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Abstract

Background Currently, alternative medical imaging methods for the assessment of pul-

monary involvement in patients infected with COVID-19 are sought that combine a higher

sensitivity than conventional (attenuation-based) chest radiography with a lower radiation

dose than CT imaging.

Methods Sixty patients with COVID-19-associated lung changes in a CT scan and 40 sub-

jects without pathologic lung changes visible in the CT scan were included (in total, 100, 59

male, mean age 58 ± 14 years). All patients gave written informed consent. We employed a

clinical setup for grating-based dark-field chest radiography, obtaining both a dark-field and a

conventional attenuation image in one image acquisition. Attenuation images alone, dark-

field images alone, and both displayed simultaneously were assessed for the presence of

COVID-19-associated lung changes on a scale from 1 to 6 (1= surely not, 6= surely) by four

blinded radiologists. Statistical analysis was performed by evaluation of the area under the

receiver–operator-characteristics curves (AUC) using Obuchowski’s method with a 0.05

level of significance.

Results We show that dark-field imaging has a higher sensitivity for COVID-19-pneumonia

than attenuation-based imaging and that the combination of both is superior to one imaging

modality alone. Furthermore, a quantitative image analysis shows a significant reduction of

dark-field signals for COVID-19-patients.

Conclusions Dark-field imaging complements and improves conventional radiography for the

visualisation and detection of COVID-19-pneumonia.
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Plain language summary
Computed tomography (CT) imaging

uses X-rays to obtain images of the

inside of the body. It is used to look at

lung damage in patients with COVID-

19. However, CT imaging exposes the

patient to a considerable amount of

radiation. As radiation exposure can

lead to the development of cancer,

exposure should be minimised. Con-

ventional plain X-ray imaging uses

lower amounts of radiation but lacks

sensitivity. We used dark-field chest

X-ray imaging, which also uses low

amounts of radiation, to assess the

lungs of patients with COVID-19.

Radiologists identified pneumonia in

patients more easily from dark-field

images than from usual plain X-ray

images. We anticipate dark-field X-

ray imaging will be useful to follow-

up patients suspected of having lung

damage.
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The pandemic of severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) has led to a global medical,
social, and economic crisis. The respective respiratory ill-

ness, coronavirus disease 2019 (COVID-19), has so far caused
over six million deaths worldwide1.

At present, the reverse transcription-polymerase chain reaction
(RT-PCR) test is the standard of reference for the definitive
diagnosis of COVID-192,3. While the Fleischner Society recom-
mends computed tomography (CT) imaging in patients with
COVID-19 and worsening respiratory status under certain
conditions4, the use of CT as a primary screening tool is
discouraged5, among other things, because it is associated with a
rather high radiation dose. Therefore, alternative low-dose ima-
ging techniques for the reliable evaluation and monitoring of
pulmonary pathologies are highly desirable. This includes the
potential application for follow-up assessment of patients suf-
fering from long-COVID-syndrome, as radiation exposure
reduction is crucial, especially in the setting of repetitive scans.

Dark-field X-ray imaging6 has been proposed as a new diag-
nostic tool for the assessment of micro-structural changes in lung
parenchyma and has been positively evaluated for the imaging of
various lung diseases in mouse models7–9 and first studies in
humans10,11. In contrast to conventional X-ray imaging, which
utilises the attenuation of X-rays in the specimen, X-ray dark-
field contrast is generated by small-angle scattering of X-rays due
to multiple refractions6. While the healthy lung consists of many
refracting tissue–air-interfaces, generating a high dark-field sig-
nal, pulmonary disorders such as lung cancer, emphysema,
fibrosis, or pneumonia decrease the dark-field signal by reducing
the number of interfaces7,8,12,13. Previous works have already
shown the feasibility of upscaling from the mouse model to
human dimensions with a radiation dose comparable to con-
ventional X-rays10,11,14. In this work, we describe several key
advances of the dark-field chest X-ray imaging technique and its
first application for the assessment of COVID-19-pneumonia in
the human lung.

In a reader study, we found that dark-field imaging has a
higher sensitivity for COVID-19-pneumonia than attenuation-
based imaging and that the simultaneous display of both is
superior to one imaging modality alone. Furthermore, a quanti-
tative image analysis shows a significant reduction of dark-field
signal for COVID-19-patients.

Methods
Hardware. The X-ray tube (MRC 200 0508, Royal Philips, The
Netherlands) is operated at 70 kV in a pulsed mode at a frame
rate of 30 Hz. The tube voltage was chosen because the most
favourable combination of image quality, signal strength, and
sharpness are present at 70 kV in both dark-field and attenuation
images15. Tube current is adapted to each patient via his or her
body mass index (BMI), as a high correlation between BMI and
necessary tube current was found in a first-patient study. The flat-
panel detector (Pixium FE 4343, Trixell, France) simultaneously
acquires images at a time window of about 17 ms per frame. One
scan consists of a maximum of 195 single frames taken in about
7 s. An additional mobile collimator (2 mm tungsten) is fixed to
the source grating G0, limiting the actively irradiated area to the
gratings, further reducing patient exposure. Downstream both
collimators, an ionisation chamber (Diamentor CI, PTW, Ger-
many) captures the entire radiation area to record the applied
radiation dose of each scan. The effective patient dose is estimated
from the measured dose area product14.

