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Background and Purpose: Primary lateral sclerosis (PLS) is a progressive upper motor
neuron (UMN) disorder. It is debated whether PLS is part of the amyotrophic lateral
sclerosis (ALS) spectrum, or a syndrome encompassing different neurodegenerative
diseases. Recently, new diagnostic criteria for PLS have been proposed. We describe
four patients of two pedigrees, meeting definite PLS criteria and harboring two different
mutations in presenilin 1 (PSEN1).

Methods: Patients underwent neurological and neuropsychological examination, MRI,
18F-fluorodeoxyglucose positron emission tomography (FDG-PET), amyloid-related
biomarkers, and next-generation sequencing (NGS) testing.

Results: Four patients, aged 25–45 years old, presented with a progressive UMN
syndrome meeting clinical criteria of definite PLS. Cognitive symptoms and signs were
mild or absent during the first year of the disease but appeared or progressed later
in the disease course. Brain MRI showed microbleeds in two siblings, but iron-related
hypointensities in the motor cortex were absent. Brain FDG-PET showed variable areas
of hypometabolism, including the motor cortex and frontotemporal lobes. Amyloid
deposition was confirmed with either cerebrospinal fluid (CSF) or imaging biomarkers.
Two heterozygous likely pathogenic mutations in PSEN1 (p.Pro88Leu and p.Leu166Pro)
were found in the NGS testing.

Conclusion: Clinically defined PLS is a syndrome encompassing different
neurodegenerative diseases. The NGS testing should be part of the diagnostic workup
in patients with PLS, at least in those with red flags, such as early-onset, cognitive
impairment, and/or family history of neurodegenerative diseases.

Keywords: primary lateral sclerosis, progressive spastic paraparesis, Alzheimer’s disease, PSEN1 mutation,
motor neuron disease
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INTRODUCTION

Primary lateral sclerosis (PLS) is a rare neurodegenerative
disorder characterized by a progressive upper motor neuron
(UMN) impairment. Very few postmortem PLS cases have been
described, sharing the same pathological signature that most
cases of amyotrophic lateral sclerosis (ALS), namely neuronal
cytoplasmic aggregates of TDP-43 (Turner and Talbot, 2020).
However, unlike ALS, PLS causes progressive UMN degeneration
without clinical or neurophysiological evidence of lower motor
neuron (LMN) impairment (Turner and Talbot, 2020). Recently,
new criteria for the clinical diagnosis of PLS have been proposed
(Turner et al., 2020). However, there is considerable clinical
overlap between PLS and other neurodegenerative diseases, such
as hereditary spastic paraplegia (HSP) or the globular glial
tauopathies (Brugman et al., 2009; Vázquez-Costa et al., 2016;
Forrest et al., 2021). Consequently, the debate as to whether
clinically diagnosed PLS can be considered a diseased part of
the ALS spectrum, or rather a syndrome encompassing different
neurodegenerative diseases, is ongoing (Mitsumoto et al., 2015;
Turner et al., 2020).

Mutations in presenilin 1 (PSEN1) are the most common
cause of autosomal dominant Alzheimer’s disease (ADAD). So
far, over 300 PSEN1 mutations have been identified.1 Despite
most carriers usually present with early amnestic symptoms,
atypical cognitive, and non-cognitive symptoms have been
described in patients with PSEN1, including frontotemporal
dementia (FTD), early aphasia, visual agnosia, myoclonus and
seizures, extrapyramidal features, and spasticity (Riudavets et al.,
2013; Tang et al., 2016).

In this study, we report four patients of two pedigrees meeting
clinical criteria of definite PLS (Turner et al., 2020) but harboring
PSEN1 mutations.

FAMILY 1

A 50-year-old Caucasian female was referred to the hospital
after a 5-year history of dysarthria, followed 1 or 2 years
later by dysphagia, gait imbalance, emotional lability, behavioral
disturbances, and memory complaints. Her mother died at the
age of 64 after being diagnosed with dementia 4 or 5 years
before (Figure 1A).

