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Objective: Lung cancer is the first leading cause of cancer-related deaths both worldwide 
and in China and threatens human health and quality of life. New drugs and therapeutic 
methods are urgently needed. Our study evaluated the roles of dihydroartemisinin (DHA) in 
lung cancer and further explored its underlying mechanisms.
Methods: CCK-8, colony formation and trypan blue exclusion assays were used to detect 
the cell viability, colony formation ability and cell death. qRT-PCR and Western blotting 
assays were applied to analyze the expressions of key molecules.
Results: DHA inhibited the proliferation and colony formation abilities and enhanced the 
cell death and induced ferroptosis of lung NCI-H23 and XWLC-05 cancer cells. DHA 
reduced PRIM2 expression and silencing PRIM2 mimicked the inhibitory roles on prolifera
tion and colony formation and promotive roles on cell death and ferroptosis of DHA in lung 
NCI-H23 and XWLC-05 cancer cells. We further found that DHA treatment and loss of 
PRIM2 reduced the GSH level and increased the cellular lipid ROS and mitochondrial MDA 
levels, and further downregulated the expressions of SLC7A11 and β-catenin in lung cancer 
cells, respectively. Exogenetic overexpression of PRIM2 recovered the inhibitory effects of 
DHA on proliferation and colony formation in lung NCI-H23 cancer cells, meanwhile loss of 
PRIM2 sensitizes NCI-H23 cells to DHA therapy. In vivo experiment further showed that 
DHA treatment significantly suppressed the tumor growth and downregulated PRIM2 and 
SLC7A11.
Conclusion: Our study suggested that DHA inhibited the proliferation, colony formation 
and enhanced cell death and induced ferroptosis of lung cancer cells by inactivating PRIM2/ 
SLC7A11 axis. Loss of PRIM2 induced ferroptosis might developed to be a novel therapeu
tic method in lung cancer therapy.
Keywords: dihydroartemisinin, lung cancer, proliferation, ferroptosis, PRIM2, SLC7A11

Introduction
Lung cancer is the first leading cause of cancer-related deaths both worldwide and 
in China1,2 and threatens human health and quality of life. Every year, 1.8 million 
people are diagnosed with lung cancer, 1.6 million people die, and 5-year survival 
rates vary from 4% to 18% depending on stage and regional differences.3,4 

Xuanwei City, located in the northeast of Yunnan Province, is one of the regions 
with the highest incidence and mortality of lung cancer in China, which seriously 
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endangers the health of local people and causes serious 
social and economic burden. From 2011 to 2013, the 
number of lung cancer deaths in Xuanwei accounted for 
63.03% of all cancer deaths, the age standardized mortality 
rate for men was 82.53/100,000 and for women was 62.62/ 
100,000, three times and six times higher than that in other 
regions of the country, respectively.5 The incidence of 
non-smoking women in Xuanwei is the highest in China. 
In some villages, the mortality rate of female patients is as 
high as 400/100,000, which is significantly higher than the 
national average (19.84/100,000).6 On the basis of tradi
tional treatment, it is urgently necessary to develop tradi
tional Chinese medicine and find new drugs and 
therapeutic methods.

Dihydroartemisinin (DHA) is the active compound of 
Artemisia annua and one of metabolites of Artemisinin.7 

During the clinical application of artemisinin and its ana
logues, it was found that DHA showed good anti-tumor 
ability in many types of cancers include lung cancer, in 
addition to the traditional anti-malarial effect. The anti- 
tumor effect of DHA may result in tumor cell growth 
inhibition and apoptosis by regulating genes and proteins 
related to growth signal, apoptosis, proliferation, angio
genesis, tissue invasion and metastasis through different 
signal pathways.8 For example, DHA combined with gefi
tinib can significantly down regulate the expression level 
of G2/M regulatory protein (including cyclin B1 and 
CDK1) in NSCLC (NCI-H1975) cells and inhibit the for
mation of cdk1-cyclinb1 complex, which is essential for 
the initiation of mitosis in some organisms and leads to 
cell cycle arrest in G2/M phase stagnation, inhibition of 
cell proliferation.9 Apoptosis is a process mediated by the 
balance between Bax and Bcl-2 family genes. DHA 
induces apoptosis by regulating Bax/Bcl-2 ratio.8 Tumor 
angiogenesis is a sign of tumor malignant transformation. 
Inhibition of neovascularization can reduce the oxygen 
and nutrition supply of tumor cells, thus preventing 
tumor growth. DHA can significantly reduce the expres
sion of many angiogenesis genes in cancer cells, so as to 
reduce angiogenesis and vascular density.10–12

