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Abstract: Location information is one of the basic elements of the Internet of Things (IoT), which is
also an important research direction in the application of wireless sensor networks (WSNs). Aiming
at addressing the TOA positioning problem in the low anchor node density deployment environment,
the traditional cooperative localization method will reduce the positioning accuracy due to excessive
redundant information. In this regard, this paper proposes a location source optimization algorithm
based on fuzzy comprehensive evaluation. First, each node calculates its own time-position distribute
conditional posterior Cramer-Rao lower bound (DCPCRLB) and transfers it to neighbor nodes. Then
collect the DCPCRLB, distance measurement, azimuth angle and other information from neighboring
nodes to form a fuzzy evaluation factor set and determine the final preferred location source after
fuzzy change. The simulation results show that the method proposed in this paper has better
positioning accuracy about 33.9% with the compared method in low anchor node density scenarios
when the computational complexity is comparable.

Keywords: cooperative localization; location source optimization; fuzzy comprehensive evalua-
tion; DCPCRLB

1. Introduction

The Internet of Things (IoT) is a booming new industry and wireless sensor networks
(WSN), as the perception layer of the IoT system [1], provide data collection [2], information
transmission [3], scene recognition [4] and other functions to ensure the normal operation
of the networked system. Wireless sensor networks can replace humans working in harsh
natural environments and complete complex and tedious tasks. They are widely used
in precision agriculture [5], elderly care [6], air monitoring [7], smart home [6], disaster
supervision [8] and many other fields.

Taking into account the actual needs of IoT systems, WSN usually have the charac-
teristics of real-time communication [9], random and irregular distribution of nodes [10],
dynamic topology [11], large scale [12], complex deployment environment [13], etc., which
brings a certain degree of difficulty to information collection, processing and analysis.
Obtaining accurate location and time information of data sources is a prerequisite for
sensor network analysis and application data [9–13]. Therefore, the positioning and time
synchronization technology of WSN is an important part of the application of the IoT,
which has attracted the enthusiasm of researchers at home and abroad.

Common positioning principles include Approximate Perfect Point-In-Triangulation
(APIT) [14], distance vector hop (DV-Hop) [15], received signal strength indicator (RSSI) fin-
gerprint [16] that are range-free method, and RSSI ranging [17], times of arrival (TOA) [18]
and time difference of arrival (TDOA) [19] based on ranging information. The positioning
accuracy of the range-base localization algorithms are usually better than the range-free
positioning localization algorithms. The localization algorithms based on TOA ranging
information is one of the main research directions of sensor network positioning due to
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its low cost and high positioning accuracy [20]. However, due to the relatively high cost
of anchor nodes, it is difficult to deploy them in large numbers in actual applications.
Cooperative localization method can rely on the location information and communication
channels of other nodes to provide coordinated information to improve the positioning
performance of the system [21]. However, the coordinated information in the scene of low
anchor node density may also cause a decrease in positioning accuracy [22], as shown in
Figure 1.
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Figure 1. Different position accuracy with different anchor node density. Under low anchor node
density, the number of neighbor nodes to be located in the position source increases, and the
uncertainty of the localization information of the position source increases, resulting in a decrease in
the position accuracy of the node to be located.

Therefore, it is necessary to optimize and screen out the location source that is help-
ful to improve the positioning performance. The main contributions of this paper are
summarized as follows:

(1) Frist of all, the system model of low anchor node density is defined. Nodes calculate
location and time skew with TOA method in this model.

(2) Then, a novel location source optimization algorithm is proposed for low anchor
node density scenario. In the proposed method, a location source select structure is
established with fuzzy comprehensive evaluation. Distribute conditional posterior
Cramer-Rao lower bound (DCPCRLB), distance measurement and direction angle is
considered as the most significant factors to select location source.

(3) The validity and rationality of the proposed method are verified by experiments.

The structure of this paper is as follows: Section 1 is the introduction, which summa-
rizes the background knowledge and explains the significance of studying the location
source select in cooperative localization. Section 2 lists the related work of this research
direction in recent years. Section 3 gives out the system model of cooperative localization
in low anchor node density, then proposes a novel location source select method based on
fuzzy comprehensive evaluation. Section 4 shows the simulation scenario, analyses the
performances of the proposed method in this paper and discusses the future work of this
studying. Section 5 presents a summary of the research content of this paper.

