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We introduce a graphical method originating from the computer graphics domain that

is used for the arbitrary placement of cells over a two-dimensional manifold. Using a

bitmap image whose luminance provides cell density, this method guarantees a discrete

distribution of the positions of the cells respecting the local density. This method scales

to any number of cells, allows one to specify arbitrary enclosing shapes and provides a

scalable and versatile alternative to the more classical assumption of a uniform spatial

distribution. The method is illustrated on a discrete homogeneous neural field, on the

distribution of cones and rods in the retina and on the neural density of a flattened piece

of cortex.
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1. INTRODUCTION

The spatial localization of neurons in the brain plays a critical role since their connectivity patterns
may depend on their type and their position relatively to nearby neurons and areas (Ivenshitz and
Segal, 2010). In the cortex, the probability of a connection existing between any two given areas
declines sharply with distance (Markov et al., 2013), following an exponential decay with distance
according to (Ercsey-Ravasz et al., 2013). For more local connections, such as interneurons, they
generally have localized axonal arbors and interact mostly with close neighbors, depending on the
distance (Jiang et al., 2015) from which a Gaussian probability of connection as a function of
lateral distance can be derived (Potjans and Diesmann, 2012). Interestingly enough, whereas the
neuroscience literature provides many data about the spatial distribution of neurons in different
areas and species [e.g., Pasternak and Woolsey, 1975 about the spatial distribution of neurons
in the mouse barrel cortex (McCormick et al., 2000) about the neuron spatial distribution and
morphology in the human cortex (Blazquez-Llorca et al., 2014) about the spatial distribution of
neurons innervated by chandelier cells], the computational literature exploiting such data is rather
scarce and the spatial localization is hardly taken into account in most neural network models (be
it computational, cognitive or machine learning models). One reason may be the inherent difficulty
in describing the precise topography of a population such that most of the time, only the overall
topology is described in terms of layers, structures or groups with their associated connectivity
patterns (random, one to one, one to all, receptive fields, etc.). One can also argue that such precise
localization is not necessary because for some models, it is not relevant (machine learning) while
for some others, it may be subsumed into the notion of cell assemblies (Hebb, 1949) that represent
the spatiotemporal structure of a group of neurons wired and acting together. Considering cell
assemblies as the basic computational unit, one can consider local interactions to be subsumed
into such assemblies and consequently, the exact spatial position of the neurons is not relevant.
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FIGURE 1 | Influence of spatial distribution on signal propagation. (A) A k-nearest neighbors (k = 5) connectivity pattern shows mid-range connection lengths in low

local density areas (left part) and short-range connection lengths in high density areas (right part). (B) Shortest path from top to bottom using a k-nearest neighbors

connectivity pattern (k = 5). The lower the density, the shorter the path and the higher the density, the longer the path. On the far left, the shortest path from top to

bottom is only 6 connections while this size triples on the far right to reach 19 connections. Said differently, the left part is the fast pathway while the right part is the

slow pathway given some input data that would feed the architecture from the top. (C) Due to the asymmetry of the cell positions, a signal entering on the top side

(indicated with small arrows) travels at different speeds and will consequently reach the bottom side at different times. This represents a spatialization of time. Color

represents time. (D) Due to the asymmetry of the cell positions, a signal entering on the left side (indicated with small arrows) slows down while traveling before

reaching the right side. This represents a compression of time and may serve as a short-term working memory. Color represents time.

However, if cell assemblies allow to greatly simplify models,
they also bring implicit limitations of which some have been
highlighted in (Nallapu et al., 2017), such as for example
the impossibility of having ambiguous representations (if such
representations are identified with a single cell assembly) or
to have topographic projections between two different groups.
To overcome such potential limitations, we think the spatial
localization of neurons is an important criterion worth to be
studied because it could induce original connectivity schemes
from which new computational properties can be derived as
illustrated in Figure 1. However, before studying the influence of
the spatial localization of neurons, it is necessary to first design
a method for the arbitrary placement of neurons. This article

introduces a graphical and scalable method for the automatic
placement of neurons (or any other type of cells actually)
enforcing a user-provided density map. This graphical method
is based on a stippling technique originating from the computer
graphics domain for non-photorealistic rendering as illustrated
in Figure 2.