Clinical image acquisition. As both the X-ray tube and detector
are stationary, the patient is positioned within the beam path via a

lifting platform inside the patient’s cabin. Both the positioning of
the lifting platform and the movement of the interferometer can
be operated with the control panel, located outside of the patient
cabin. The shutters for vertical and horizontal collimation are also
adjusted from there. The scan is triggered from the control room,
and automatic breathing instructions are given. All images were
acquired with full inspiration.

Image reconstruction. Dark-field radiography with a three-
grating Talbot–Lau interferometer works by analysing the fringe
pattern produced by the phase grating G1 and sampled by the
analyser grating G2. The source grating G0 is necessary to assure
spatial coherence from a polychromatic X-ray source16. As the
fringe pattern is too fine to be resolved by a conventional flat-
panel detector, a slight mismatch in grating alignment is intro-
duced to create moiré fringes on a resolvable scale for scanning
image acquisition. By scanning the moiré fringes across the
sample, a varying intensity is registered in every pixel for each
image frame17,18. The so-called stepping curve can be extracted
by a least-squares fit of a sinusoidal intensity model to the
recorded intensities6. Additionally, scanning allows for the
expansion of the field of view (FOV) in one direction, enabling
the coverage of a human thorax. The difference between the
patient scan and reference scan in the recorded intensities allows
extraction of the attenuation and the dark-field image19. The high
scanning speed introduces mechanical vibrations and, therefore,
misalignment of the gratings, which we estimate with a
maximum-likelihood method20. Still, the acquisition time is
increased compared to conventional chest radiography, resulting
in motion artefacts, especially around the heart contour and the
aortic arch. By artificially narrowing the slot and reducing the
number of frames for image extraction in affected areas, these
motion artefacts can be strongly reduced21.

Patient recruitment
Patients. Institutional Review Board (Ethics Commission of the
Medical Faculty, Technical University of Munich, Germany; 587/
16 S and 116/20 S) and national radiation protection agency
approval Z5-22462/2-2017-021 and Z5–22464/2020-047-G) was
obtained prior to this study. Patients gave their written informed
consent prior to study participation.

COVID-19 patients. Figure 1 illustrates COVID-19 patient
selection. Between May 2020 and December 2020, patients of
legal age (≥18 years) that underwent chest CT at our institution as
part of their diagnostic workup and with a clinically suspected
COVID-19 infection were screened for study participation. All
CT images of potential study participants were analysed for
COVID-19-pneumonia by two of three radiologists (F.T.G., A.S.,
A.A. with 2, 6 and 12 years of experience in chest CT imaging)
immediately after the scan according to the CO-RADS assess-
ment scheme for patients suspected of having COVID-1922.

Only patients with a CO-RADS category 4 (suspicious for
COVID-19), 5 (typical for COVID-19), or 6 (RT-PCR positive for
SARS-CoV-2, if patients had been tested before the CT scan) were
included in this study. Other inclusion criteria were the ability to
consent, to stand upright without help, and to hold breath for 7 s.
Eligible patients were approached right after the CT scan.

Exclusion criteria were a negative RT-PCR test within 2 days
before the CT scan, pregnancy, lung cancer, and pneumothorax.
Sixty patients with suspected COVID-19 infection were included
in this study.

Controls. Between October 2018 and January 2020, patients of
legal age (≥18 years) that underwent chest CT at our institution as
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part of their diagnostic workup were screened for study partici-
pation. All CT images of potential study participants were ana-
lysed for pathologic lung changes by three radiologists (F.T.G.,
A.S., A.A.F. with 2, 6 and 12 years of experience in chest CT
imaging). Inclusion criteria were a normal chest CT scan, the
ability to consent, to stand upright without help, and to hold
breath for 7 s. Eligible patients were approached right after the CT
scan. Exclusion criteria were pregnancy, strong medical condi-
tions, and changes in the lung tissue, such as cancer, pleural
effusion, atelectasis, emphysema, infiltrates, ground glass opa-
cities, and pneumothorax. Forty patients were included in the
control group, previously reported by Gassert et al.10.

Computed tomography. CT was performed on one of three CT
scanners (Philips iCT, Siemens SOMATOM, and Philips IQon
Spectral CT) with the following parameters, according to routine
clinical protocols: Reconstructed slice thickness, 0.625-0.9 mm;
pixel spacing, 0.4/0.3 mm; pitch factor, 0.8/0.9; tube voltage
(peak), 120 kV; modulated tube current, 125–350 mAs. Images
were reformatted in 3 mm slice thickness using a lung-specific
kernel.

Image evaluation. Four radiologists (F.T.G., A.S., A.A.F., and
D.P.) with different levels of experience in dark-field imaging (2,
5, 7, and 9 years) assessed only attenuation-based radiographs,
only dark-field radiographs, and both displayed simultaneously
for all patients. All readers were blinded to the group affiliation of
images, and images were presented in random order. Readers
used a PACS system and authorised monitors used in everyday

clinical practice and were asked to rate the presence of COVID-
19-pneumonia on a scale from 1 to 6 (1= surely not, 2= very
unlikely, 3= unlikely, 4= likely, 5= very likely, 6= surely).
Window settings were optimised for image illustration with the
same window level for all images within each modality. Readers
were allowed to adjust window levels at their convenience. Values
1–3 were counted as negatives, while values 4–6 were counted as
positives.

Attenuation-based images were additionally evaluated by using
the winning neural network of the SIIM-FISABIO-RSNA
COVID-19 Detection Challenge23, which provides a probability
for the presence of COVID-19-pneumonia for each patient.

The quantitative dark-field coefficient was calculated according
to Gassert et al.10.