2. Related Work

In recent years, anchor node selection has been a research topic in cooperative lo-
calization. Researchers pay lot of attention to anchor node selection, but the ambiguity
of nodes position and distance measurement leads to a low accuracy of node position.
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So far, domestic and foreign experts and scholars have done a lot of research on anchor
node selection from different aspects and have achieved good results. The main work is
as follow:

In [23], a localization method called mobile-beacon based iterative localization (MBIL)
is proposed. In this method, the position confidence of the node is calculated with the
number of iterations, the residual energy and the deviation degree error of the localized
node’s estimated location. The confidence is used to optimize the location source, and
could achieve a high positioning performance is achieved in a short time.

Reference [24] analyzes the localization error caused by the selection of anchor nodes
first. Based on above analysis conclusion, they proposes an improved least square localiza-
tion algorithm based on the selection of anchor nodes with distance clustering (LSL-DC).
With distance clustering, the anchor nodes are chosen. The simulation results indicate
LSL-DC algorithm can improve the localization precision.

In [25], distance measure errors are also considered as the most significant factor which
affect position accuracy, a optimizing method called node segmentation with improved
particle swarm optimization (NS-IPSO) is proposed to filter the positioning source by the
distance between nodes and the communication frequency, so as to avoid large distance
measurement errors and improve positioning accuracy.

Reference [26] considers a localization problem in non-uniformly and holes in ap-
plication environment, which affect the accuracy of distance estimation and causes large
position errors in node positioning. They proposed a localization method called boundary-
based anchor selection method for WSNs node localization (BASL). In this method, nodes
first explore WSN connectivity to confirm whether they are boundary region nodes. Then,
the node to be locate selects anchor nodes by checking the number of boundary region
nodes in their shortest path between itself and anchor nodes. The results show that the
BASL method can alleviate localization error which is caused by the hole in the scenarios.

Reference [27] analyzed the impact of horizontal dilution of precision (HDOP) on
positioning accuracy in underwater scenes, and selected the node with the smallest HDOP
as the location source to obtain the highest positioning accuracy, which called generalized
second-order time-difference-of-arrival (GSTDOA) algorithm.

In [28], an enhanced three-dimensional DV-hop algorithm is proposed, which enhance
its location accuracy. Coplanarity is used to select an optimal set of beacon nodes around
an unidentified node for its location estimation.

Reference [29] proposed social network analysis based localization technique with
closeness centrality (SNA-CC). Closeness centrality is obtained by calculating the average
distance value between the node and all its neighbor nodes. This paper uses this as
the importance evaluation criterion of nodes to screen the nodes. After screening, the
positioning accuracy has been improved to a certain extent, and its essence is still in the
screening of distance measurement errors.

In [30], a method called dynamic reference selection-based self-localization algorithm
(DRSL) is proposed which combine location sources with the smallest least square error
were selected to achieve the best positioning accuracy.

The following Table 1 summarizes the above-mentioned location source selection
algorithm literature, the screening factors used, and the method of fusion between factors,
and compares them with the method proposed in this article.
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Table 1. Comparative of different location source selection algorithms.

Location Source Selection Algorithm in
Localization Factors of Location Source Selection Method of Fusion between Factors

MBIL [23] the number of iterations, the rediual
energy and the deviation degree error linear combination

LSL-DC [24] the distance measure error single factor

NS-IPSO [25] the distance measure error and the
communication frequency linear combination

BASL [26] the number of boundary region nodes single factor
GSTDOA [27] HDOP single factor

enhanced three-dimensional DV-hop [28] coplanarity single factor
SNA-CC [29] closeness centrality single factor

DRSL [30] the smallest least square error single factor

Proposed method the DCPCRLB, the distance measurement
and direction angle the fuzzy comprehensive evaluation

The above methods only consider part of the factors that affect the positioning perfor-
mance, and do not include all factors in the positioning source optimization framework.
The main contribution of this paper is a novel optimization algorithm of the fuzzy com-
prehensive evaluation [31] framework, which forms a flexible and fast positioning source
selection framework. At the same time, it is based on many factors to select the location
source such as the DCPCRLB considering the influence of clock, distance observation,
direction angle, etc.