2. METHODS

Blue noise (Ulichney, 1987) is an even, isotropic yet unstructured
distribution of points (Mehta et al., 2012) and has minimal
low frequency components and no concentrated spikes in the
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FIGURE 2 | Stippling. According to Wikipedia2, Stippling is the creation of a pattern simulating varying degrees of solidity or shading by using small dots. Such a

pattern may occur in nature and these effects are frequently emulated by artists. The pair of boots (left part) have been first converted into a gray-level image and

processed into a stippling figure (right part) using the weighted Voronoi stippling technique by (Secord, 2002) and replicated in (Rougier, 2017). Image from (Rougier,

2017) (CC-BY license).

power spectrum energy (Zhang et al., 2016). Said differently,
blue noise (in the spatial domain) is a type of noise with
intuitively good properties: points are evenly spread without
visible structure (see Figure 3 for the comparison of a uniform
distribution and a blue noise distribution). This kind of noise has
been extensively studied in the computer graphics domain and
image processing because it can be used for object distribution,
sampling, printing, half-toning, etc. One specific type of spatial
blue noise is the Poisson disc distribution that is a 2D uniform
point distribution in which all points are separated from each
other by a minimum radius (see right part of Figure 3). Several
methods have been proposed for the generation of such noise,
from the best in quality (dart throwing, Cook, 1986) to faster
ones (rejection sampling, Bridson, 2007), see (Lagae and Dutré,
2008) for a review. An interesting variant of the Poisson disk
distribution is an anisotropic distribution where local variations
follow a given density function as illustrated in Figure 2 where
the density function has been specified using the image gray
levels. On the stippled image on the right, darker areas have
a high concentration of dots (e.g., soles of the boots) while
lighter areas such as the background display a sparse distribution
of dots. There exist several techniques for computing such
stippling density-driven patterns (optimal transport, Mehta et al.,
2012, variational approach, Chen et al., 2012, least squares
quantization, Lloyd, 1982, etc.) but the method proposed by
(Secord, 2002) is probably the most straightforward and simple
and has been replicated in (Rougier, 2017).

2.1. Centroidal Voronoi Tesselation
Considering a set of n points P = {Pi}i∈[1,n] on a finite domain
D ∈ R

2, the Voronoi tesselationV(P) = {Vi}i∈[1,n] of P is defined
as:

∀i ∈ [1, n],Vi = {x ∈ D | ‖x− Pi‖ ≤ ‖x− Pj‖,∀j 6= i} (1)

Reciprocally, the (unique) Delaunay triangulation T(P) =

{Ti}i∈[1,n] of P is the dual graph of the Voronoi diagram and
defined such that no point in P is inside the circumcircle of any

1Stippling Wikipedia entry at https://en.wikipedia.org/wiki/Stippling

triangles in T(P). The centers of the circumcircles are equivalent
to the Voronoi diagram, i.e., a partition of D into Voronoi cells.
For each of the cell Vi, we can compute its centroid Ci which is
the center of mass of the cell. A Voronoi tesselation is said to be
centroidal when we have ∀i ∈ [1, n],Ci = Pi (see Figure 3).

For an arbitrary set of points, there is no guarantee that
the corresponding Voronoi tesselation is centroidal but different
methods can be used to generate a centroidal tesselation from
an arbitrary set of points. One of the most straightforward and
iterative methods is the Lloyd relaxation scheme (Lloyd, 1982):

1. The Voronoi diagram of the n points is computed
2. The centroid of each of the n Voronoi cell is computed.
3. Each point is moved to the corresponding centroid of its

Voronoi cell.
4. The method terminates if criterion is met (see below), else go

to 1.

The algorithm finishes when the maximum distance between
points and centroids is less than a given threshold as illustrated in
Figure 3. It is to be noted that because of numerical imprecisions,
there is no guarantee that an arbitrary small threshold can be
reached.

2.2. Weighted Centroidal Voronoi
Tesselation
The weighted centroidal Voronoi tesselation, as illustrated in
Figure 4, has been proposed in (Secord, 2002) and replicated
in (Rougier, 2018). It is based on the Lloyd relaxation scheme
with the notable difference that the centroids are now weighted
according to the local density. This density information is
provided using a bitmap image that represents the domain
D ∈ R

2. Any of the RGB channels of the image can be used to
provide the density information at a specific integer coordinate
position. By arbitrary convention, we’ll consider the darker color
(e.g., black) to have the the higher density. The method is then as
follows:

1. The density image is resized if necessary (no interpolation)

2. The Voronoi diagram of the n points is computed
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FIGURE 3 | Centroidal Voronoi Tesselation. (A) Voronoi diagram of a uniform distribution (n = 100) where red dots represent the uniform distribution and white circles

represent the centroids of each Voronoi cell. (B) Centroidal Voronoi diagram where the point distribution matches the centroid distribution which constitutes a blue

noise distribution (i.e., a distribution that is roughly uniformly random with no preferred inter-point directions or distances according to the definition of Ebeida et al.,

2014). This figure has been obtained from the initial distribution on the left after 50 iterations of the Lloyd relaxation algorithm.