Statistics and reproducibility. The area under the receiver
operating characteristic (ROC) curve (AUC) was calculated for all
three reading modalities, and AUC values were tested for dif-
ferences with Obuchowski’s method for correlated and clustered
ROC data24. Additionally, a z-test based on AUC values was used
to determine whether the ratings of the two groups (healthy
subjects and patients with COVID-19-pneumonia) differ within
each reading modality. The averaged dark-field coefficients were
tested for normal distribution using the Shapiro–Wilk-test, and
only the coefficients of the healthy subjects were found to follow a
normal distribution. Therefore, a two-sided Mann–Whitney-U-
test was applied to determine whether the two groups (healthy
subjects and patients with COVID-19-pneumonia) differ in
average dark-field coefficient. The participant’s demographic
parameters, age and weight were tested for significant differences
between participants with COVID-19-pneumonia and the control
group using Student’s t-test. For the parameter sex, a χ2 test was
used. For all tests, a 0.05 level of significance was chosen. The
inter-reader reliability for the presence of COVID-19-pneumonia
was rated with Cohen’s weighted kappa (with quadratic weights).

As images were acquired in a clinical setting and COVID-19-
associated lung changes change over time, reproduction of image
acquisition is not feasible. Statistical analysis of acquired images,
however, is reproducible.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
The Dark-field X-ray Prototype. The first demonstrator system
for clinical dark-field chest radiography in human patients con-
sists of a conventional radiography system equipped with a three-
grating X-ray interferometer10,11. A schematic of the system and
a photograph are shown in Fig. 2a, b. The interferometer enables
the simultaneous acquisition of both conventional attenuation
and novel dark-field X-ray images. A medical X-ray generator is
suspended from the ceiling to decouple the vibrations due to its
anode rotations from the interferometer. The patient is standing
upright within the interferometer inside a patient cabin to prevent
injury and damage to the interferometer. A conventional flat-
panel detector is mounted behind the patient cabin and the
gratings, enabling a FOV of about 37 cm × 37 cm in the patient
plane.

This large-scale system posed challenges previously not
encountered. As the production of large area absorbing gratings
with a high aspect ratio remains challenging, the analyser grating
consists of six separate tiles. To prevent shadowing resulting from
the cone beam geometry of the setup25, we designed a grating
holder that allows bending the gratings along the axis of their

Fig. 1 Flowchart illustrating patient selection. Subjects with a CO-RADS
category≥4 were screened for study participation. Taking into account the
exclusion criteria, 60 participants were included in the COVID-19 cohort.
Forty healthy subjects formed the control group.
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lamellae via dowel pins, as well as individual positioning of the
tiles. Figs. 2c and 2d depict a schematic and a photograph of the
grating holder with its components, respectively.

Further, an in-depth optimisation of the gratings themselves is
necessary for the optimal performance of the interferometer.
Interferometric visibility is a measure of contrast in the
interference pattern generated by the gratings. A higher initial
visibility results in a better signal-to-noise (SNR) ratio in the final
dark-field image26, which is retrieved from the visibility reduction
induced by small-angle scattering. Depending on setup-specific
parameters, such as the length of the interferometer and X-ray
spectrum, the grating parameters, such as duty cycle and lamella
height, need to be adapted for maximum visibility. Therefore, a
propagation and simulation framework for X-ray grating
interferometers was created to optimise these grating
parameters27. An exemplary simulated visibility map for
optimising G1 height and duty cycle can be found in Fig. 2d.
In an iterative process, parameters of all three gratings were
optimised regarding obtained visibility and producibility.

Ensuring the uniformity of the gratings’ duty cycle and lamella
height is crucial for maximising the visibility of the setup and,
thus, image quality. The newly developed angular X-ray
transmission28 (Fig. 2f) allows for non-destructive and easily
implementable parameter examination of gratings, and conven-
tional SEM (Fig. 2f, inset) was used for local and surface-based
analysis.

The interferometric visibility also depends on the number of
moiré fringes, as depicted in Fig. 2g. The change in fringe number
is achieved by adjusting the exact position of the phase grating
within the beam path. A certain number of moiré fringes is
observed because the grating periods do not exactly match the
magnification condition of the cone beam geometry anymore. We

found the highest visibility of 35% for 11 fringes and chose this
configuration for clinical operation (see Fig. 3b).

Optimising interferometer performance. Uniform visibility in
the FOV ensures a constant dark-field sampling range, as the
dark-field corresponds to a loss of visibility induced by a sample.
The interferometric visibility without a sample in the beam path
amounts to approximately 35%, as depicted for one inter-
ferometer position in Fig. 3a. The achieved visibility corresponds
to the simulated visibility with the optimised grating parameters
(cf. Fig. 2e). An exemplary raw data frame without a sample in
the beam path can be seen in Fig. 3b. The moiré fringes, intro-
duced by a small mismatch of the grating positions, are used to
sample the intensity pattern with different relative grating posi-
tions when scanning the illuminated area over one pixel. Fur-
thermore, the stitching gaps between the six grating tiles of the
analyser grating subdivide the raw frame. By introducing a
sample in the beam path, both the fringe pattern’s mean intensity
as well as its contrast can change. Figure 3c depicts the raw data
of a frame taken from an exemplary patient scan. Absorbing
features appear dark, while the scattering lung reduces the con-
trast of the fringe pattern.