Several studies have shown that another important anti- 
tumor mechanism of DHA is closely related to the iron 
content in tumor cells, mainly Fe2+,13,14 and its mechanism 
mainly includes the following three aspects: a. Oxidative 
stress reaction: tumor cells are vulnerable to damage by 
free radicals (ROS), high oxidative stress is a common 
anti-tumor characteristic of anti-tumor drugs.15 The diva
lent iron in tumor cells can activate and catalyze the 

cleavage of DHA molecular oxygen bridge, which produce 
a large number of highly alkylated carbon centered free 
radicals and reactive oxygen species, and the reactive 
oxygen species and other active intermediates can damage 
DNA of tumor cells.16 Hydrogen peroxide, a common 
oxidant, can enhance the antitumor effect of DHA, while 
antioxidant vitamin E can weaken the antitumor effect of 
DHA.17 N-tert-butyl-a-phenylnitrone (PBN), an oxygen 
free radical scavenger, can reduce the antitumor activity 
of DHA.18 b. Disturbed the balance of iron ions in cells: 
DHA can decreased the Levels of cancer cell-surface 
Transferrin receptor 1 (TFR1), leading to the decline of 
TFR1 mediated iron uptake and deficiency of cellular iron 
stores, which indicate that DHA can lead to the deficiency 
of Fe2+ in cancer cells and affect the proliferation of tumor 
cells.19 The antitumor effect of DHA was obviously wea
kened when iron ion was chelated by desferrioxamine.18 

C. Ferroptosis: Ferroptosis is a new form of programmed 
cell death with characteristic accumulation of reactive 
oxygen species (ROS) which are generated by lipid per
oxidation and iron accumulation. DHA can induce lysoso
mal degradation of ferritin in an autophagy-independent 
manner, increasing the cellular free iron level and causing 
cells to become more sensitive to ferroptosis.20

PRIM2, a large subunit of DNA primer enzyme, is 
located in 6p11.1 – p12 of human chromosome. It encodes 
58 kDa protein (P58) containing 4Fe-4S cofactor, which 
can form the heterodimeric DNA primase enzyme (P49 · 
P58) with PRIM1 (P49), a small subunit of DNA primer 
enzyme. The DNA primase plays a key role in both the 
initiation of DNA replication and the synthesis of Okazaki 
fragments for lagging strand synthesis,21,22 previous study 
reported that PRIM2 was upregulated by SIX1 (sine oculis 
homeobox homolog 1) in cervical cancer, which enhanced 
DNA synthesis, accelerated G1 to S phase progression, 
and promoted the proliferation of cervical cancer cells and 
the growth of cervical cancer.23 In addition, some studies 
have confirmed that PRIM2 plays a critical role in DNA 
damage repair, transcription and other cell functions. After 
DNA damage of HeLa cells, PRIM2 can combine with 
hXRCC1, inhibit G1/S checkpoint, delay S-phase transfor
mation, and promote DNA damage repair.24 These results 
indicate that PRIM2 is the main regulator of primer 
enzyme, which directly determines the start and end of 
primer synthesis and acts as a “molecular brake” in DNA 
replication.25 But up to present the role of PRIM2 in 
carcinogenesis especially lung cancer was largely 
unknown.