At the time of her first assessment, 2 years after disease
onset, she showed generalized UMN signs predominating in
lower limbs and the Mini-Mental State Examination (MMSE) was
29/30. Brain and spinal cord MRI were unremarkable, and the
patient was referred to the unit with the diagnosis of progressive
pseudobulbar palsy.

Three years after disease onset, the patient showed at the
physical exam dysarthria and saccadic intrusions into smooth-
pursuit eye movements. Upper and lower limbs were spastic with
generalized hyperreflexia and extension plantar response, and
finger and foot tapping were slowed down. Sensory examination

1https://www.alzforum.org/mutations

was unremarkable. Weakness, amyotrophy, and fasciculations
were absent in all muscle groups.

The neuropsychological assessment revealed a mild-to-
moderate cognitive impairment (MMSE: 20/30) characterized
by bradypsychia, temporospatial disorientation, and recent
memory deficit. Cognition was additionally examined with the
Spanish version of the Edinburgh cognitive and behavioral ALS
screen (ECAS) (Mora et al., 2018), showing a severe memory
and language impairment and scoring 68/100 in ALS-specific
tests (cut-off 53) and 13/36 in non-specific tests (cut-off 19).
Behavioral impairment was evaluated after an interview with
her relatives following the ECAS semistructured interview and
the frontal system behavior questionnaire (FrSBe), meeting
Rascovsky criteria (Rascovsky et al., 2011) for early apathy,
disinhibition, and perseverative behavior.

Routine blood tests and serologies were unremarkable as
was electromyography (EMG), which showed no signs of LMN
impairment. Brain MRI showed unspecific cortical atrophy
(Figure 1B), and iron-related hypointensity in SWI along the
motor cortex (Vázquez-Costa et al., 2017) was absent (Figure 1B).

At this point, a tentative diagnosis of definite PLS and possible
FTD was made according to current clinical criteria (Rascovsky
et al., 2011; Turner et al., 2020).

The study was completed 3 months later with a positron
emission tomography with 18F-fluorodeoxyglucose (FDG-
PET), which revealed an asymmetric decrease of glucose
uptake in frontoparietal areas, including the motor cortex
(Figure 1C). Cerebrospinal fluid (CSF) analysis showed
decreased levels of amyloid-β 42 (101 pg/ml; normal
>725 pg/ml) and amyloid-β 42/40 ratio (0.031; normal
>0.069) and increased levels of p-TAU181 (61 pg/ml; normal
<56 pg/ml) and light-chain neurofilaments (NFL; 1,712 pg/ml;
normal <830 pg/ml). A C9orf72 expansion was excluded
after a repeat-primed PCR. Next-generation sequencing
(NGS) libraries were prepared using the SureSelect custom
Constitutional Panel 17 Mb (Agilent Technologies, Santa
Clara, CA, United States) according to the instructions of
the manufacturer. This panel includes 5,227 genes involved
in rare inherited disorders. These libraries were sequenced
on a NextSeq 500 System using a NextSeq High Output
V2 150 Cycles Reagent Kit (Illumina, San Diego, CA,
United States). The resulting NGS data were analyzed with
the Alissa Software tool (Agilent Technologies, Santa Clara,
CA, United States). This analysis displayed a heterozygous rare
variant (p.Pro88Leu) in the PSEN1 gene, classified as likely
pathogenic according to the American College of Medical
Genetics and Genomics (ACMG) guidelines (Richards et al.,
2015), whereas no other pathogenic or likely pathogenic
mutations were found. After these results, the patient was
diagnosed with ADAD.