As the measured visibility in a polychromatic setup is a
weighted average of photon-energy-dependent visibility, an
attenuating object changes the measured visibility due to
spectrally varying attenuation, resulting in beam hardening
artefacts in dark-field images29. Figure 3e depicts horizontal
profiles of the beam hardening-induced change in visibility and
therefore generated pseudo-dark-field signal that occurs by
introducing variant amounts of polyoxymethylene (POM) in
the beam path. Due to inhomogeneities in the gratings as well as a
variation of the source spectrum over the whole FOV, this effect

Fig. 2 Design and implementation of the dark-field chest X-ray prototype. a Schematic and b photograph of the prototype system, combining a
conventional radiography setup with a three-grating X-ray interferometer. c Schematic and d photograph of the G2 grating holder allowing individual
positioning of the gratings as well as bending of the gratings according to the cone-beam geometry. Bending prevents the shadowing of the gold bars of the
high aspect ratio gratings. e Simulated visibility for optimising of grating parameters such as duty cycle and height. The optimisation was carried out
iteratively for all three gratings. f Angular X-ray transmission measurements and scanning electron microscopy image (inlet) for one of the grating
structures. g Influence of a number of fringes per frame on mean interferometric visibility.
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depends on the spatial position on the detector. We see a strong
dependence on the individual tiles of grating G2, with less
pronounced changes in the scanning direction (not in the figure).
We implemented a correction based on POM (aluminium), as its
spectral absorption is similar to the one of soft tissue (bones).
Using the approximation that the attenuation is caused by POM
and aluminium in equal parts, we calculate the beam hardening-
induced dark-field signal pixelwise, and subtract it from the
measured dark-field signal.

Another effect distorting the visibility signal is Compton
scatter, as it superimposes the recorded intensity pattern resulting
in reduced contrast and therefore increased dark-field signal. A
correction for Compton scatter-induced dark-field signal is
implemented, based on the measured attenuation and Monte-
Carlo simulations that are adapted from the Skyflow Software
(Royal Philips, The Netherlands)30,31 for setup-specific para-
meters. From the attenuation image, the distribution of the
material in the beam path approximated as water only is
estimated. The intensity at the detector due to scattering is then
calculated from the material distribution using scattering kernels,
determined previously by Monte-Carlo simulations taking into
account the spectrum and the setup geometry. An exemplary
Compton scatters simulation is shown in Fig. 3d.

Within the approval process of the demonstrator system,
clinical safety measures such as patient exposure and automatic
shut-off to prevent overexposure were validated. An anthro-
pomorphic thorax phantom was used for evaluating the detector
dose in the examined lung (cf. Fig. 3f, Inlet depicts dose image of
the whole FOV). The target detector dose was chosen such that
the effective dose of the reference person amounts to 35 µSv for
one scan in posterior-anterior orientation14.

The so obtained dose values (Fig. 3g) for examined patients
range from about 20–80 μSv, depending mainly on the patient’s
weight, with a mean value of 46.6 μSv and a median of 41.7 μSv,
which is within reported chest radiography values32.

COVID-19 in dark-field chest X-rays
Image appearance. A total of 100 patients (59 men, 41 women)
were included, of which 40 were healthy controls, and 60 had

COVID-19-pneumonia. The demographics of all study partici-
pants are listed in Table 1. No differences were found between
healthy controls and patients with COVID-19-pneumonia
regarding sex, age, and weight.

Figure 4 shows the first X-ray dark-field imaging results on
COVID-19 patients and healthy controls. Compared to dark-field
images in healthy subjects, those in patients with typical COVID-
19-pneumonia in the CT scan showed an overall decrease of the
dark-field signal. While dark-field images in healthy subjects
exhibit a rather homogeneous structure10, images of COVID-19
patients appear rather inhomogeneous and patchy, especially in
the lung periphery, corresponding well to ground glass opacities
in the respective CT scan (cf. Supplementary Fig. 1). While
changes are obvious in dark-field images, conventional X-ray
images of healthy subjects and infected patients are difficult to
distinguish.

Reader study and quantitative analysis. To evaluate the potential
clinical impact, we performed a reader study for the detection of
COVID-19-pneumonia on both attenuation-based and dark-field
images alone, as well as both images, displayed simultaneously.
The ratings for the presence of COVID-19-pneumonia in healthy
subjects and patients with COVID-19-pneumonia in the CT scan
did show a highly significant difference for all displayed varia-
tions, attenuation-based, dark-field-based imaging, and the

Fig. 3 Optimising the interferometer for the detection of pulmonary pathologies. a Interferometric visibility map, which is a measure of the setup
sensitivity. b One exemplary raw image frame without and c with a patient in the beam path. The changes in the interference pattern induced by a sample
allow for (conventional) attenuation- and (novel) dark-field image extraction. d Monte-Carlo simulation of Compton scatter, adapted for setup-specific
parameters. Based on such simulations, a correction for Compton scatter-induced dark-field contribution was applied. e Beam hardening induced by an
equivalent material (here polyoxymethylene, POM). We implemented a beam hardening correction based on POM, assuming similar spectral behaviour
between calibration material and patient. f Dose histogram of the lung region and detector dose map of a thorax phantom (inlet). g Histogram of effective
dose deposited in the patients. For the patients described here, we report a mean (median) effective dose of 46.6 (41.7) µGy.

Table 1 Subject demographics.