Yuan et al                                                                                                                                                             Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                           

OncoTargets and Therapy 2020:13 10830

http://www.dovepress.com
http://www.dovepress.com


Previous studies have shown that DHA treatment can 
down regulate the expression of cyclin D in NSCLC 
(A549 and H1299) cells, resulting in G1 phase cell 
cycle arrest.26 In addition, DHA can inhibit the growth 
of tumor cells in an iron ion-dependent manner, and 
ferritin may be the drug target of DHA. As a key mem
ber of DNA replicase group, PRIM2, in line with DHA, 
also targets G1/S checkpoint; At the same time, PRIM2 
is rich in Fe-S clusters and is the key molecule to initiate 
DNA replication. Therefore, PRIM2 may be the core 
target of DHA and other artemisinins to interfere with 
DNA replication. Based on the above theoretical and 
experimental evidence, we hypothesize that DHA may 
inhibit the proliferation of lung cancer by interfering 
with PRIM2 signaling. In order to test the hypothesis, 
the Xuanwei specific lung cancer cell line XWLC-05 and 
lung cancer cell line NCI-H23 with high expression of 
PRIM2 were used as the research objects. The aim of 
this study is to confirm that PRIM2 is a possible target 
gene of DHA and the possible molecular mechanism of 
DHA inhibiting the proliferation of lung cancer cells.

Materials and Methods
Cell Culture and Treatments
The human lung cancer cell lines including NCI-H23 
which was purchased from the American Type Culture 
Collection (Rockville, MD) and XWLC-05 which was 
obtained from Yunnan Cancer Institute were cultured in 
RPMI-1640 medium with 10% fetal bovine serum (FBS, 
Gibco, Carlsbad, USA), penicillin (100 U/mL) and strep
tomycin (100 μg/mL) at 37 °C with 5% CO2. The use of 
XWLC-05 cell line was approved by the ethics committee 
of the Yunnan Cancer Institute. All above cell lines were 
authenticated by short tandem repeat profiling and were 
tested for mycoplasma contamination routinely.

The PRIM2 siRNAs and negative control sequences 
were designed and synthesized by GeneParma Co., Ltd 
(Shanghai, China). Transfection of 50 nM PRIM2 siRNAs 
and negative control siRNA was performed using lipofec
tamine 3000 (Thermo scientific, USA) according to man
ufacturer’s instruction. The PRIM2 shRNA vectors (sh1 
and sh2) and negative control vector were obtained from 
GeneParma Co., Ltd (Shanghai, China) and the transfected 
cells were selected by G418 for 4 weeks. We conducted 
the pcDNA3.1-PRIM2 vector (OE vector) and the trans
fected cells were selected by G418 for 4 weeks.

Total RNA Extraction and Quantitative 
Real-Time PCR (qRT-PCR)
Total RNA was extracted from lung cancer cells and tumor 
tissues collected from in vivo experiment using the 
RNeasy Mini Kit (Qiagen, Hiden, Germany) according to 
the manufacturer’s instruction.

The expression levels of PRIM2 were examined by 
qRT-PCR using Power SYBRTM Green PCR Master Mix 
(Thermo Fisher Scientific, Waltham, MA, USA). The PCR 
conditions are as follows: 1 cycle of 2 min at 50 °C and 2 
min at 95 °C, 40 cycles of 15 sec at 95 °C and 1 min at 60 
°C. The relative gene expressions were normalized to an 
endogenous reference glyceraldehyde-3-phosphate dehy
drogenase (GAPDH), and those relative to the calibrator 
were given by the formula 2−ΔΔCt. The following primer 
pairs are used for qRT-PCR: PRIM2 forward primer, 5ʹ- 
CGGCTTGCTTATTGCCAGTCT-3ʹ, reverse primer, 5ʹ- 
CAATCTCCTGTTCTCGAAGAGTC-3ʹ; GAPDH for
ward primer, 5ʹ-ACAACTTTGGTATCGTGGAAGG-3ʹ, 
reverse primer, 5ʹ-GCCATCACGCCACAGTTTC-3ʹ.