FAMILY 2

A 37-year-an old Caucasian woman came to the clinic after a 1-
year history of clumsiness and weakness in lower limbs, followed
a few months later by clumsiness in upper limbs and dysarthria.
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FIGURE 1 | Family 1: pedigree, brain MRI, and 18F-fludeoxyglucose PET (FDG-PET). (A) Family pedigree. Dark symbols represent affected individuals, mother of
proband died at age 64 after being diagnosed with early-onset dementia. Her maternal uncle was mentally retarded, and the grandmother of proband suffered an
unspecified neurodegenerative disease. Arrow points to the proband. (B) Brain MRI showing widespread moderated cortical atrophy, strikingly in parietal lobes and
precuneus (red arrows), but preserving hippocampus. (C) FDG-PET of the brain shows diffuse cortical hypometabolism in the right hemisphere; and
hypometabolism in the precuneus, posterior cingulate, and paracentral gyrus of the left hemisphere. Images represent z-score deviations (warmer colors, more
hypometabolism). P, posterior; A, anterior; L, left; R, right.

Her personal and family history were unremarkable (Figure 2A).
At that time, the neurologic examination showed generalized
UMN signs, and MRI and EMG were normal. She was diagnosed
with PLS. Some years later, memory complaints emerged, and
the patient was finally institutionalized in an akinetic mutism
state 10 years after the disease onset. Gastrostomy was placed
5 years after the institutionalization, but neither LMN signs nor
respiratory insufficiency emerged.

A few years later, her two sons came consecutively to
the clinic complaining of asymmetric clumsiness beginning
in one lower limb at the age of 25 and 28 years old,
respectively. This was followed by contralateral involvement
short after, and clumsiness in upper limbs and dysarthria
within 2–8 years from disease onset. Neither the patients
nor their relatives complained of cognitive or behavioral
symptoms. Their personal history was unremarkable, and
both had received vocational training (as a mechanic and
electrician) but were unemployed. The neurologic examination
showed dysarthria and widespread UMN signs in bulbar,
cervical, and lumbar regions, without LMN signs. The
first neuropsychological exam showed normal MMSE in
both patients (30), but borderline intelligence quotients
(IQs) in the Wechsler adult intelligence test (WAIS-IV),
including borderline values in verbal comprehension and
processing speed indexes and normal working memory
and perceptual reasoning indexes. The disease progressed
toward anarthria and tetraparesis with pronounced
spasticity, predominantly in lower limbs, and a baclofen
pump was placed in one patient. No apparent progressive
cognitive impairment appeared throughout the disease
course, though the motor impairment precluded formal
neuropsychological evaluation. However, they presented
mild behavioral changes, mainly irritability and emotional
lability, which were attributed to the motor impairment. The

older patient died 14 years after the disease onset, probably
due to dysphagia-related complications, as he declined
gastrostomy placement.

In all three patients, routine blood tests and serologies were
unremarkable, and neither clinical nor neurophysiological signs
of LMN impairment were evident during the disease course. In
both siblings, brain MRI showed mild unspecific cortical atrophy
(Figure 2B). Scarcely scattered microbleeds together with focal
white matter hyperintensities in the anterior temporal lobe were
also visible in SWI and FLAIR, respectively (Figure 2B), but iron-
related hypointensity in SWI along the motor cortex was absent.
Brain FDG-PET of one sibling showed bilateral hypometabolism
in anterior temporal lobes, pre- and post-central gyri, and
cerebellum (Figure 2C).

Based on these findings a tentative diagnosis of definite PLS
was made according to current criteria (Turner et al., 2020).

In all three patients, whole exome sequencing (WES) was
performed after excluding a C9orf72 expansion. WES was done
using SureSelect Human All Exon v5 (Agilent) as capture
system, paired in reads with 101 nucleotides and ran in an
Illumina HiSeq2000 sequencing platform (Sistemas Genómicos).
For the bioinformatics analysis, the patient was admitted to the
Undiagnosed Rare Disease Program of CIBERER (ENoD). The
p.Leu166Pro mutation, classified as likely pathogenic according
to the ACMG guidelines (Richards et al., 2015), was found in all
three patients and was absent in healthy relatives, including the
mother of the proband (Figure 2A). No other pathogenic or likely
pathogenic mutations were found in this analysis.

Following this, the youngest sibling underwent an
18F-flutemetamol PET, which revealed diffuse increased
amyloid binding in parietal and frontal lobes, but sparing the
hypometabolic areas in the FDG-PET (Figure 2D).