3. Location Source Selection Algorithm Based on Fuzzy Comprehensive Evaluation

In this section, first a two-dimensional positioning scene is shown, and the positioning
principle and positioning method used in this article are basically explained. Then the
DCPCRLB is introduced to pave the way for the proposed location source optimization
method. Finally, the node selection algorithm proposed in this article is introduced, and
the steps and operation process of the algorithm are introduced.

As shown in the Figure 2, the positioning node selection is an optional step after
calculating the distance measurement in the overall positioning process and before the po-
sitioning solution. The addition of positioning node selection can reduce the computational
complexity of subsequent steps, thereby reducing the time-consuming of the overall posi-
tioning process. At the same time, since the node selection screens low-quality positioning
sources, the positioning accuracy can be improved.
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Figure 2. Flow chart of cooperative localization with location source optimization.

3.1. System Model

In the actual layout, the anchor nodes in the same scene are usually at the same
height, so there is a big error in height measurement. Height measurement is usually
achieved by other methods, so two-dimensional scenario is considered. The positioning
scene includes anchor nodes and nodes to be positioned. The position vector of node
i at time l is represented by xi,l =

[
xi,l yi,l

]T , and the clock slope is represented by
ai,l ,

(
t̃i,l − t̃i,l−1

)
/(Tl − Tl−1), t̃i,l represents the local time of node i, and Tl represents

the real time. Assume that the anchor node time is synchronized with the real time, that
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is, for anchor node i, ai,l = 1. The estimated vector of the node i to be located at time l is

θi,l =
[

xi,l yi,l ai,l
]T , its line-of-sight neighbor node set is defined as Ni,l . The set of

vectors to be estimated for all nodes to be located at time l is Θl =
{
· · · , θi,l , · · ·

}
.

Node i obtains TOA observations by receiving information from neighboring node j
at time l as follows:

r̃ij,l = ||xi,l − xj,l ||+ cT
(

ai,l − aj,l

)
+ nij,l , (1)

where ||xi,l − xj,l || represents the Euclidean distance between node i and node j at time l, c
is the speed of light, T is the time difference between adjacent moments, and nij,l is TOA
observation noise, assuming that it conforms to Gaussian distribution as nij,n ∼ N

(
0,σ2

r
)
.

Then the probability density function of r̃ij,l with respect to θi,l , θj,l can be expressed as:

p
(

r̃ij,l

∣∣∣θi,l , θj,l

)
=

1√
2πσ2

r
exp


(

r̃ij,l − ||xi,l − xj,l || − cT
(

ai,l − aj,l

))2

2σ2
r

, (2)

Assuming that the change process of the vector θi,l to be estimated at node i conforms
to the Gaussian Markov process [32], according to the Bayesian formula:

p
(

θi,l

∣∣∣r̃ij,l

)
∝ p(θi,l

∣∣θi,l−1) ∏
j∈Ni,l

p
(

r̃ij,l

∣∣∣θi,l , θj,l

)
, (3)

According to the MAP criterion, the estimated value θ̂i,l of the vector θi,l to be esti-
mated at node i can be expressed as:

θ̂i,l = argmax
θi,l

p
(

θi,l

∣∣∣r̃ij,l , θj,l

)
= argmax

θi,l
p(θi,l

∣∣θi,l−1)∏j∈Ni,l
p
(

r̃ij,l

∣∣∣θi,l , θj,l

)
,

(4)

3.2. Distributed Cramer-Rao Lower Bound

Cramer-Rao lower bound (CRLB) is the inverse matrix of the Fisher Information
Matrix (FIM) of the random variable θi,l , and is a theoretical lower bound of the mean
square error of the target state estimation. The conditional posterior CRLB (CPCRLB) of
the estimated state θ̂i,l of node i can be expressed as:

MSE
(

θ̂i,l

∣∣∣r̃ij,l

)
= E

{[
θ̂i,l − θi,l

][
θ̂i,l − θi,l

]T
∣∣∣r̃i,l

}
≥ F−1(θ̂i,l

∣∣̃ri,l
)
,

(5)

