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Abstract: This study hypothesized that persistent homology (PH) features could capture more
intrinsic information about the metabolism and morphology of tumors from 18F-fluorodeoxyglucose
positron emission tomography (PET)/computed tomography (CT) images of patients with head
and neck (HN) cancer than other conventional features. PET/CT images and clinical variables of
207 patients were selected from the publicly available dataset of the Cancer Imaging Archive. PH
images were generated from persistent diagrams obtained from PET/CT images. The PH features
were derived from the PH PET/CT images. The signatures were constructed in a training cohort
from features from CT, PET, PH-CT, and PH-PET images; clinical variables; and the combination of
features and clinical variables. Signatures were evaluated using statistically significant differences
(p-value, log-rank test) between survival curves for low- and high-risk groups and the C-index. In an
independent test cohort, the signature consisting of PH-PET features and clinical variables exhibited
the lowest log-rank p-value of 3.30 × 10−5 and C-index of 0.80, compared with log-rank p-values
from 3.52 × 10−2 to 1.15 × 10−4 and C-indices from 0.34 to 0.79 for other signatures. This result
suggests that PH features can capture the intrinsic information of tumors and predict prognosis in
patients with HN cancer.

Keywords: radiomics; persistent homology; head and neck cancer; prognostic prediction

1. Introduction

Head-and-neck (HN) cancer is the sixth leading cancer worldwide [1]; more than 90%
of the patients with HN cancer are diagnosed with HN squamous cell carcinoma (HNSCC),
which is the focus of this study. The five-year survival rate of patients with HN cancer is
only approximately 50% [2] because of distant metastasis and second primary cancers [3,4].
HN cancer patients still exhibit varied survival outcomes [5], implying that inappropriate
treatments may have been administered to them. Therefore, prognostic prediction prior to
treatment could facilitate personalized medicine administration and prolong survival.

Owing to the association of tumor genetic heterogeneity in HN cancer with pa-
tients’ prognoses, it was concluded that higher heterogeneity is related to worse out-
comes [6–8]. This genetic heterogeneity can lead to imaging heterogeneity, which can be
quantified by radiomics [9] on 18F-fluorodeoxyglucose (FDG) positron emission tomog-
raphy (PET)/computed tomography (CT) images [10,11]. The feasibility of conventional
PET/CT features for risk assessment in patients with HN cancer has been extensively
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investigated [12,13]. Due to relatively higher Kaplan–Meier p-values ≥ 10−3 in these stud-
ies, we believe that there is still room for developing new technologies for improving the
prediction of prognoses in patients with HN cancer.

One of the novel theories for evaluating tumor heterogeneity is topology, which is
a mathematical study of the geometrical properties of connectedness in objects [14]. The
successful application of topology in lung cancer [15,16] motivated us to investigate its
usefulness for treating HN cancer. Homology features of topological space X are encoded
into homology group Hk(X), whose rank is referred to as the k-dimensional Betti number.
Betti numbers represent invariant properties of objects under continuous deformation, for
example, the number of connected components and holes. Persistent homology (PH) is a
fundamental tool in topological analysis to track the emergence (birth) and disappearance
(death) of homology features (connected components and holes) in a nested sequence of
data [17,18].

Since PH can exploit the hidden geometrical properties of data [17,18], we hypothe-
sized that PH features could capture more intrinsic information on the metabolism and
morphology of tumors that could be associated with prognoses on PET/CT images than
conventional features. This study, thus, investigated the feasibility of using PH features for
prognostic prediction of patients with HN cancer by using PET/CT images. To the best of
our knowledge, this is the first study to examine the potential of PH features on PET/CT
images for prognostic prediction of patients with HN cancer.

