sources and systems are presented. Examples of methodological areas that are currently 
used and under active development for the analysis of these different data types are included in the bottom box. FAERS, FDA Adverse Event 
Reporting System.

Figure 2 General pharmacovigilance workflows for emerging and experimental systems. EHR based pharmacovigilance workflow is shown 
in the purple top row. A mobile device- based pharmacovigilance workflow is shown in the orange middle row. The social media- based 
pharmacovigilance workflow is shown in the blue bottom row. These data can then be used separately or in combination to perform 
pharmacovigilance research and analysis. API, application programming interface; EHR, electronic health record.
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Additionally, the fractionalized nature of the US healthcare system 
makes it difficult to track patients across different healthcare sys-
tems resulting in incomplete data entries.

Clinical definitions, terminology, and note- taking style vary be-
tween and within healthcare systems, making the extraction and 
transformation of clinical information to standardized elements, 
such as SNOMED codes, technically difficult. The challenging na-
ture of clinical note processing has resulted in the majority of anal-
yses to date primarily focusing on the billing related International 
Classification of Disease 10 codes. Last, unpredictability about 
patient compliance (i.e., even if a prescription is written does not 
mean the patient will pick it up) limits the use and extension of 
these data. These represent major obstacles to widespread phar-
macovigilance using EHRs and future work will need to overcome 
these issues before the benefits of EHR data can be fully realized.

EXPERIMENTAL PHARMACOVIGILANCE SYSTEMS
Although Sentinel, PCORI, and OHDSI have greatly improved 
pharmacovigilance efforts, they rely on a constrained set of in-
formation within the healthcare system, that is, information in 
the EHR or in billing and claims data.7 Outside the healthcare 
system, data from social media represent another key opportunity 
for pharmacovigilance. Social media data contains various data 
streams, potentially enabling us to identify patterns in behavior, 
environment, drug use, drug- drug interactions, and ADRs. A gen-
eral workflow for pharmacovigilance in social media data is pre-
sented in the bottom row of Figure 2. The broad usage of social 
media by the public yields a massive dataset that is continuously 
growing and has huge potential for generating public health bene-
fits. Individual experiences with a particular drug are often posted 
directly to social media. These testimonials can be found on 
both general platforms like Twitter and Reddit, as well as health- 
oriented websites, such as AskaPatient.com, drugs.com, and io-
dine.com. Social media data often contain information critical to 
postmarket pharmacovigilance, such as individual experiences of 
ADRs, information about environmental factors, reports of pill 
diversions, and polypharmacy (both recreational and prescribed) 
that is often missed by other postmarketing surveillance systems.

There has been progress in developing new methods for post-
marketing surveillance in social media data through the use of 
statistical models, machine learning, and deep neural network 
architectures. The annual Social Media Mining for Health 
Applications (SMM4H) workshop has resulted in algorithms ca-
pable of identifying drug mentions with high precision and recall, 
even in situations where these mentions are informal slang terms 
or misspelled drug names. However, high performance of ADRs 
continues to present a challenge as text descriptions of a particular 
ADR might vary greatly in written language, for instance “stom-
ach” may be expressed as “stomach ache,” “stomach pain,” “abdom-
inal pain,” “tummy ache,” etc. Additionally, classifying a particular 
tweet for first- person vs. secondary reports of medication ingestion 
presents another challenge and has also been featured as challenges 
for the community with varying levels of success. Ideally, these ef-
forts will culminate in systems capable of actively monitoring social 
media data and generating real- time statistics relevant to pharma-
covigilance efforts.

Although social media can provide a large volume of easily ac-
cessible data, the nature of social media presents several challenges 
for the extraction of signals related to pharmacovigilance. The first 
set of these challenges are that: (1) very few social media posts are 
relevant to pharmacovigilance, ~ 0.2% of tweets mention a med-
ication8; (2) information is represented in unstructured text; (3) 
drugs and medical conditions are often misspelled, abbreviated, 
or discussed using slang9; (4) mentions of medical events may not 
be firsthand accounts; and (5) social media reports will contain 
false- positives, but often provide less information than clinical case 
reports and so the reliable identification of true drug side effects 
from these data will be difficult. Recent work, as mentioned above, 
indicates that many of these problems may be overcome in the near 
future. Once these systems can produce robust ADR event statis-
tics, further work may extend their functionality through analy-
sis of the individual testimonies found within social media data. 
Social media data often contains lifestyle information like exercise 
patterns, eating habits, socio- economic issues, and/or drug abuse 
behavior that will be missing from the EHR for the foreseeable fu-
ture. For example, systems may find indications of relative quality 
of life improvements given a particular medication, patient prefer-
ences, or capture additional demographic information that could 
be key to protecting at risk populations, such as pregnant women 
and children.