Among them, F
(
θ̂i,l
∣∣̃ri,l
)

represents the conditional FIM of the target state estimated
value θ̂i,l . [33] gives the global Fisher information matrix F(l) iterative calculation formula
of centralized CPCRLB, which can be applied to a centralized network structure with a
central fusion center to realize a centralized cooperative localization. This article is aimed at
a distributed network structure, and each node cannot obtain the global Fisher information
matrix. Therefore, we adjust the above formula to obtain the local Fisher information
matrix iterative formula corresponding to the DCPCRLB:

Fi(l) ≈ B22
i (l − 1)− B21

i (l − 1)
(

B11
i (l − 1) + Fi(l − 1)

)−1
B12

i (l − 1), (6)

where:
B11

i (l − 1) = E
(
−∆θi,l−1

θi,l−1
ln p(θi,l

∣∣θi,l−1)
)

, (7)

B12
i (l − 1) = E

(
−∆θi,l

θi,l−1
ln p(θi,l

∣∣θi,l−1)
)
=
(

B21
i (l − 1)

)T
, (8)
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B22
i (l − 1) = E

(
−∆θi,l

θi,l

(
ln p(θi,l

∣∣θi,l−1) + ln p(̃ri,l
∣∣θi,l)

))
, (9)

where ∆Θl
Θl−1

= ∇Θl−1∇
T
Θl

,∇Θl =
[
· · · , ∂

∂θi,l
, · · ·

]T
. F(l) is a global Fisher information

matrix. The DCPCRLB of node i can be obtained by inverting the Fisher information
matrix, that is, CRLB

(
θj,l

)
= F−1

i (l).

3.3. Location Source Optimization Algorithm

In a 2-dimensional wireless sensor network, the node to be located needs to establish
communication with at least three anchor nodes to complete positioning. In the location-
time joint estimation problem, it is necessary to establish communication with at least four
anchor nodes to complete the calculation of the vector to be estimated. In the scenario of
low anchor node density, the cooperative localization method provides neighbor nodes
as pseudo-anchor nodes for the node to be located, but the pseudo-anchor node itself has
low accuracy as the node to be located, and the inappropriate introduction of too many
pseudo-anchor nodes will affect the final estimation result has a serious impact, so it is
necessary to optimize the introduced pseudo-anchor nodes.

In this section, we will introduce the fuzzy comprehensive evaluation method to
design the location source selection algorithm. For node j ∈ Ni,l to participate in the
optimal process of positioning and settlement, the DCPCRLB posCRLBj,l , node distance
measurement r̃ij,l , direction angle αij,l will participate in the judgment as a set of factors:

posCRLBj,l = CRLB1,1

(
θj,l−1

)
+ CRLB2,2

(
θj,l−1

)
+ Z·c2CRLB3,3

(
θj,l−1

)
, (10)

αij,l = arctan
xj,l−1 − xi,l−1

yj,l−1 − yi,l−1
, (11)

CRLB1,1

(
θj,l−1

)
represents the element in the first row and first column of

CRLB
(

θj,l−1

)
, and Z is the scaling constant. The raw data Di,l of the candidate node

for node i is:

Di,l =

 posCRLB1,l posCRLB2,l · · · posCRLBN,l
r̃i1,l r̃i2,l · · · r̃iN,l
αi1,l αi2,l · · · αiN,l

, (12)

where M is the number of nodes to be selected for node i. Then standardize the data and
determine the membership function of each factor according to the number of neighbor
anchor nodes and the number of nodes participating in the positioning solution, and
perform fuzzy evaluation on the selected nodes to obtain the evaluation matrix Ai,l :

Ai,l =

 a11 a12 · · · a1M
a21 a22 · · · a2M
a31 a32 · · · a3M

, (13)

where:

a1j =

max
j

posCRLBj,l − posCRLBj,l

max
j

posCRLBj,l −min
j

posCRLBj,l
, (14)

a2j =

max
j

r̃ij,l − r̃ij,l

max
j

r̃ij,l −min
j

r̃ij,l
, (15)

a3j =

max
j
‖ϕi,l − αij,l‖ − ‖ϕi,l − αij,l‖

max
j
‖ϕi,l − αij,l‖ −min

j
‖ϕi,l − αij,l‖

, (16)
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Among them, ϕi,l is jointly determined by the direction angle of neighbor anchor
nodes and the number of undetermined sources. The weight function matrix Pi,l =[

w1 w2 w3
]

can be determined by methods such as entropy weight method [34] and
analytical hierarchy process (AHP) [35]. Finally, a fuzzy transformation Qi,l = Pi,l ·Ai,l is
performed to obtain the evaluation results of each candidate node, and the one with the
largest value is selected as the preferred source for positioning.