2. Materials and Methods
2.1. Clinical Cases

From a publicly available dataset [13], the Cancer Imaging Archive (https://www.
cancerimagingarchive.net/, accessed on 11 July 2020), PET/CT images, and clinical vari-
ables of 207 patients with HNSCC were selected with careful anonymization. As this
dataset was publicly available for research purposes, approval from the institutional re-
view board was not required. The patients were treated with radiotherapy or concurrent
chemoradiotherapy from 2006 to 2014 at four institutions in Canada [13]. Cancer staging
was performed, according to the American Joint Committee on Cancer 7th edition. A total
of 73 patients were set aside as a completely independent test cohort, whereas the remaining
134 patients formed a training cohort. This division follows the work of Vallières et al. [13].
The clinical variables of the patients included in this study are listed in Table 1.

Table 1. Clinical variables of the patients in this study.

Training Cohort (n = 134) Test Cohort (n = 73)

Age [years] (median) 18–84 (62) 44–90 (64)
Sex (Male/Female) 103/31 54/19

Tumor volume [cm3] (median) 1.98–348.62 (37.06) 3.31–245.45 (36.42)
Human papilloma virus (HPV) status
(positive/negative/no information) 41/24/69 16/2/55

T stage (T1/T2/T3/T4/T4A/T4B) 20/42/49/14/6/3 6/35/17/11/2/2
N stage

(N0/N1/N2/N2A/N2B/N2C/N3/N3B) 31/19/31/7/27/15/4/0 7/11/29/0/9/10/6/1

M stage (M0) 134 73
TNM stage (I/II/IIB/III/IV/IVA/IVB) 2/11/1/36/0/76/8 0/4/1/10/36/17/5

Survival censorship (Event/Censor) 111/23 20/53
Site (Larynx/Oropharynx/

Nasopharynx/Hypopharynx) 22/94/16/2 6/55/6/6

Three FDG-PET/CT scanners (Discovery ST and Discovery STE, GE Healthcare, Fair-
field, CT, USA; and GeminiGXL 16, Philips, Amsterdam, The Netherlands) were used for
image acquisition. The size of CT images was 512 × 512 pixels with in-plane pixel sizes
of 0.98–1.95 mm, slice thicknesses of 1.50–5.00 mm, X-ray tube voltages of 120–140 kV

https://www.cancerimagingarchive.net/
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Metabolites 2022, 12, 972 3 of 12

(median: 140 kV), and exposures of 29–469 mAs (median: 70 mAs). Contrast-enhanced
CT images were available for 166 patients only. The images were reconstructed using B
and C (Philips) and standard and soft kernels (GE Healthcare). For PET scans, FDG of
198–859 MBq (median 403 MBq) was injected intravenously [13]. The sizes of the PET
images were 128 × 128 and 144 × 144 pixels with in-plane pixel sizes of 3.52–5.47 mm and
slice thicknesses of 3.27–4.00 mm. PET images were acquired using multiple bed positions
with a median of 300 s (range, 120–420 s) per bed position. Attenuated corrected images
were reconstructed using an order subset expectation maximization iterative algorithm
with a span (axial mash) of 5 (range: 3–5) and line-of-response row-action maximum likeli-
hood algorithm. The filter cut-off, number of subsets, and iterations were not mentioned
in the original paper [13]. Gross tumor volumes (GTVs) were delineated on different CT
images dedicated to treatment planning by expert oncologists [13]. The contours were
superimposed onto the PET/CT scanning coordinate system using deformable registration
software (MIM Software Inc., Cleveland, OH, USA). The effective diameter of the GTVs
ranged from 15.6 to 90.2 mm (mean: 42.9 mm). Anisotropic CT, PET images, and their
corresponding GTVs were converted into isotropic images with isovoxel sizes of 0.98 mm
for CT and 3.52 mm for PET, using cubic and shape-based interpolation [19].

Another publicly available dataset (RIDER), which consists of 28 sets of test–retest
lung cancer CT images acquired approximately 15 min apart under the same imaging
protocol [20], was used to examine the repeatability of the features extracted from the
CT and PH images. Since radiomic features have been proven to be transferable from
lung to HN cancer [10], this RIDER dataset could be appropriate for the examination of
repeatability in our HN cancer study. The images were acquired using a 16- and 64-row
scanner (LightSpeed 16 and VCT, GE Healthcare) with a tube voltage of 120 kV and tube
current from 298 to 441 mA. The contours for the test and retest were produced in agreement
with three radiologists with more than 10 years of experience with chest CT [20].