FIGURE 4 | Weighted centroid. The weighted centroid of a Voronoi cell is the center of mass computed over the rasterized cell.

3. Each Voronoi cell is rasterized as a set of pixels

4. The weighted centroid is computed over each of the rasterized
cell

5. Each point is moved to the corresponding centroid of its
Voronoi cell

6. The method terminates if criterion is met, else go to 2

A different criterion for the termination is to use a fixed number
of iterations as we did for all the examples introduced in this
article (n= 25).

Figure 4 illustrates the main difficulty in the method, that is,
the rasterization of the cells and the computation of the weighted

centroids. Since we use a bitmap image providing the density
information and because the weighted centroids are computed
over rasterized cells, it is quite obvious that the precision of the
method is heavily dependent on the number of points and the
size of the image. We estimated that a good precision can be
reached if the mean number of pixels of a rasterized Voronoi
cell is around 100 pixels (see Figure 5). For example, if we
have initially 1,000 points to distribute and use a 100 × 100
input image, we would have only 10 pixels (100 ∗ 100/1, 000)
to compute the weighted centroid. Resizing first the image to
400 × 400 (without interpolation) makes this number to grow
to 160 (400∗400/1, 000). To obtain this 100 pixels estimation, we
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FIGURE 5 | Rasterized centroid precision. The difference between the geometrical centroid (circle) and the centroid computed over the rasterized polygon (cross) is

dependent on the size of the polygon. (A) 6 × 6 pixels rasterization. (B) 10× 10 pixels rasterization. (C) 20 × 20 pixels rasterization.

generated several polygons at different resolutions and compared
the actual centroid (using its geometric definition) with the
estimated centroid, considering a uniform density (whose center
of mass is equal to the geometric centroid in such case).

Figure 6 shows the distribution of four populations with
respective size 1,000, 2,500, 5,000 and 10,000 cells, using the
same linear gradient as input. The local density is approximately
independent of the total number of cells.

3. RESULTS

We’ll now illustrate the use of the proposed method on three
different cases.

3.1. Case 1: Retina Cells
The human retina counts two main types of photoreceptors,
namely rods and cones (L-cones, M-cones and S-cones). They
are distributed over the retinal surface in a non-uniform way,
with a high concentration of cones (L-cones and M-cones) in
the foveal region while the rods are to be found mostly in the
peripheral region with a peak density at around 18–20◦ of foveal
eccentricity. Furthermore, the respective size of those cells is
different, rods beingmuch smaller than cones. The distribution of
rods and cones in the human retina has been extensively studied
in the literature and is described precisely in a number of works
(Curcio et al., 1990; Ahnelt and Kolb, 2000). Our goal here is not
to fit the precise distribution of cones and rods but rather to give a
generic procedure that can be eventually used to fit those figures,
for a specific region of the retina or the whole retina. The main
difficulty is the presence of two types of cells having different
sizes. Even though there exist blue-noise sampling procedures
taking different sizes into account (Zhang et al., 2016), we’ll use
instead the aforementioned method using a two stages procedure
as illustrated in Figure 7.

A first radial density map is created for the placement of 25
cones and the stippling procedure is applied for 15 steps to get the
final positions of the 25 cones. A linear rod density map is created
where discs of varying (random) sizes of null density are created
at the positions of the cones. These discs will prevent the rods
from spreading over these areas. Finally, the stippling procedure
is applied a second time over the newly built density map for 25
iterations. The final result can be seen in Figure 7C where rods
are tightly packed on the left, loosely packed on the right and
nicely circumvent the cones.

3.2. Case 2: Neural Field
Dynamic neural fields (DNF) describe the dynamics of a large
population of neurons by taking the continuum limit in space,
using coarse-grained properties of single neurons to describe the
activity (Wilson and Cowan, 1972, 1973; Amari, 1977; Coombes
et al., 2014). In this example, we consider a neural field with
activity u that is governed by an equation of the type:

τ
∂u(x, t)

∂t
= −u(x, t)+

∫ +∞

−∞

w(x, y)f (u(y, t))dy+ I(x)+ h

The lateral connection kernel w is a difference of Gaussians
(DoG) with short range excitation and long range inhibition that
reads:

w(x) = Ie exp
−x2

σe −Ii exp
−x2

σi

The input I(x) is a scaled white noise that reads:

I(x) = Is × uniform(noise)

and the function f is a clamped linear function between 0 and 1
such that:

f (x) = max(min(x, 1), 0)
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FIGURE 6 | Non-uniform distribution (linear gradient). Different population distributions (size of 1,000, 2,500, 5,000 and 10,000 cells) using the same linear gradient as

input have been computed. Each distribution has been split into four equal areas and the respective proportion and number of cells present in the area is indicated at

the bottom of the area. The proportion of cells present in each area is approximately independent (±2.5%) of the overall number of cells.