As shown in Figure 3, after obtaining neighbor node information and distance mea-
surement, the positioning process enters the positioning source optimization algorithm
proposed in this article. First, a certain number of anchor nodes are included in the pre-
ferred location source Si,l , and then according to Equations (10) and (11) to calculate the
raw data Di,l of all other neighbor nodes. The evaluation matrix Ai,l is obtained after
normalization processing according to Equations (14)–(16), and the weight function matrix
Pi,l is obtained according to the method mentioned in [34]. Finally, the evaluation value
matrix Qi,l of each node is obtained through fuzzy transformation, and the node with the
highest evaluation value is selected from it and included in Si,l . If the preferred positioning
source is sufficient, the location source optimization ends and the positioning solution is
entered, otherwise Di,l is recalculated.
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4. Simulation Scenario and Result Analysis
4.1. Simulation Scenario Set

In order to make our simulation environment close to the actual scene, the simulation
scene will be set according to the zone 1 scene in Figure 4a, which is underground parking
lot in Beijing University of Posts and Telecommunications, and Figure 4b is the real scene
of zone 1.
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Figure 4. (a) Simulation scenario. Zone 1 is the used simulation scene. (b) The real scene of zone 1 [22].

The simulation scene is set as a rectangular area of 20 m × 24 m according to the real
size of zone 1. To set the average number of anchor node connections around 3, the number
of anchor nodes is 4, and the maximum communication distance is set to 10 m. The number
of nodes to be located is set to 20 and all nodes conform to the uniform distribution in
the simulation scene. All TOA observations are the line of sight (LOS), and the distance
measurement error conforms to Gaussian distribution with standard deviation of 0.3 m
according to the maximum error of DW1000 (Decawave, Dublin, Ireland). All simulation
results are the average of 1000 independent runs.

The initial position measurement error of nodes conforms to the Gaussian distribution,
the standard deviation of the anchor node is 0.1 m, the node to be located is 10 m. In
the simulation process, the clock slope of node to be located is set as 1 ppm according
to the performance of the crystal oscillator used in the hardware (TG5032CFN, EPSON,
Nagano-ken, Japan). Anchor nodes are static and the velocity of node to be located is set
to 3 m/s as almost the fastest speed of human walking. Root mean square error (RMSE)
and cumulative distribution functions (CDF) are used to evaluate the performance of
proposed method.

4.2. Simulation Result Analysis

It can be seen from Figure 5 that when the number of neighbor anchor nodes is small,
both the DRSL method and the method proposed in this article can effectively improve
the positioning accuracy, further increase the number of adjacent anchor nodes, and
the positioning source optimization algorithm can significantly improve the positioning
accuracy. In addition, the different performance is noticed when all neighbor nodes are used
in the graph to participate in positioning. When the neighbor anchor nodes are sufficient,
the joining of neighbor cooperative nodes is difficult to improve the positioning accuracy.
When the number of neighbor anchor nodes is small, the addition of neighbor cooperative
nodes has a positive impact on the positioning accuracy. The proposed algorithm optimizes
its role in the positioning process by screening collaborative nodes.

These results in Figure 6 show that the position accuracy affected by communication
distance. Obviously, the position accuracy will increase as the communication distance
increases. This is because the number of nodes that can be selected increases after the
communication distance is increased, and the higher the possibility of selecting a higher-
quality node combination, so various methods can obtain better positioning results. At the
same time, the position accuracy of the proposed method is better than other methods. This
is because the method in this article comprehensively considers many factors that affect the
positioning accuracy. The improvement of the communication distance is very effective
for improving the positioning accuracy, but as the communication distance increases, the
improvement effect of the positioning accuracy becomes smaller. This is because it is
difficult for nodes that are too far away to provide effective information for positioning.
Therefore, in practical applications, a rigorous analysis of the communication distance, that
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is, the transmission and reception power, is performed according to the requirements for
positioning accuracy, and a reasonable communication distance is obtained.
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Figure 7 shows the positioning accuracy of the node to be located under different
initial positioning errors. It can be seen from the figure that the positioning accuracy
improves with the decrease of the initial positioning error, because the quality of the
position information of the neighboring nodes will affect the positioning accuracy of the
nodes. The positioning accuracy of the method proposed in this paper is better than
the other two comparison methods. This is because this paper uses DCPCRLB as the
evaluation basis for the location information, which has a better estimate of the quality of
the location information.
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Figure 7. CDF of position error under different initial position error. In the figure, the purple line
represents the DRSL source selection location algorithm proposed in [30], the blue line represents the
MBIL algorithm in [23] and the green line represents the source optimization algorithm proposed in
this article.