Western Blotting Analysis
Total proteins were extracted using a RIPA protein extrac
tion buffer (Beyotime, Shanghai, China), and the concen
tration was detected using the BCA Protein Assay Kit 
(Beyotime, Shanghai, China). Equal amounts (7–10 μg) 
of proteins were separated by 10% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) and then 
transferred to a polyvinylidene fluoride (PVDF) membrane 
(Millipore Corporation, Billerica, MA, USA). After block
ing in 5% skimmed milk (in PBS) for 1 h at room tem
perature, the membrane was incubated with primary 
antibodies at 4 ºC overnight. Detection was done by per
oxidase-conjugated secondary antibodies (KPL, 
Gaithersburg, MD, USA) and chemiluminescence 
(Millipore Corporation, Temecula, CA, USA). Anti- 
PRIM2 antibody (1:2000, ab241990), anti-SLC7A11 anti
body (1:1000, ab175186), anti-β-catenin antibody (1:5000, 
ab32572) and anti-β-actin antibody (1:1000, ab8226) were 
purchased from Abcam, Inc.

Cell Proliferation and Colony Formation 
Assays
Cell proliferation was detected by using Cell Counting 
Kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan) 
according to the manufacturer’s instruction. In colony for
mation assay, the 103 cells were seeded into 6-well plates 
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and cultivated for 14 days in RPMI 1640 with 10% FBS. 
After removing the medium, cells were washed using PBS 
and stained using crystal violet (Sigma-Aldrich, MO, 
USA) for 30 min at room temperature. Colonies were 
visualized and quantitated.

Cell Death Assay
Cell death was detected by staining with trypan blue as 
described previously.27 Trypan blue could penetrate into 
a dead cell but could not stain the live cell.

GSH and Lipid ROS Assays
Cellular GSH levels in lung cancer cells were detected 
using a GSH colorimetric detection kit (BioVision Inc., 
Milpitas, CA, USA) according to the manufacturer’s 
instruction. Lipid ROS levels in lung cancer cells 
were assessed by using BODIPY 581/591 C11 (lipid 
peroxidation sensor, Thermo scientific, USA) according 
to the manufacturer’s instruction. Mitochondria were 
prepared by using the mitochondrial isolation kit 
(Thermo scientific, USA). Malondialdehyde (MDA) is 
an end product of lipid peroxidation and evaluated by 
using lipid peroxidation (MDA) assay kit (Sigma- 
Aldrich, USA) according to the manufacturer’s 
instruction.

In vivo Experiment
The Animal Ethics Committee of Kunming University 
of Science and Technology approved the animal experi
ments. Eight 3-4-week-old female nude mice (18–20g) 
were used in our study. 5×106 NCI-H23 cells were 
subcutaneously injected. When tumors reached around 
25 mm3 in size (about 1 week), the mice were randomly 
divided into two groups: NC group (n = 4, saline) and 
DHA group (n = 4, 30mg/kg). The mice were closely 
monitored. Tumor size was detected every week. About 
4 weeks later, the mice were euthanized, and the tumors 
were collected for analysis.

Statistical Analysis
Statistical analyses are performed using GraphPad Prism 6 
(La Jolla, CA, USA). All quantitative data are presented as 
the mean ± SD. The Student’s t-test and ANOVA are used 
to evaluate the data. P < 0.05 was considered statistically 
significant.