Parameter All Healthy COVID-19 p-value

Number of
participants

100 40 60

Men/women 59/41 25/15 34/26 0.56
Age in years 58 ± 14 61 ± 12 57 ± 15 0.18
Weight in kg 79 ± 16 79 ± 13 79 ± 16 0.89

Values are given as mean ± standard deviation. P-values for the significance of differences
between the COVID-19 group and the healthy controls are listed in the very right column. The
40 healthy subjects were also included in Gassert et al.10 and Urban et al.39.
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combination of both (p < 0.05 for all) (Fig. 5a). Overall rating
values for the presence of COVID-19-pneumonia in infected
patients were substantially higher for dark-field imaging
(4.84 ± 1.39) compared to attenuation-based imaging

(3.16 ± 1.46). Additionally, rating values for infected patients were
higher for the combination of dark-field-based and (conven-
tional) attenuation-based imaging (5.04 ± 1.37) compared to
dark-field-based imaging alone. In a ROC analysis for the

Fig. 4 Dark-field and conventional chest X-rays of healthy and COVID-19-infected subjects. a Dark-field and b conventional (attenuation-based) chest
radiographs of a healthy subject. The dark-field radiograph exhibits a strong, homogeneous dark-field signal. The respective attenuation-based image
shows no apparent pathology. c Dark-field and d attenuation-based chest radiographs of a patient infected with COVID-19. Compared to the healthy
subject, the infected patient shows an overall decrease of signal intensity. While the signal of the healthy subject is homogeneous, the dark-field signal of
the infected patient appears inhomogeneous and patchy, especially in the periphery of the lung (arrowheads). e–g Additional exemplary dark-field
radiographs of healthy subjects, h–j, respective attenuation-based radiographs. k–v More exemplary dark-field and respective attenuation-based images of
patients infected with COVID-19. k–m, Dark-field images with a generally reduced signal intensity. q-s, Dark-field images with a rather inhomogeneous,
patchy texture, predominantly in the periphery. n–p and t–v respective attenuation-based images in comparison, in which it is rather difficult to impossible
to detect COVID-19-pneumonia.
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differentiation between infected patients and healthy subjects, the
effect size expressed as the area under the ROC curve (AUC) was
0.78 (95% confidence interval (CI): 0.73–0.83) for attenuation-
based radiographs, 0.91 (95% CI: 0.88–0.94) for dark-field images
and 0.93 (95% CI: 0.91–0.96) for the combination of both
(Fig. 5b). By including dark-field images, AUC values were sig-
nificantly higher compared to attenuation images only (p= 3.9e
−6 for dark-field alone, p= 3.5e−9 for combination).

For comparison, we additionally applied the winning neural
network of the SIIM-FISABIO-RSNA COVID-19 Detection
Challenge23, trained on conventional attenuation images, to the
attenuation images of both the COVID-19 patients and healthy
controls. In this setting, an AUC value of 0.88 was achieved,
which can also be found in the literature33. This value was higher
than the AUC achieved by readers on the same images. However,
compared to the trained network, readers achieved an even higher
AUC when reading dark-field images alone or the combination of
both imaging modalities (Fig. 5b).

The overall sensitivity for COVID-19-pneumonia was 0.43
(95% CI: 0.38–0.48) for attenuation-based images, 0.86 (95% CI:
0.80–0.92) for dark-field images and 0.88 (95% CI: 0.82–0.94) for
the combination of both. Respective specificities and accuracies,
also on an individual reader basis, are shown in Supplementary
Table 1. The inter-rater reliability between the readers ranged
from 0.16 – 0.42 for attenuation-based imaging, 0.56–0.67 for
dark-field imaging and 0.48–0.74 for the combination of both.
Reader-specific reliability scores are provided in Supplementary
Table 2. The average rating of image quality over all readers was
4.97 ± 0.99 for dark-field and 5.35 ± 0.66 for attenuation-based
imaging.

For a quantitative analysis of the dark-field signal, we
calculated the average dark-field coefficient of every patient’s
lung, corresponding to the average dark-field signal generated per
path length through the lung parenchyma10. In the case of a
collimation that covered part of the lungs, the lung volume and
hence the dark-field coefficient, could not be calculated, resulting
in a reduced number of participants in the COVID-19 cohort
(n= 52). The average dark-field coefficient was significantly

lower in patients infected with COVID-19 (2.15 ± 0.44 m−1)
compared to healthy subjects (2.53 ± 0.44 m−1, p= 8.6e−5), as
depicted in Fig. 5c.

The scores of the performed reader study, as well as the dark-
field coefficients, are listed in Supplementary Data 1.

Discussion
In this study, we present the first application of the recently
developed dark-field X-ray imaging technology for the assessment
of COVID-19-pneumonia and demonstrate its superiority over
conventional radiography. This essentially introduces a low-
radiation, medical imaging alternative to present CT imaging for
COVID-19-pneumonia detection and therapy follow-up. Along
with detailed subjective and objective clinical evaluation results,
we also present some of the key technological improvements,
which were necessary to optimise the system for imaging of
pulmonary pathologies such as COVID-19-associated lung
changes.

While we have achieved promising first results, some limita-
tions of our approach and study exist. On the technological side,
it first has to be noted that due to the restricted available grating
sizes, the setup was realised as a slot scanning system. While this
compromise allowed the first realisation of a clinical dark-field
radiography study on COVID-19-pneumonia, future hardware
improvements, such as the fabrication of full-field gratings, could
enhance the current realisation by eliminating the scanning
procedure and thus simplifying the setup. Gratings with larger
aspect ratios could increase interferometric visibility, leading to a
higher SNR ratio in dark-field images or lower effective doses.
Also, gratings with smaller periods would increase the sensitivity
of the setup, enabling the use of higher tube voltages and thus
further decreasing the effective patient dose.