According to these results, patients were
diagnosed with ADAD.
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FIGURE 2 | Family 2 pedigree, brain MRI, 18F-fludeoxyglucose PET (FDG-PET), and 18F-flutemetamol PET-TC. (A) Family pedigree: parents of the proband were
unaffected, suggesting a de novo mutation. The arrow points to the proband. Dark symbols represent affected individuals. (B) Brain MRI of patient IV.2 at his
34 years old (6 years after disease onset). Left: two axial T1 images showing unspecific mild global cortical atrophy. Middle: axial FLAIR image, which reveals
subcortical focal white-matter hyperintensities in the anterior temporal lobe (red arrows). Right: susceptibility-weighted (SW) image showing two microbleeds (red
arrows). (C) FDG-PET of patient IV.3 shows bilateral hypometabolism in anterior temporal lobes, pre- and post-central gyri, and cerebellum. Colder colors represent
lower glucose uptake. P, posterior; A, anterior; L, left; R, right. (D) 18F-flutemetamol PET of patient IV.3 shows diffusely increased amyloid binding in parietal and
frontal lobes, sparing anterior temporal lobes, pre- and post-central gyri, and cerebellum. Colder colors represent lower amyloid binding.

DISCUSSION

We describe four patients of two different pedigrees meeting
clinical criteria for definite PLS, caused by two mutations in
PSEN1 (p.Pro88Leu and p.Leu166Pro).

Mutations in PSEN1 are the most common cause of
ADAD, and over 300 mutations have been described, some
of them presenting with atypical phenotypes (Tang et al.,
2016). The p.Pro88Leu and p.Leu166Pro mutations have
been scarcely described before, but there is both preclinical
and clinical evidence of their pathogenicity (Moehlmann
et al., 2002; Lyoo et al., 2016; Liu et al., 2017) and are
considered as likely pathogenic according to the current
ACMG guidelines (Richards et al., 2015). Moreover, both
have been related to young-onset AD and atypical features,
such as spasticity, seizures, ataxia, and parkinsonism. However,
typically, short-term memory impairment appeared before
motor symptoms (Moehlmann et al., 2002; Lyoo et al., 2016;
Liu et al., 2017). Conversely, in our patients, both motor and
behavioral symptoms and signs preceded and predominated
over cognitive symptoms, initially leading to misdiagnosis.
Importantly, in both families, mutations in other ALS-causing
genes were ruled out.

In the patient harboring the p.Pro88Leu mutation, the
cognitive and behavioral symptoms progressed to cause dementia
approximately 5 years after symptoms onset. Interestingly,
while cognitive impairment predominantly affected language
and memory, she also showed severe behavioral impairment,
meeting the criteria for possible FTD. Accordingly, the FDG-
PET not only revealed hypometabolism in brain areas typically
impaired in AD (such as precuneus and posterior cingulate) but
also affecting the right frontal lobe (Figure 1C). Interestingly,
other PSEN1 mutations have been associated with both clinical
and neuropathological (including Pick bodies) features of FTD,
sometimes combined with typical AD features (Riudavets et al.,
2013). In this case, CSF biomarkers oriented toward a diagnosis
of AD, which was confirmed with the results of the gene panel.

More remarkably, in the patients harboring the p.Leu166Pro
mutation, mild cognitive and behavioral symptoms appeared
only several years after the motor symptoms onset and were
masked by the motor symptoms. Although the father of proband
could not be studied, the clinical and molecular information of
the family (Figure 2A) suggests that a de novo mutation occurred
in the proband. This is not surprising, since de novo mutations
have been described in the same residue previously (Lyoo et al.,
2016). Intriguingly, the FDG-PET in one of the patients showed
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hypometabolism in both anterior temporal lobes, pre- and post-
central gyri, and cerebellum, a pattern neither suggestive of AD
nor PLS (Van Laere et al., 2014). However, the disease progression
toward akinetic mutism in the proband suggests that severe
dementia might be a late feature in these patients. Moreover,
the finding of microbleeds on brain MRI suggests the presence
of amyloid angiopathy. Strikingly, the 18F-flutemetamol PET
showed widespread amyloid deposition in the brain, except in the
hypometabolic areas (Figure 2D), suggesting that amyloid was
not responsible for the symptoms of patients. This is in agreement
with a previous work, which suggested that Tau deposition in
the primary motor cortex was responsible for the UMN signs
in a patient harboring the same mutation (Lyoo et al., 2016).
Moreover, previous studies suggest that non-amnestic symptoms
are related to neurofibrillary tangles rather than to amyloid β