Results
DHA Inhibits the Proliferation and 
Colony Formation, and Induces 
Ferroptosis of Lung Cancer Cells
First, we evaluated the effects of DHA on the prolif
eration and colony formation of human lung cancer cell 
lines NCI-H23 and XWLC-05 (Xuanwei female lung 
cancer cell line) using CCK-8 and colony formation 
assays. Both 40 μM and 60 μM DHA significantly 
reduced the cell viabilities of NCI-H23 and XWLC- 
05 cells at 24 h and 48 h, but the 20 μM DHA had no 
significant effect (Figure 1A and B). In colony forma
tion assay, both 40 μM and 60 μM DHA significantly 
inhibited the colony formation abilities of NCI-H23 
and XWLC-05 cells, but the 20 μM DHA had no 
significant effect (Figure 1C and D). We further found 
that 40 μM and 60 μM DHA treatment significantly 
enhanced the cell deaths of NCI-H23 and XWLC-05 
cells (Figure 1E). Apoptosis and ferroptosis are the 
important forms of cell death and play important 
roles in cancer cell survival,28 therefore we further 
analyzed whether DHA induced the apoptosis or fer
roptosis of lung cancer cells. Importantly, the ferropto
sis inhibitor ferrostatin-1 significantly recovered the 
DHA-induced cell survival reduction and cell death 
both in NCI-H23 and XWLC-05 cells, however the 
apoptosis inhibitor Z-VAD-FMK could not reverse the 
DHA-induced cell survival reduction and cell death 
(Figure 1F and G). These results suggested that DHA 
inhibited the lung cancer cell proliferation and colony 
formation mainly by inducing ferroptosis.

DHA Downregulates the PRIM2 
Expression and Silencing PRIM2 Inhibits 
the Proliferation and Colony Formation 
and Induces Ferroptosis of Lung Cancer 
Cells
Our results found that 40 μM and 60 μM DHA signifi
cantly decreased the mRNA and protein levels of 
PRIM2 both in NCI-H23 and XWLC-05 cells (Figure 
2A–C). CCLE database and our results showed that the 
expression levels of PRIM2 in XWLC-05 and NCI-H23 
were higher than those in NCI-H1229 and A549 cells 
(Figure 2D and E). In order to reveal the role of PRIM2 
in the DHA-induced proliferation and colony formation 
inhibition, we silenced the PRIM2 and evaluated its 
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effects on cancer cell phenotypes. Interestingly, we 
found that knockdown of PRIM2 decreased the cell 
viabilities of NCI-H23 and XWLC-05 cells (Figure 

2F–H), and enhanced the cell deaths and inhibited the 
colony formation abilities of NCI-H23 and XWLC-05 
cells (Figure 2I and J).

Figure 1 DHA inhibits the proliferation and colony formation, and induces ferroptosis of lung cancer cells. (A and B) The cell viabilities of NCI-H23 and XWLC-05 cells 
which were treated by DHA (0 μM, 20 μM, 40 μM and 60 μM) were detected by CCK-8 assay. (C and D) The colony formation abilities of NCI-H23 and XWLC-05 cells 
which were treated by DHA (0 μM, 20 μM, 40 μM and 60 μM) were detected by colony formation assay. (E) The cell deaths of NCI-H23 and XWLC-05 cells which were 
treated by DHA (0 μM, 40 μM and 60 μM) were detected by trypan blue exclusion assay. (F and G) The cell deaths and viabilities of NCI-H23 and XWLC-05 cells which 
were treated with DHA and ZVF (Z-VAD-FMK)/Fer-1 (Ferrostatin-1) were analyzed by trypan blue exclusion and CCK-8 assays. The experiments were repeated for three 
times. Compared with 0 μM DHA treated cells: *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 2 DHA downregulates the PRIM2 expression and silencing PRIM2 inhibits the proliferation and colony formation and induces ferroptosis of lung cancer cells. (A and 
B) The mRNA expression of PRIM2 was detected by qRT-PCR. (C) The protein expression of PRIM2 was detected by Western blotting assay. (D and E) The expression 
level of PRIM2 in lung cancer cells was analyzed by using CCLE database and detected by qRT-PCR. (F and G) The efficiency of PRIM2 silencing was analyzed by qRT-PCR and 
Western blotting assays. (H) The cell viabilities of NCI-H23 and XWLC-05 cells which were transfected with PRIM2 siRNAs were detected by CCK-8 assay. (I) The cell 
deaths of NCI-H23 and XWLC-05 cells were analyzed by trypan blue exclusion assay. (J) The colony formation abilities of NCI-H23 and XWLC-05 cells were analyzed by 
colony formation assay. The experiments were repeated for three times. Compared with 0 μM DHA treated cells or Negative control group (NC): **p < 0.01, ***p < 0.001.
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DHA and Loss of PRIM2 Reduce the GSH 
Level and Increase the Cellular Lipid ROS 
and Mitochondrial MDA Levels, and 
Downregulate the Expressions of 
SLC7A11 and β-Catenin in Lung Cancer 
Cells
Both 40 μM and 60 μM DHA significantly decreased the 
GSH level and also increased the cellular lipid ROS and 
mitochondrial MDA levels in both NCI-H23 and XWLC-05 
cells after 48 h treatment (Figure 3A–C). Meanwhile, 20 μM 
DHA treatment had no effect on the GSH, cellular lipid ROS 
and mitochondrial MDA levels (Figure 3A–C). Knockdown 
of PRIM2 had the similar effects with DHA and also sig
nificantly reduced the GSH level and increased the cellular 
lipid ROS and mitochondrial MDA levels in both NCI-H23 
and XWLC-05 cells (Figure 3D–F). SLC7A11 is the key 
regulator of ferroptosis and transported extracellular cystine 
to cells, and finally participated in the biosynthesis of 