From a more clinical perspective, we showed that X-ray dark-
field chest imaging is a fast, low-dose technique that yields both a
conventional attenuation image and a novel, complementary
dark-field image. It allows for the reliable detection of COVID-
19-pneumonia and is, in that respect, superior to conventional

Fig. 5 Results of clinical evaluation and statistical analysis. a Box plot of reader scores for both healthy subjects (n= 40) and infected patients (n= 60)
in dark-field-based, attenuation-based, and dark-field & attenuation-based readings. b Receiver operator characteristic (ROC) analysis for the respective
modalities for the differentiation between infected patients (n= 60) and healthy subjects (n= 40). Additionally, an AI algorithm (convolutional neural
network) for COVID-19-pneumonia detection was applied for attenuation image evaluation. Area under the curve (AUC) values were 0.78 (attenuation),
0.88 (trained network on attenuation), 0.91 (dark-field), and 0.93 (dark-field & attenuation), respectively. c Objective, quantitative image analysis, showing
the average dark-field coefficient (integrated over the whole lung area and evaluated after segmentation) for the lungs of healthy subjects (n= 40) and
infected patients (n= 52) in a box plot. Significant differences are indicated by asterisks: *, p < 0.05. Abbreviations: AUC, area under the curve. Boxes in the
box plots extend from the lower to upper quartile values of the data, with a line at the median. The whiskers extend to 1.5 times the interquartile range
(Q3–Q1). Small circles represent flier points past the end of the whiskers. Underlying data can be found in Supplementary Data 1.
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radiography. For the latter, our results are in line with a previous
study by Self et al.34, who found a similar sensitivity for the
detection of pulmonary opacities in conventional attenuation
radiographs as we found for attenuation images alone. In the
performed reader study, the simultaneous presentation of both
attenuation images and dark-field images yielded an even higher
sensitivity compared to each imaging technique individually. The
combined information from both attenuation and dark-field
images provide an even better picture of the ventilation situation
of the lung, also reflected by the higher inter-rater reliability for
the combination of both imaging modalities compared to each
imaging modality separately. Even though the achieved sensitivity
when reading both modalities is not as high as in CT imaging34, it
is still reasonably high and comes with only a fraction of the dose.
We included only patients with moderate courses of the disease
that were able to stand upright and hold their breath for the
duration of the scan. These patients could be clearly distinguished
from healthy controls, underlining the potential of the technique
to detect even minor lung changes such as ground glass opacities.

While the evaluation of attenuation images was enhanced by a
trained neural network, the reader-based assessment of dark-field
images outperforms the algorithm. Finally, we are confident that
there is potential to further enhance these results by applying
artificial intelligence on dark-field images once a sufficiently large
number of cases is available for training.

The patient study also exhibits some limitations. The study
cohort, comprising 100 subjects, is presently relatively small, and
the technique must be further evaluated in future studies with
larger cohorts. In this context, another drawback is also that
potential pulmonary comorbidities in COVID-19 patients are not
taken into account, while the control group comprised only
healthy subjects without any pulmonary disorders. While this
initial pilot study aimed at evaluating the accuracy of X-ray dark-
field imaging for the detection of COVID-19-pneumonia com-
pared to pulmonary healthy subjects, future studies must be
performed to evaluate the technique for the assessment of the
lung when other pathologies are present.

Moreover, as the average dark-field coefficient is a measure of
the alveolar integrity, it decreases with the presence of COVID-
19-pneumonia. Currently, no pixel-based analysis is available, as
the projected lung thickness in each pixel, which is necessary for
the normalisation of the dark-field signal with the respective lung
thickness, remains unknown. Therefore, only the average dark-
field coefficient of the whole lung is available as the total signal is
normalised with the lung volume. This leads to only a small
reduction of the average dark-field coefficient in the presence of
beginning and localised pneumonia, while the dark-field images
show a distinct localised signal decrease in these cases. Whereas
the quantitative analysis does not allow for the assessment of local
changes in dark-field signals, radiologists may detect patterns of
local signal losses. Future studies are needed to analyse the dark-
field signal locally and therefore allow for a quantitative assess-
ment of the alveolar integrity on a pixel basis.

While further technological improvements might enable a more
accurate assessment of pulmonary pathologies in the future, more
clinical studies are needed to evaluate the technique’s potential for
lung imaging. Dark-field imaging might, for example, also be sui-
table for disease and treatment monitoring of COVID-19 patients
due to the obtained image-based information on the lung’s alveolar
condition at a low effective patient dose. With constantly new
variants increasingly leading to higher infection rates35 and severe
courses in younger patients36, dark-field imaging might be a low-
radiation alternative for disease monitoring, especially in patients
where repetitive CT scans should be avoided. Low-dose imaging
techniques such as dark-field radiography are also highly desirable
for the assessment of pulmonary involvement in patients with long-

COVID-syndrome. However, this potential use case of the pre-
sented technique is yet to be evaluated. Nevertheless, the presented
study highlights the potential of dark-field chest X-ray imaging for
the assessment of COVID-19-pneumonia and shows that it might
therefore be a promising new tool in the fight against the SARS-
CoV-2 pandemic.

Data availability
The underlying data of Fig. 5 can be found in Supplementary Data 1. Other underlying
data used in the evaluation of this study can be provided without patient identification
upon reasonable request to researchers affiliated with accredited research institutions
after entering a signed data access agreement. Proposals are required to address scientific
questions and will be reviewed individually. Please direct your request to
manuela.frank@tum.de.