In a demonstration of the value of general social media, recent ef-
forts using Twitter have focused on vulnerable populations, such as 
pregnant women, that are often excluded from clinical trials, and, 
as a result, drug safety is not typically established in these groups 
in the premarket space. Although there are methods to gather this 
information postapproval, such as pregnancy registries, these da-
tabases are often constrained by issues, such as attrition, cost, and 
patient compliance. A recent study using data from Twitter ac-
counts of pregnant women observed a higher medication intake in 
women who reported birth defects.10 Similarly, another study de-
veloped a natural language processing method to identify tweets by 
users whose child had a birth defect.11 These preliminary studies 
demonstrate how social media, such as Twitter, might help supple-
ment existing resources, especially in vulnerable populations. Thus, 
it represents an exciting source of potentially complementary infor-
mation for postmarket pharmacovigilance efforts.

A recent effort questioned the overall value proposition of social 
media data, citing the low prevalence of posts relevant to pharma-
covigilance and low coverage for many drugs.12 The analysis com-
pared ADR signals from social media to Vigibase report statistics, 
focusing on the FDA drug labeling changes or “validated” safety 
signals, where there is evidence the drug has a causal relationship 
with the ADR. However, Vigibase report statistics may not be an 
appropriate evaluation baseline because the FDA labeling changes 
and/or the “validated” safety signal may have resulted from sig-
nals within the spontaneous reporting systems, likely inflating the 
baseline performance. Additionally, this evaluation effort did not 
adequately address the noisy nature of social media drug reports, 
failing to include drug misspellings or slang terms in their search 
queries, potentially missing a substantial number of reports.9 It is 
likely that more advanced report identification methods would 
increase the value of social media data. The overall lack of social 
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media discussions surrounding some drugs will continue to pose 
a challenge. Although the authors did not recommend the use of 
general social media data for pharmacovigilance, they indicated 
that social media generated in the context of a drug or health- 
oriented platform (e.g., drugs.com) vs. a general platform (e.g., 
Twitter) may still hold value.

Beyond the technical challenges of working with social media 
data, its pseudonymous, open, and ephemeral nature creates new 
challenges in ethics, law, and reproducibility that must be navi-
gated. Many platforms limit the sharing of data collected from 
their users and require that content be deleted upon user request. 
Social media posts experience high deletion rates with more than 
40% of posts from one study being deleted from the platform after 
the study was published.13 Researchers must preserve their own 
copies of data used for a particular study to ensure reproducibility. 
The publishing of the contents of social media posts in scientific 
journals may disclose potentially sensitive information about users, 
such as illicit drug use or mental health issues. Researchers must 
balance between making research reproducible and the ethical con-
cerns of the risk of making research datasets freely available, which 
might increase the risk of abuse.

Mobile devices are a recent innovation in capturing information 
about ADRs, again providing another avenue of data collection in 
an uncontrolled setting. A general workflow for pharmacovigilance 
using mobile devices is presented in the middle row of Figure 2. 
MyHeart Counts is used to do a 6- minute walk test, which can be 
done daily in an in- home setting. MedWatcher was a mobile ap-
plication version of the FDA 3500 form for medical devices and 
is currently undergoing implementation in the European Union. 
Hugo platform for postmarket surveillance is under development 
at the Yale- Mayo Center of Excellence in Regulatory Science 
and Innovation, Yale- Mayo, which can collect electronic patient- 
reported outcomes outside of the hospital.14 Next steps include in-
terfacing with connected devices to measure end points; however, 
the strides made in this more recent area of pharmacovigilance are 
very promising.

These are two modalities among many that researchers are in-
vestigating as potential new means of pharmacovigilance. Through 
the FDA funded Centers of Excellence in Regulatory Science and 
Innovation (CERSI), other databases and methodologies are being 
studied as potential pharmacovigilance systems, for examples see 
https://pharm.ucsf.edu/cersi/ research.

CONCLUSION
Clearly, the development of these massive sources of data for future 
pharmacovigilance efforts creates an opportunity for capitalizing 
on recent advances in deep learning and anomaly detection. A con-
tinuously learning artificial intelligence system could not only learn 
to integrate these heterogeneous data sources for real- time ADR 
detection, but could help identify potential cases and interface 
with members of the pharmacotherapy community to gather more 
information when needed. The field of pharmacovigilance is rap-
idly evolving, however, the resources we have highlighted are only 
part of the solution; the FDA and National Institutes of Health 
(NIH) will need to continue their funding of research that focuses 
on how to effectively analyze these data streams. Ideally, funding 

mechanisms will ensure interdisciplinary teams of experts from 
epidemiology, sociology, statistics, and computer science among 
others. Collaborative interdisciplinary efforts will ensure both in-
stitutional buy- in as well as methodological rigor. Ultimately, the 
combination of various data sources and expertise will result in 
safer and more effective pharmacotherapy for everyone.
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