glutathione.29 Wnt/β-catenin signaling pathway is one of 
the key signaling pathway in carcinogenesis including lung 
cancer.30 Therefore, we further evaluated whether DHA 
affected the SLC7A11 and β-catenin expressions. 
Importantly, our results showed that 40 μM and 60 μM 
DHA significantly decreased the protein expression levels 
of SLC7A11 and β-catenin, and loss of PRIM2 also down
regulated SLC7A11 and β-catenin both in NCI-H23 and 
XWLC-05 cells (Figure 3G and H).

Exogenetic Overexpression of PRIM2 
Recovered the Inhibitory Effects of DHA 
on Proliferation and Colony Formation of 
Lung Cancer Cells
In order to confirm the role of PRIM2 in the inhibitory role 
of DHA in lung cancer cells, we overexpressed PRIM2 in 
NCI-H23 cells and evaluated its effects on tumorigenic 
phenotypes (Figure 4A). Overexpression of PRIM2 

Figure 3 DHA and loss of PRIM2 reduce the GSH level and increase the cellular lipid ROS and mitochondrial MDA levels, and downregulate the expressions of SLC7A11 
and β-catenin in lung cancer cells. (A–C) Measurement of cellular GSH, cellular ROS and mitochondrial MDA in DHA treated NCI-H23 and XWLC-05 cells. (D–F) 
Measurement of cellular GSH, cellular ROS and mitochondrial MDA in PRIM2 siRNAs transfected NCI-H23 and XWLC-05 cells. (G and H) The protein expressions of 
SLC7A11 and β-catenin were analyzed by Western blotting assay. The experiments were repeated for three times. Compared with 0 μM DHA treated cells or Negative 
control group (NC): **p < 0.01, ***p < 0.001; Compared with 40 μM/60 μM DHA treated cells or only PRIM2 siRNAs transfected cells, ##p < 0.01, ###p < 0.001.
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significantly restored the cell viability and colony forma
tion ability of NCI-H23 cells which were inhibited by 60 
μM DHA treatment (Figure 4B–D). Exogenetic overex
pression of PRIM2 also increased the GSH and decreased 
the cellular lipid ROS and mitochondrial MDA levels 
which were regulated by 60 μM DHA treatment (Figure 
4E–G). Exogenetic overexpression of PRIM2 recovered 
the expressions of SLC7A11 and β-catenin which were 
downregulated by 60 μM DHA treatment (Figure 4H). 
These results further confirmed that DHA inhibited the 
malignant phenotypes of lung cancer cells by reducing 
PRIM2.