Code availability
Statistical analysis was performed with Python (version 3.8.5), specifically using the
packages NumPy (version 1.20.2)37 and SciPy (version 1.5.4)38, as well as R (version
4.1.1) for the ROC analysis as described in the Methods section. We used the code
available at https://www.kaggle.com/code/nguyenbadung/siim-covid19-2021/notebook?
scriptVersionId=69474844.

Received: 26 July 2022; Accepted: 9 November 2022;

References
1. Johns Hopkins University. COVID-19 Dashboard. https://gisanddata.maps.

arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6. (2022).
2. Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel

coronavirus–infected pneumonia. N. Engl. J. Med. 382, 1199–1207 (2020).
3. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019

novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet
395, 507–513 (2020).

4. Rubin, G. D. et al. The role of chest imaging in patient management during the
COVID-19 pandemic: a Multinational Consensus Statement From the
Fleischner Society. Chest 158, 106–116 (2020).

5. Raptis, C. A. et al. Chest CT and coronavirus disease (COVID-19): a critical
review of the literature to date. Am. J. Roentgenol. 215, 839–842 (2020).

6. Pfeiffer, F. et al. Hard-X-ray dark-field imaging using a grating interferometer.
Nat. Mater. 7, 134–137 (2008).

7. Hellbach, K. et al. In vivo dark-field radiography for early diagnosis and
staging of pulmonary emphysema. Invest. Radiol. 50, 430–435 (2015).

8. Yaroshenko, A. et al. Improved in vivo assessment of pulmonary fibrosis in
mice using X-ray dark-field radiography. Sci. Rep. 5, 17492 (2015).

9. Meinel, F. G. et al. Diagnosing and mapping pulmonary emphysema on X-ray
projection images: incremental value of grating-based X-ray dark-field
imaging. PLoS ONE 8, e59526 (2013).

10. Gassert, F. T. et al. X-ray dark-field chest imaging: qualitative and quantitative
results in healthy humans. Radiology 301, 389–395 (2021).

11. Willer, K. et al. X-ray dark-field chest imaging for detection and quantification
of emphysema in patients with chronic obstructive pulmonary disease: a
diagnostic accuracy study. Lancet Digit. Health 3, e733–e744 (2021).

12. Scherer, K. et al. X-ray dark-field radiography—in-vivo diagnosis of lung
cancer in mice. Sci. Rep. 7, 402 (2017).

13. Hellbach, K. et al. X-ray dark-field imaging to depict acute lung inflammation
in mice. Sci. Rep. 8, 2096 (2018).

14. Frank, M. et al. Dosimetry on first clinical dark‐field chest radiography. Med.
Phys. 48, 6152–6159 (2021).

15. Sauter, A. P. et al. Correlation of image quality parameters with tube voltage in
X-ray dark-field chest radiography: a phantom study. Sci. Rep. 11, 14130
(2021).

16. Pfeiffer, F., Weitkamp, T., Bunk, O. & David, C. Phase retrieval and
differential phase-contrast imaging with low-brilliance X-ray sources. Nat.
Phys. 2, 258–261 (2006).

17. Koehler, T. et al. Slit-scanning differential x-ray phase-contrast
mammography: proof-of-concept experimental studies. Med. Phys. 42,
1959–1965 (2015).

18. Kottler, C., Pfeiffer, F., Bunk, O., Grünzweig, C. & David, C. Grating
interferometer based scanning setup for hard X-ray phase contrast imaging.
Rev. Sci. Instrum. 78, 1–4 (2007).

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00215-3

8 COMMUNICATIONS MEDICINE |           (2022) 2:147 | https://doi.org/10.1038/s43856-022-00215-3 | www.nature.com/commsmed

https://www.kaggle.com/code/nguyenbadung/siim-covid19-2021/notebook?scriptVersionId=69474844
https://www.kaggle.com/code/nguyenbadung/siim-covid19-2021/notebook?scriptVersionId=69474844
https://gisanddata.maps.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
www.nature.com/commsmed


19. Pfeiffer, F. et al. X-ray dark-field and phase-contrast imaging using a grating
interferometer. J. Appl. Phys. 105, 102006 (2009).

20. Noichl, Wolfgang et al. Correction for mechanical inaccuracies in a scanning
Talbot-Lau interferometer. TechRxiv. Preprint. https://doi.org/10.36227/
techrxiv.21201475.v1 (2022).

21. Schick, R. C. et al. Correction of motion artifacts in dark-field radiography of
the human chest. IEEE Trans. Med. Imaging 1–1 (2021). https://doi.org/10.
1109/TMI.2021.3126492

22. Prokop, M. et al. CO-RADS: a categorical CT assessment scheme for patients
suspected of having COVID-19—definition and evaluation. Radiology 296,
E97–E104 (2020).

23. Lakhani, P. The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19
Challenge: Annotation and Standard Exam Classification of COVID-19 Chest
Radiographs. OSF Preprints. https://doi.org/10.31219/osf.io/532ek (2021).

24. Obuchowski, N. A. Nonparametric analysis of clustered ROC curve data.
Biometrics 53, 567 (1997).

25. Kageyama, M. et al. X-ray phase-imaging scanner with tiled bent gratings for
large-field-of-view nondestructive testing. NDT E Int. 105, 19–24 (2019).

26. Chabior, M. et al. Signal-to-noise ratio in X ray dark-field imaging using a
grating interferometer. J. Appl. Phys. 110, 053105 (2011).

27. M. Viermetz et al., "Technical design considerations of a human-scale Talbot-
Lau interferometer for dark-field CT (IEEE Transactions on Medical Imaging,
2022), https://doi.org/10.1109/TMI.2022.3207579.