2.2. Overall Workflow

Figure 1 illustrates the workflow of this study. PH images (b0 and b1) were first
generated from CT and PET images. Conventional features were calculated from the CT,
PET, and their wavelet-decomposed images. PH features were extracted from the b0 PH,
b1 PH, and their wavelet-decomposed filtered images. Clinical variables (age, T stage, N
stage, TNM stage, tumor volume, and human papilloma virus [HPV] status) were also
investigated in terms of prognosis. Cox proportional hazard models (CPHMs) [21] were
built for each signature using the Coxnet algorithm [22,23] and a combination strategy [24].
A radiomic score (rad-score) [12,22], that is, a linear combination of features in the signature
weighted by their corresponding CPHM coefficients, was calculated for each patient. The
patients were stratified into low- and high-risk groups for short-term survival based on the
median of the rad-scores, and a log-rank p-value between the two survival curves and the
C-index was calculated for model evaluation in the training cohort. The coefficients and
medians of the rad-scores were fixed and applied to the test cohort for rad-score calculation
and model evaluation, respectively.

Table 2 presents the details of all types of signatures constructed in this study. As
clinical, conventional, PH, and combined signatures were constructed, there were 13 types
of signatures in this study.
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Figure 1. Overall workflow employed in this study. PH: persistence homology, HPV: human
papilloma virus; CT: computed tomography; PET: positron emission tomography; rad-score: radiomic
score; the green circle represents gross tumor volume.

Table 2. Thirteen types of signatures constructed in this study.

1 Clinical
Signature

3 Conventional
Signatures 3 PH Signatures 6 Combined Signatures

Clinical Conventional CT PH-CT Conventional CT + clinical
Conventional PET PH-PET Conventional PET + clinical

Conventional
PET/CT PH-PET/CT Conventional PET/CT + clinical

PH-CT + clinical
PH-PET + clinical

PH-PET/CT + clinical

2.3. Persistent Homology Images

PH images were vectorized from PH diagrams [25–27]. Figure 2 illustrates the process
of generating the b0 and b1 PH-CT images (the same for the b0 and b1 PH-PET images).
CT images were cropped into a 10-voxel-large rectangular volume surrounding the GTVs;
quantized into 6-, 7-, 8-, and 9-bit depths; and binarized by applying multiple thresholds to
generate a filtration of the binary images [25]. A b0 PH diagram constituted of birth–death
pairs of all connected components (black regions) that were generated and died within the
filtration of binary images. A b1 PH diagram constituted birth–death pairs of holes (white
regions containing no pixels at the edge). Black and white regions seem to be holes and
connected components, respectively, in the original CT image in Figure 2, but we respect-
fully followed the definitions of the topological data analysis software HomCloud [26,27]
employed for productions of PH diagrams in this study.



Metabolites 2022, 12, 972 5 of 12
Metabolites 2022, 12, x FOR PEER REVIEW  5  of  13 
 

 

 

Figure  2.  The  process  of  generating  PH‐CT  images  in  this  study.  CT:  computed  tomography; 

PH‐CT: persistent homology‐CT; the green circle represents gross tumor volume. 

Let 𝐵 𝑏 , 𝑑   be a PH diagram in the birth–death coordinates  𝑏 , 𝑑 , 𝑘𝜖 1, 2, … , 𝑁  

where  𝑁   denotes  the  number  of  pairs.  𝐵 𝑏 , 𝑑  was  mapped  into  𝐵 𝑏 , 𝑝 𝑑
𝑏  in  the  birth–persistence  coordinates. Next, 𝐵 𝑏 , 𝑝  was  transformed  into PH  im‐

ages,  𝜌 𝑥, 𝑦 . A PH image is a summation of multiple weighted Gaussian distributions 

centered at each coordinate on the diagram 𝐵 𝑏 , 𝑝 . As CT and PET images of the same 

patient acquired at different times may vary, each point in the PH diagram may contain 

uncertainty. The use of Gaussian distributions can address this uncertainty and ensure 

stable transformation from PH diagrams to PH images [28]. Five standard deviation (SD) 

values of the Gaussian distribution (1, 10−1, 10−2, 10−3, and 10−4) were used. The Gaussian 

distribution can be expressed as: 