Loss of PRIM2 Sensitizes NCI-H23 Cells 
to DHA Therapy
Our results further showed that silencing PRIM2 signifi
cantly decreased the cell viability and colony formation 
ability under the condition of 40 μM DHA treatment 
(Figure 5A–C). Loss of PRIM2 also decreased the GSH 
level and increased the cellular lipid ROS and mitochondrial 
MDA levels in NCI-H23 cells under the condition of 40 μM 
DHA treatment (Figure 5D–F). Comparing with 40 μM 
DHA treated NCI-H23 cells, combination of PRIM2 silen
cing and 40 μM DHA treatment significantly downregulated 
the expressions of SLC7A11 and β-catenin (Figure 5G). By 

Figure 4 Exogenetic overexpression of PRIM2 recovered the inhibitory effects of DHA on proliferation and colony formation in lung cancer cells. (A) The overexpression 
of PRIM2 was confirmed by Western blotting assay. (B–D) The cell viability and colony formation ability of NCI-H23 cells were detected by CCK-8 assay and colony 
formation assay. (E–G) Measurement of cellular GSH, cellular ROS and mitochondrial MDA in NCI-H23 cells which were treated with 60 μM DHA and transfected with 
PRIM2 OE plasmid. (H) The protein expressions of SLC7A11 and β-catenin were analyzed by Western blotting assay. The experiments were repeated for three times. 
Compared with 0 μM DHA treated cells: ***p < 0.001; Compared with 60 μM DHA treated and empty vector transfected cells, ##p < 0.01, ###p < 0.001.
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analyzing TCGA data using starBase database,31 we further 
found that PRIM2 was significantly overexpressed in lung 
adenocarcinoma (Fold change = 2.09, p < 0.001, Figure 5H).

DHA Inhibits the Tumor Growth in vivo
DHA treatment clearly inhibited the tumor growth com
pared with the control group (Figure 6A). By using 
Western blotting assay, we further found that in the 
tumor tissues, the expressions of PRIM2, SLC7A11 and β- 
catenin were significantly lower in DHA treatment group 
than those in control group (Figure 6B).

Discussion
Lung cancer is the leading cause of cancer-related deaths 
both worldwide and in China.1,2 Although the treatment 
options have improved, the 5-year survival rate of lung 
cancer is only 18%.4 Serious indoor soot air pollution 
makes Xuanwei area of Yunnan Province a high incidence 
area of lung cancer in the world.32 At present, a large 
number of studies focus on the epidemiology and onco
genes of lung cancer in Xuanwei.6,33 However, there is no 
progress in the study of Xuanwei lung cancer drugs. 
Recent studies have found that DHA has significant 

Figure 5 Loss of PRIM2 sensitizes NCI-H23 cells to DHA therapy. (A–C) The cell viability and colony formation ability of NCI-H23 cells were detected by CCK-8 assay and 
colony formation assay. (D–F) Measurement of cellular GSH, cellular ROS and mitochondrial MDA in NCI-H23 cells. (G) The protein expressions of SLC7A11 and β-catenin 
were analyzed by Western blotting assay. (H) The expression of PRIM2 in LUAD was analyzed by TCGA data using starBase database. The experiments were repeated for 
three times. Compared with 40 μM DHA treated and Negative control shRNA transfected cells: *p < 0.05, **p < 0.01, ***p < 0.001.

Dovepress                                                                                                                                                             Yuan et al

OncoTargets and Therapy 2020:13                                                                                         submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                      
10837

http://www.dovepress.com
http://www.dovepress.com


antitumor effect and low toxicity, so it is a potential new 
antitumor drug. In gallbladder cancer, DHA could inhibit 
TCTP-dependent cell migration and invasion by decreas
ing Cdc42 (cell division control protein 42 homolog) 
activation.34 In lung cancer, DHA showed remarkable 
antitumor ability on A549 and H1299 cells by inhibiting 
Wnt/β-catenin signaling pathway.26 DHA could also sup
press the migration and invasion of lung cancer A549 and 
H1975 cells in vitro by inhibiting NF-kB signaling path
way and GLUT1 translocation.35 DHA could sensitize 
cancer cells to many antitumor drugs. In NSCLC and 
malignant mesothelioma, the In vitro and in vivo results 
revealed that combination of DHA and onconase synergis
tically inhibited the tumor growth and angiogenesis.36 