28. Gustschin, N. et al. Quality and parameter control of X-ray absorption
gratings by angular X-ray transmission. Opt. Express 27, 15943 (2019).

29. Yashiro, W., Vagovič, P. & Momose, A. Effect of beam hardening on a
visibility-contrast image obtained by X-ray grating interferometry. Opt.
Express 23, 23462 (2015).

30. Bertram, M., Hohmann, S. & Wiegert, J. SU-FF-I-22: scatter correction for flat
detector cone-beam CT based on simulated sphere models. Med. Phys. 34,
2342–2343 (2007).

31. Mentrup, D., Jockel, S., Menser, B. & Neitzel, U. Iterative scatter correction for
grid-less bedside chest radiography: performance for a chest phantom. Radiat.
Prot. Dosimetry 169, 308–312 (2016).

32. Mettler, F. A., Huda, W., Yoshizumi, T. T. & Mahesh, M. Effective doses in
radiology and diagnostic nuclear medicine: a catalog. Radiology 248, 254–263
(2008).

33. Hurt, B. et al. Radiologist-supervised transfer learning. J. Thorac. Imaging. 37,
90–99 (2021).

34. Self, W. H., Courtney, D. M., McNaughton, C. D., Wunderink, R. G. & Kline,
J. A. High discordance of chest X-ray and computed tomography for detection
of pulmonary opacities in ED patients: Implications for diagnosing
pneumonia. Am. J. Emerg. Med. 31, 401–405 (2013).

35. Mahase, E. Covid-19: where are we on vaccines and variants? Br. Med. J. 372,
n597 (2021).

36. Taylor, L. Covid-19: Brazil’s spiralling crisis is increasingly affecting young
people. Br. Med. J. 373, n879 (2021).

37. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362
(2020).

38. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat. Methods 17, 261–272 (2020).

39. Urban, T. et al. Qualitative and quantitative assessment of emphysema using
dark-field chest radiography. Radiology 303, 119–127 (2022).

Acknowledgements
We gratefully acknowledge Felix Gebser, David Jany, Jens von Berg, Michael Heider,
Karsten Rindt, Hendrik van der Heijden, Andre Braunagel, Jens von Berg, Pascal Meyer,
and Jürgen Mohr for assistance during the hardware and software development for the
demonstrator system, and Felix Meurer, Jannis Bodden, Yannik Leonhardt, Christina

Müller-Leisse, Martin Renz, Nadja Meissner, and Angelika Kammermayer for help with
patient handling, and Dung Nguyen Ba for providing us with the checkpoint weights for
the inference models. Additionally, we acknowledge financial support through the
European Research Council (AdG 695045), the Deutsche Forschungsgemeinschaft (DFG,
Research Training Group GRK 2274), the Federal Ministry of Education and Research
(BMBF), and the Free State of Bavaria under the Excellence Strategy of the Federal
Government and the Länder, as well as by the Technical University of Munich—Institute
for Advanced Study. This work was carried out with the support of the Karlsruhe Nano
Micro Facility (KNMF, www.kit.edu/knmf), a Helmholtz Research Infrastructure at
Karlsruhe Institute of Technology (KIT).

Author contributions
M.F., T.U., K.W., W.N., R.S., B.G., F.D.M., T.K., K.J.E, B.R., J.H., and F.P. developed
hardware and control software of the demonstrator system. M.V. developed the visibility
simulation for the optimisation of grating parameters. M.F., T.U., K.W., W.N., R.S.,
F.D.M., T.K., J.H., and F.P. developed the data processing algorithms. M.F. and M.S.
adapted the neural network pipeline for the comparison of the attenuation images.
F.T.G., F.G.G., A.A.F., A.P.S., and D.P. recruited patients and performed radiological
interpretation of imaging data. M.F., F.T.G., and B.H. performed the statistical analysis.
J.H., D.P., M.M., and F.P. supervised the project. M.F. and F.T.G. wrote the original draft
and revised the paper with input from all authors. All authors approved the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
T.K. and K.J.E. are employees of Philips GmbH Innovative Technologies. The remaining
authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43856-022-00215-3.

Correspondence and requests for materials should be addressed to Manuela Frank.

Peer review information Communications Medicine thanks Ali Gholamrezanezhad and
the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00215-3 ARTICLE

COMMUNICATIONS MEDICINE |           (2022) 2:147 | https://doi.org/10.1038/s43856-022-00215-3 |www.nature.com/commsmed 9

https://doi.org/10.36227/techrxiv.21201475.v1
https://doi.org/10.36227/techrxiv.21201475.v1
https://doi.org/10.1109/TMI.2021.3126492
https://doi.org/10.1109/TMI.2021.3126492
https://doi.org/10.31219/osf.io/532ek
https://doi.org/10.1109/TMI.2022.3207579
http://www.kit.edu/knmf
https://doi.org/10.1038/s43856-022-00215-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsmed
www.nature.com/commsmed

	Dark-field chest X-ray imaging for the assessment of COVID-19-pneumonia
	Methods
	Hardware
	Clinical image acquisition
	Image reconstruction
	Patient recruitment
	Patients
	COVID-19 patients
	Controls
	Computed tomography
	Image evaluation
	Statistics and reproducibility
	Reporting summary

	Results
	The Dark-field X-ray Prototype
	Optimising interferometer performance
	COVID-19 in dark-field chest X-rays
	Image appearance
	Reader study and quantitative analysis

	Discussion
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