𝐺 , 𝑥, 𝑦 exp 𝐵 𝑏 , 𝑝 ,  (1) 

where  𝜎  denotes  the SD,  and  𝑥  and  𝑦  are  the  row  and  column of  a pixel on  the PH 

image, respectively. 

A weighting function is essential for the stable transformation from PH diagrams to 

PH images [28]. In this study, a linear weighting function that can adjust the importance 

of pairs in different regions can be expressed as: 

𝑤 𝑝

0, 𝑝 0
, 0 𝑝 𝑃

1, 𝑝 𝑃
,  (2) 

where  𝑃  is the depth of the quantized CT or PET images (e.g.,  𝑃  = 255 if the images were 

8‐bit deep). 

Therefore, the PH images [28] can be expressed as: 
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Let B(bk, dk) be a PH diagram in the birth–death coordinates (bk, dk), kε{1, 2, . . . , N}
where N denotes the number of pairs. B(bk, dk) was mapped into B(bk, pk = dk − bk) in the
birth–persistence coordinates. Next, B(bk, pk) was transformed into PH images, ρB(x, y). A
PH image is a summation of multiple weighted Gaussian distributions centered at each
coordinate on the diagram B(bk, pk). As CT and PET images of the same patient acquired
at different times may vary, each point in the PH diagram may contain uncertainty. The use
of Gaussian distributions can address this uncertainty and ensure stable transformation
from PH diagrams to PH images [28]. Five standard deviation (SD) values of the Gaussian
distribution (1, 10−1, 10−2, 10−3, and 10−4) were used. The Gaussian distribution can be
expressed as:

GB(bk ,pk)
(x, y) =

1
2πσ2 exp

[
(x− bk)

2 + (y− pk)
2

2σ2

]
× B(bk, pk), (1)

where σ denotes the SD, and x and y are the row and column of a pixel on the PH image,
respectively.

A weighting function is essential for the stable transformation from PH diagrams to
PH images [28]. In this study, a linear weighting function that can adjust the importance of
pairs in different regions can be expressed as:

wP(pk) =


0, pk ≤ 0

pk
P , 0 < pk < P

1, pk ≥ P
, (2)

where P is the depth of the quantized CT or PET images (e.g., P = 255 if the images were
8-bit deep).
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Therefore, the PH images [28] can be expressed as:

ρB(x, y) =
N

∑
k=1

wP(pk)GB(bk ,pk)
(x, y) (3)

As the resolution may not affect classification task performance [28,29], a size of
64 × 64 pixels was fixed for all PH images. A Matlab-based package [28] was used for
generating PH images in the Matlab 2018a environment. Figure 3 illustrates the examples
of b0 PH-CT and b0 PH-PET images for long- and short-survival patients.
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Figure 3. Illustrations of b0 PH-CT and PH-PET images for long- and short-survival patients. PH:
persistent homology; CT: computed tomography; PET: positron emission tomography; the green
circle represents gross tumor volume.

2.4. Calculating Conventional and Persistent Homology Features

Radiomic features (14 histograms, 45 textures, and 472 wavelets; Supplementary
Table S1) were derived from the CT, PET, PH-CT, and PH-PET images. Histogram features
were calculated using the original voxel values. Texture features were calculated using
6-, 7-, 8-, and 9-bit images, acquired based on the 0–63, 0–127, 0–255, and 0–511 look-up
tables, respectively. Wavelet features were calculated from eight decomposed images of
low (L) and/or high (H) frequency filters (LLL, HLL, LHL, HHL, LLH, HLH, LHH, and
HHH) using a coiflet 1 mother wavelet. Radiomic features were calculated using a radiomic
package [30] in the 2018a MATLAB environment (MathWorks, Natick, MA, USA).