In order to solve the neural field equation, the spatial domain
was discretized into a 40 × 40 grid, the temporal resolution
was set to dt = 100ms and the simulation was run for t =

10 s. Relevant parameters are given in Table 1. In Figure 8A,
one can see the characteristic Turing patterns that have formed
within the field. The number and size of clusters depend on
the lateral connection kernel. Figure 8B shows the discretized
and homogeneous version of the DNF where each cell has
been assigned a position on the field, the connection kernel
function and the parameters being the same as in the continuous
version. The result of the simulation shown in Figure 8B is the
normalized histogram of cell activities using 40 × 40 regular
bins. One can see the formation of the Turing patterns that are
similar to the continuous version. In Figure 8C however, the
positions of the cells have been changed (using the proposed

stippling method) such that there is an annulus of higher density.
This is the only difference with the previous model. While
the output can still be considered to be Turing patterns, one
can see clearly that the activity clusters are precisely localized
onto the higher density regions. Said differently, the functional
properties of the field have been modified by a mere change
in the structure. This suggests that the homogeneous condition
of neural fields (that is the standard hypothesis in most works
because it facilitates mathematical analysis) is actually quite a
strong limitation that constrains the functional properties of the
field.

3.3. Case 3: Cortical Density
It has been shown in (Collins et al., 2010, Young et al., 2013,
and Collins et al., 2016) that the neural density varies across and
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FIGURE 7 | Cones and rods distribution. (A) The density map for the placement of cones (n = 25) is a circular and quadratic gradient with highest density in the

center. (B) The density map for the placement of rods (n = 2,500) is built using the rods distribution. Starting from a linear density, holes with different sizes are created

at the location of each cone and prevent rods from spreading over these areas during the stippling procedure. (C) Final distribution of cones and rods. Cones are

represented as white blobs (splines) while rods are represented as Voronoi regions using random colors to better highlight the covered area.

TABLE 1 | Parameters for the neural fields.

Parameter Name Value

Grid size n 40

Timestep dt 100 ms

Duration t 10 s

Time constant τ 750 ms

Resting potential h 0

Input scaling Is 0.1

Noise level N 0.1

Scaling factor s 402/n2

Sigma excitatory σe 0.05

Scale excitatory Ie 0.15× s

Sigma inhibitory σi 0.085

Scale inhibitory Ii 0.05× s

within cortical areas with an inverse relationship to the average
neuron size: larger neurons take up more space and thus cannot
be as densely packed as smaller neurons. (Collins et al., 2010)
have studied the neural density in a cortical hemisphere of five
primates and provided all the relevant data in the supplementary
information. They dissected the flat hemisphere into a grid of
5 × 5mm piece and used an isotropic fractionator method to
estimate the number of cells (neurons and non-neurons). To
illustrate the method, we’ll use the data from one of the two
galagos that have been studied in order to produce a discrete
distribution of sites enforcing the local measured density.

Using the Inkscape software2, we opened the supplementary
information PDF file from (Collins et al., 2010) and isolated the
top of the Figure S3 (galago 07-104).We renamed each individual
patch according to the patch number indicated in the figure and
saved the result as a SVG file. We took the first datasheet (galago
07-104) of the S1 dataset (Excel format) and converted it to a CSV
format. Using the matplotlib library (Hunter, 2007), we produced
a bitmap file (size 1000 × 1000 pixels see Figure 9A) where each
cortical patch was drawn using a gray level that corresponds to its
normalized density, a density of 1.0 (black color) corresponding
to the most densely populated area (area 2).

Using the Shapely library (Gillies et al., 2007), we computed
the convex hull of the whole set of the 36 cortical patches as well
as the centroid for each individual patch. The boundary of the
convex hull was resampled such as to have 50 equidistant points
along the outline. The density information for these points was
computed using the density of the nearest centroid. A cubic two-
dimensional interpolation was computed inside the convex hull
using a Clough-Tocher differential scheme (Alfeld, 1984) and the
result was saved as a bitmap file (size 1000 × 1000 pixels, see
Figure 9C). We’ll refer to this interpolation as the continuous
case.