plaques (Tang et al., 2016).
Interestingly, patients with globular glial tauopathy, including

those harboring MAPT mutations, can also present as a UMN
syndrome and be diagnosed with PLS (Erro et al., 2019; Forrest
et al., 2021). All this suggests that some tauopathies can show a
special tropism for UMN.

Other PSEN1 mutations (p.Leu381Phe, p.Leu381Val, and
p.Ala431Glu) have been recently described in patients clinically
diagnosed with PLS (Jazi et al., 2019; Lewis et al., 2020). These
and our mutations, all involve transmembrane domains, but
this is not surprising, since most mutations are located in these
domains. Moreover, other mutations in these same codons may
associate with atypical symptoms but usually start with memory
complaints.2 Furthermore, although some series have suggested
that PSEN1 mutations after codon 200 are more likely to present
spasticity than those before codon 200, this is not supported
by the data nor by other series (Tang et al., 2016). Thus,
the possibility of a genotype-phenotype correlation warrants
further studies.

Primary lateral sclerosis is a mainly sporadic clinical syndrome
consisting of a progressive UMN impairment frequently starting
as spastic paraplegia and spreading rostrally to affect the cervical
and bulbar region, usually within the first 10 years of the
disease (Turner and Talbot, 2020). Some of these patients will
develop LMN impairment during the disease course, and most
pathological descriptions have shown cytoplasmic aggregates of
TDP-43 in motor neurons (Pringle et al., 1992; Turner and Talbot,
2020). Consequently, PLS was proposed to be a disease of the
ALS spectrum (Turner and Talbot, 2020; Turner et al., 2020).
However, since there is currently no confirmatory diagnostic
biomarker, the diagnosis remains clinical, based on a compatible
clinical picture and disease course, together with the exclusion
of mimics and other neurodegenerative disorders (Turner and
Talbot, 2020; Turner et al., 2020).

Nevertheless, clinically diagnosed PLS and sporadic
HSP shows a striking clinical and genetic overlap
(Brugman et al., 2009; Mitsumoto et al., 2015; Vázquez-Costa
et al., 2016; Yang et al., 2016). Consequently, many patients can
be diagnosed either with PLS or with sporadic HSP, using current
criteria (Vázquez-Costa et al., 2016). Furthermore, this clinical
and genetic overlap includes other neurodegenerative diseases,

2https://www.alzforum.org/mutations/psen-1

such as the globular glial tauopathies (Erro et al., 2019; Forrest
et al., 2021), atypical parkinsonisms (Mitsumoto et al., 2015),
and, now, ADAD (Jazi et al., 2019; Lewis et al., 2020).

Although the patients met clinical criteria of definite PLS
(Turner et al., 2020), the early onset, the presence of cognitive
impairment, the family history of neurodegenerative diseases,
and atypical findings in the FDG-PET and/or MRI were red flags
that led us to expand the diagnostic workup. Therefore, in PLS
cases with these atypical features, the use of amyloid-specific
biomarkers should be considered. Moreover, since de novo or
autosomal recessive mutations can cause a PLS-like syndrome,
the screening of genes involved in neurodegenerative diseases
should probably be part of the diagnostic workup of patients
with PLS (Yang et al., 2016), even in the absence of family
history. With the advances in genetics, it is foreseeable that new
genes will join the list of PLS causes. Thus, and until TDP-43-
specific biomarkers are available, PLS should remain considered
a syndrome, encompassing different neurodegenerative diseases.
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