The radiomic features were extracted from the RIDER dataset, and intraclass corre-
lation coefficients (ICCs) were then calculated. An ICC < 0.5 indicated low repeatabil-
ity; 0.5 ≤ ICC < 0.75, moderate repeatability; 0.75 ≤ ICC < 0.9, good repeatability; and
ICC ≥ 0.9, excellent repeatability [31].

The conventional CT, PET, b0 PH-CT, b1 PH-CT, b0 PH-PET, and b1 PH-PET feature
sets contained features extracted from CT, PET, b0 PH-CT, b1 PH-CT, b0 PH-PET, and b1
PH-PET images, respectively. Conventional CT and PET signatures were combined to form
the conventional PET/CT feature set; b0 PH-CT and b0 PH-PET formed b0 PH-PET/CT; b1
PH-CT and b1 PH-PET formed b1 PH-PET/CT; and b0 and b1 PH (CT, PET, and PET/CT)
formed b0 + b1 PH (CT, PET, and PET/CT).

2.5. Building Prediction Models Using Signatures

A Coxnet algorithm [22,23,32], whose α was optimized using a grid search, was used
to select the signature candidates. The Coxnet algorithm was performed in R (R Core
Team, Vienna, Austria) software version 3.6.3 using the function glmnet in the package
glmnet. Clinical variables were converted into numeric values (Supplementary Table S2),
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and signature candidates were considered. HPV status, which was not fully available in
our dataset (n = 83/207), was analyzed separately in univariate analysis. Tumor volume,
an independent prognostic factor for HN cancer [33], was also analyzed separately.

The signatures were constructed using a combination strategy [24]. Thirteen signatures
consisting of 1–13 features were constructed and 13 CPHMs were built. Care was taken
that the number of features in the signature was not larger than one-tenth the size of the
training cohort (n = 134) [34]. CPHMs were constructed in R using the coxph function in the
survival package. Conventional and PH signatures were combined with clinical signatures.
Thus, six combined signatures were constructed (Table 2) and six CPHMs were built.

2.6. Calculation of Rad-Scores and Evaluation of Prediction Models

The Kaplan–Meier procedure was used to evaluate all types of signatures (Table 2).
Statistically significant differences (p-value, log-rank test) between the survival curves for
the two patient groups stratified by the median of the rad-scores were calculated. In the
training cohort, the rad score was a linear combination of each feature in the signature
weighted by their corresponding CPHMs coefficients [12,22]. The coefficients and medians
were locked and applied to the test cohort to calculate the rad-scores and stratify patients.
Only the signature that yielded the lowest p value in the test cohort was retained. The
C-index was then calculated using negative rad-scores, as rad-scores and survival time
were negatively correlated.

3. Results

Supplementary Table S3 shows the mean and SD of the ICCs for conventional, b0, and
b1 PH features for the RIDER dataset. The highest mean ICCs for conventional and PH
features were 0.672 and 0.750, respectively (p-value = 1.15 × 10−10, Mann–Whitney U test).
Owing to the higher mean ICCs, PH features were more repeatable than conventional ones.

Supplementary Figure S1 shows all the optimized α and the number of signature
candidates for conventional and PH features in this study. The log-rank p values in
the training and test cohorts of conventional, PH, and clinical signatures are detailed in
Supplementary Figures S2–S4, respectively. Table 3 summarizes the p-values and C-indices
for all signature types (Table 2) in this study.

Table 3. Summary of p-values and C indices from the 13 types of signatures in this study.