The two bitmap files were processed with the provided
stippler script (Rougier, 2018) using the red channel for density
information and run over 25 iterations using N = {1000, 5000,
10000, 25000, 50000} sites. The result, for a single run, is a

2https://inkscape.org/en/
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FIGURE 8 | Non-homogeneous discrete neural field. Each plot has been smoothed using a bicubic filter. (A) Turing patterns resulting from a continuous and

homogeneous neural field with constant and noisy input. (B) Turing patterns resulting from a discrete and homogeneous neural field with constant and noisy input.

White dots indicate the position of the cells. Mean activity is computed from the histogram of neurons activity using 40× 40 bins. (C) Localized Turing patterns

resulting from a discrete and non-homogeneous neural field with constant and noisy input. White dots indicate the position of the neurons. Mean activity is computed

from the histogram of neuron activity using 40× 40 bins.

FIGURE 9 | Flattened cortex. Data from (Collins et al., 2010), supplementary information. (A) Each cortex piece was assigned a gray level corresponding to the

normalized density (density 1.0 being assigned to the most densely populated area). The result was saved as a 1, 000× 1, 000 bitmap file (PNG). (B) Result of the

stippling procedure for 25,000 sites and 25 iterations over the image generated in A. The mean difference for normalized density with actual data is 2.3% (±2.0%).

Borders of the individual patches are drawn over the distribution (it is not an artifact). (C) Continuous cubic interpolation of the normalized density over the convex hull

of A, using the centroid of each patch for computing the interpolation. The result was saved as a 1, 000× 1, 000 bitmap file (PNG). (D) Result of the stippling

procedure for 25,000 sites and 25 iterations over the image generated in C. The mean difference for normalized density with actual data is 2.9% (±2.8%). Outside

sites (gray dots) are excluded and borders of the individual patches are drawn over the figure (it is not an artifact).
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TABLE 2 | Mean difference between the actual (normalized) density and the mean

neural density using a patch bitmap (Figure 9A) and a continuous cubic

interpolated bitmap (Figure 9C) for a various number of sites.

Patch Continuous Computation time

N = 1,000 5.4% (±4.3%) 6.9% (±4.4%) 42s

N = 5,000 2.8% (±2.9%) 3.6% (±2.3%) 1m52

N = 10,000 2.8% (±1.8%) 4.0% (±3.0%) 2m55

N = 25,000 2.3% (±2.0%) 2.9% (±2.8%) 5m35

N = 50,000 0.8% (±0.6%) 2.6% (±2.0%) 8m44

Computation times are only indicative and have been measured on a MacBook Pro with

an Intel Core i7.

file with the 2-D coordinates of the N sites, the case for N =

25000 being shown on Figures 5C,D. From these coordinates, we
computed the density for each of the original cortical patches by
computing the patch area size and the number of sites inside.
Results are indicated in Table 2. Unsurprisingly, the accuracy
of the distribution grows with the number of sites (with one
exception in the continuous case). For N = 50,000 sites, the
difference between the actual density and the distribution is
within a margin of 5%. In the continuous case however, it does
not seem reasonable to expect a much higher accuracy than in
the discrete (patch) case because the bitmap 1, 000 × 1000 has
been interpolated using only 36 sites (patch centroids).

4. DISCUSSION

We’ve introduced a graphical method for the placement of
biological cells over a two-dimensional manifold enforcing a
density distribution that is provided using a bitmap image and
the method has been illustrated on three simple use cases.
For a more realistic placement (i.e., actual three dimensional
structures), the method could be adapted but it is to be
noted that several methods have been recently proposed.

Parametric anatomical modeling (Pyka et al., 2014) allows
one to model the anatomical layout of neurons as well as
their projections while the work by (Schneider et al., 2014)
allows one to go even further down by taking into account
the dendritic morphology of neurons. However, due to its
simplicity and beyond a strict biological plausibility, we think
the proposed method might be interesting for a number of
models, intermediate between symbolic models and realistic
models. Our intuition is that such topography may be an
important aspect that needs to be taken into account and studied
in order for a model to benefit from structural functionality.
For example, the Figure 1 shows the influence of the spatial
distribution on the signal propagation when considering a
simple nearest neighbors connectivity scheme. Even though such
connectivity is unlikely to exist inside the brain, it might be
nonetheless worth to be studied because it may provide structural
functionality, that is, a function that directly derives from the
topography.

NOTES

All figures were produced using the Python scientific stack,
namely, SciPy (Jones et al., 2001), Matplotlib (Hunter, 2007), and
NumPy (van der Walt et al., 2011). All sources are available on
GitHub at github.com/rougier/density-driven (Rougier, 2018).
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