DHA sensitized ATO caused A549 lung cancer cells apop
tosis by increasing ROS level.37 Combination of DHA and 
doxorubicin (DOX) showed significant antitumor ability in 
many types of cancer cells including A549, OVCAR-3, 
PC-3, HeLa and MCF-7 cells.38 Our study revealed that 
DHA significantly decreased the cell viability and the 
colony formation ability, and importantly we further 
found that DHA led to the cell death and induced ferrop
tosis of lung cancer NCI-H23 and XWLC-05 cells. 
XWLC-05 was a Xuanwei lung adenocarcinoma cell line 
and established in 2007 from a woman of Xuanwei lung 
adenocarcinoma. Whether the inhibitory roles of DHA 
relies on the sex or hormone is needed to be studied in 
future.

Ferroptosis is a new form of programmed cell death 
with characteristic accumulation of reactive oxygen spe
cies (ROS) which are generated by lipid peroxidation and 
iron accumulation.39 Ferroptosis might be developed to be 
a novel therapeutic method for lung cancer therapy.40 In 

cisplatin-resistant NSCLC cells, erastin and sorafenib 
could inhibit the Nrf2/SLC7A11 signaling pathway and 
further induce ferroptosis of cancer cells.41 Inducing fer
roptosis by erastin could attenuate radioresistance of 
NSCLC cells.42 Meanwhile, radiation could promote 
lipid peroxidation and synergize with ferroptosis inducers 
to enhance the antitumor effect in a murine xenograft 
model.43 Acetaminophen was reported to promote erastin 
caused ferroptosis of NSCLC cancer cells by regulating 
Nrf2/heme oxygenase-1 signaling pathway.44 Our study 
revealed that DHA could induce ferroptosis of lung cancer 
cells.

PRIM2 is a subunit of DNA primase which is involved 
in the regulation of DNA replication. Although previous 
study reported that PRIM2 was upregulated by SIX1 (sine 
oculis homeobox homolog 1) in cervical cancer,23 its role 
in carcinogenesis especially lung cancer was largely 
unknown. Our findings showed that DHA reduced the 
PRIM2 expression and silencing PRIM2 had the similar 
antitumor effect to DHA. Importantly, we found that exo
genetic overexpression of PRIM2 rescued DHA-induced 
ferroptosis. These results suggested that DHA-induced 
ferroptosis of lung cancer cells by regulating PRIM2.

We further elucidated that DHA and loss of PRIM2 
downregulated SLC7A11 and β-catenin protein expres
sions. SLC7A11 is the key regulator of ferroptosis, and it 
could regulate cellular GSH biosynthesis.45 SLC7A11 was 
overexpressed in patients with KRAS-mutant lung adeno
carcinoma (LUAD) and positively associated with tumor 
progression. And blocking SLC7A11 showed selective 
cytotoxicity on KRAS-mutant LUAD.46 In lung cancer 
A549 cells, knockdown of SLC7A11 improved the sensi
tivity of cancer cells to cisplatin.47 Previous study reported 

Figure 6 DHA inhibits the tumor growth in vivo. (A) DHA treatment clearly inhibited the tumor growth compared with the control group. (B) The expressions of PRIM2, 
SLC7A11 and β-catenin were analyzed by Western blotting assay. Compared with Negative control group (NC): **p < 0.01.
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that silencing SLC7A11 increased caveolin-1 and pro
moted β-catenin recruitment to plasma membrane and 
finally inhibited the β-catenin transcriptional activity.48 

Our findings revealed that DHA decreased PRIM2 and 
further reduced β-catenin and SLC7A11 levels. 
Considering DHA could not completely abolish the 
SLC7A11 expression, whether DHA/PRIM2 combination 
with other drugs had better anti-tumor effects need to be 
studied in future.

Taken together, our study suggested that DHA inhib
ited the proliferation, colony formation and induced fer
roptosis of lung cancer cells by inhibiting PRIM2/ 
SLC7A11 axis. Loss of PRIM2 induced ferroptosis might 
developed to be a novel therapeutic method in cancer 
therapy.
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