Training Cohort Test Cohort

p-Value C-Index
(95% CI) p-Value C-Index

(95% CI)

Clinical signature 1.18 × 10−3 0.77 (0.75–0.79) 2.30× 10−4 0.75 (0.73–0.78)
Conventional CT signature 2.03 × 10−4 0.75 (0.73–0.76) 2.24× 10−3 0.35 (0.32–0.39)

Conventional PET signature 9.65 × 10−1 0.53 (0.51–0.55) 2.32× 10−2 0.66 (0.63–0.69)
Conventional PET/CT signature 4.96 × 10−3 0.72 (0.70–0.74) 1.68× 10−2 0.71 (0.68–0.74)

PH-CT signature 1.62 × 10−2 0.64 (0.63–0.66) 1.39× 10−3 0.34 (0.32–0.36)
PH-PET signature 1.08 × 10−2 0.73 (0.71–0.75) 7.96× 10−4 0.75 (0.73–0.78)

PH-PET/CT signature 7.83 × 10−4 0.68 (0.66–0.69) 4.25× 10−4 0.66 (0.63–0.68)
Clinical + Conventional CT signature 4.46 × 10−3 0.8 (0.78–0.81) 3.52× 10−2 0.39 (0.36–0.43)
Clinical + Conventional PET signature 1.18 × 10−3 0.77 (0.75–0.79) 4.72× 10−4 0.75 (0.73–0.78)

Clinical + Conventional PET/CT
signature 5.26 × 10−4 0.82 (0.81–0.83) 1.47× 10−4 0.79 (0.77–0.81)

Clinical + PH-CT signature 4.89 × 10−3 0.77 (0.75–0.79) 1.15× 10−4 0.73 (0.71–0.76)
Clinical + PH-PET signature 8.53 × 10−6 0.82 (0.81–0.83) 3.30× 10−5 0.80 (0.78–0.82)

Clinical + PH-PET/CT signature 3.79× 10−4 0.78 (0.76–0.79) 5.69× 10−4 0.78 (0.76–0.80)

A combination of clinical and PH-PET signatures achieved the highest performance
with a p-value of 3.30 × 10−5 and C-index (95% confidence interval [CI]) of 0.80 (0.78–0.82)
in the test cohort (Table 3). Clinical signature solely yielded a p-value of 2.30 × 10−4 and
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C-index (95% CI) of 0.75 (0.73–0.78) in the test cohort (Table 3). PH-PET signature solely
achieved a p-value of 7.96 × 10−4 and C-index (95% CI) of 0.75 (0.73–0.78) in the test cohort
(Table 3). The above signatures are detailed in Supplementary Table S4, and Figure 4
illustrates the corresponding Kaplan–Meier curves.
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Tumor volume achieved a p-value of 0.15 and C-index (95% CI) of 0.68 (0.67–0.70)
in the training cohort, and p-value of 0.31 and C-index (95% CI) of 0.54 (0.50–0.57) in the
test cohort. For HPV status, p-value and C-index in the training cohort were 0.12 and
0.59 (0.57–0.60), respectively, while those in the test cohort were 0.29 and 0.58 (0.56–0.59),
respectively. The clinical + PH-PET signatures also outperformed tumor volume and HPV
status.

4. Discussion

This study investigated the feasibility of using the PH features extracted from PET/CT
images for prognostic prediction in patients with HN cancer. To the best of our knowledge,
this is the first study to examine the potential of PH features on PET/CT images for
prognostic prediction of patients with HN cancer.

The PH features proposed in this study could provide more intrinsic information on
the underlying metabolic and morphological traits of tumors from the PET/CT images.
The combination of the clinical and PH-PET signatures achieved the highest performance
(Table 3). This result, thus, proved the feasibility of PH features and further agreed with
Vallières et al. [13] that a combination of radiomic and clinical signatures could improve
prognostic power. Furthermore, this study indicated that the contribution of metabolic and
morphologic information obtained from PET/CT images in the prognostic prediction of
patients with HN was in agreement with the work of El Naqa et al. [11].
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We suggest the following clinical scenario in which a better treatment method can
be selected using the system of the proposed approach. A physician can input PET/CT
images of an HN cancer patient into the system to predict the high or low risk of death
for the patient, before the patient receives treatment (radiotherapy or concurrent chemora-
diotherapy). If the output of the system to a patient is low-risk, the physician may select
radiotherapy or concurrent chemoradiotherapy. If the output is-high risk, the physician
may not select that treatment.

Because of its ability to treat survival time as a continuous variable and account for
patient censorship [23], the Coxnet algorithm enabled us to select signature candidates
that were correlated with survival time. More importantly, this Coxnet algorithm also
provided consistency between feature selection and model building using CPHMs; hence,
any potential information loss could be avoided.

PH features (Table 3) also outperformed the independent predictors of tumor vol-
ume [33] and HPV status [35,36]. The small number of patients with available HPV status
could be the main factor that deteriorates the performance of CPHMs. Hatt et al. [37]
reported that texture analysis may provide more information when the tumor size is larger
than 10 cm3. In our dataset, because the majority of tumors exceeded 10 cm3 (n = 193/207),
PH features were found to have more prognostic power than tumor volume. This result is
in agreement with the result of the studies by Vallières et al. [13] and Hatt et al. [37].

Our training and test cohorts included patients with heterogeneous cancer stages and
treatment methods. PET/CT images were acquired at different institutions, vendors, tube
voltages, exposures, slice thickness, and reconstruction filters [13]. However, PH signatures
still outperformed conventional signatures (Table 3). Hence, PH features may be considered
more robust than the conventional approaches when there are variations in cancer stages,
treatment methods, and acquisition techniques.

Although only one dataset (n = 207) was used, a portion of the dataset (n = 73) was
set aside as a completely independent test cohort. This division allowed us to perform an
external validation of our predictive models, which could be considered a more accurate
evaluation of model performance than an internal validation or random splitting of the
dataset [38].

This study had several limitations. First, the relatively small number of patients
used for training may have reduced the prognostic power of the predictive models. More
patients should be included in future studies. Second, signatures constructed using a
homogeneous dataset may differ from ours. Although an evaluation using an indepen-
dent test cohort suggested that the PH technique could be robust against variations in
cancer stages and treatment methods, more investigations regarding this effect on the final
model need to be conducted. Third, variations in imaging protocols were not investigated.
Since inter-scanner variability (time resolution, detector sensitivity correction, dead time
correction, random and scatter coincidence corrections, attenuation correction, and image
reconstruction) has been reported to affect conventional features extracted from CT [39,40]
and PET images [41,42], the impact of these factors on PH features will be further examined
in our future studies. Streak artifacts, which can decrease the performance of radiomic
models [43], were not examined in this study. Despite favorable results, the effect of streak
artifacts on PH features should be carefully examined in future studies. Finally, although
a combination of radiomic signatures and HPV status has been reported to increase the
prognostic value [12], we could not perform this task because HPV status was not fully
available in our dataset (n = 83/207).

5. Conclusions

This study was the first trial to investigate the feasibility of a PH technique for FDG-
PET/CT imaging to predict prognoses in patients with HN. PH features could capture
topological information about metabolism and morphology of tumors that could be as-
sociated with the prognoses. Because heterogeneity is a common characteristic among
tumors, we believe that this PH technique can be widely applied to other cancer types to
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improve prognostic prediction. Hence, personalized treatment could be further facilitated
and patient survival lengthened.
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(a) Conventional (CT, PET, and PET/CT), (b) b0 and b1 PH-CT, (c) b0 and b1 PH-PET, and (d) b0 and
b1 PH-PET/CT features; Figure S2: Log-rank p-values in the training and test cohorts of CPHMs built
using conventional (a) CT, (b) PET, and (c) PET/CT signatures; Figure S3: Log-rank p-values in the
training (left column) and test cohorts (right column) of CPHMs built using (a) PH-CT, (b) PH-PET,
and (c) PH-PET/CT signatures; Figure S4: Log-rank p-values in the training and test cohorts of
CPHMs built using clinical signatures; Table S1: Histogram-based and texture features used in this
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