In Figure 8, compared with the other three cases, the position accuracy performs
best when vmax = 3 m/s. Although the motion state will cause a certain error in the
position estimation of the node to be located, it also has the advantage of changing the
topology and optimizing the node distribution. Therefore, when vmax = 3 m/s, the
position accuracy is slightly improved compared to the static situation. When the speed
is too high (vmax = 8 m/s or vmax = 15 m/s), the error caused by the movement cannot
be compensated by optimizing the node distribution. The error caused by motion can
be compensated by combining positioning with sensor data such as accelerometer or
gyroscope [36].
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Figure 8. CDF of position error under different maximum node speed vmax. In the figure, the
red line represents the position error CDF when all nodes are static, the orange line represents
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where vmax = 15 m/s. In all cases, anchor node is static, the nodes to be located conform to the
uniform distribution with the maximum speed vmax, and the direction of movement is random.
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Figure 9 compares the positioning performance when using different numbers of
preferred position sources in a low anchor node density scenario. It can be seen that as the
number of preferred positioning sources increases, the position accuracy is improved. As
the number of preferred positioning sources increases, the signal quality of the position
sources and the geometric distribution of the position sources will be improved, and
the position accuracy will be improved to a certain extent, but the improvement effect
will decrease as the number of equipotential sources increases. By comparing the results
with Figure 5, it can be found that there is a limit to improving the positioning effect by
increasing the number of position sources. Too many position sources may also cause a
decrease in position accuracy, which is the fact reflected by the yellow line in Figure 5.
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Figure 9. CDF of position error under different number of preferred positioning sources. In the figure,
the green line represents the location error CDF when the preferred location source is 15, the orange
line represents the preferred location source is 9, and the red line represents the preferred location
source is 6. The purple line indicates the situation where only anchor nodes are used for positioning.

Figure 10 reflects the average positioning time of the proposed method and DRSL
method under different numbers of neighbor nodes. The time complexity of the location
source optimization algorithm is mainly related to both the average number of neighbor
nodes N1 and the number of preferred sources N2. For the calculation of the original data
Di,l , the evaluation matrix Ai,l and the fuzzy transformation Qi,l in the algorithm proposed
in this paper, the time complexity is 2O(N1), 5O(N1) and 3O(N1). Finally, a preferred
positioning source is obtained after comparison. Repeating the above process N2 times is
the time complexity of the node. By optimizing part of the algorithm process, the time com-
plexity is finally 5O(N1N2). In the proposed method, nodes transmit a localization vector
including θi,l =

[
xi,l yi,l ai,l

]T and a the DCPCRLB posCRLBi,l , so the communication
cost is 2O(1). The computational complexity, run-time and communication overhead of
the three algorithms is shown in Table 2.
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Table 2. Comparisons of different methods for each node at each iteration.

Method Computational
Complexity Run-Time Communication

Overhead

Proposed method 5O(N1N2) 42.319 ms 2×O(1)
DRSL [30] O

(
N2

1
)
+ 2O(N2) 84.532 ms O(N2)+ O(1)

MBIL [23] O
(

N1N2
2
)

326.443 ms O(N1) + 2×O(N1)

4.3. Future Research Directions

In the next stage of research, the following aspects will be mainly focused on: First, we
plan to analyze other factors which affect position accuracy. Secondly, we shall implement
the proposed method based on hardware platform and apply the proposed method in
realistic scenarios. The measured results in realistic scenarios will be compared with the
simulation results to improve the performances of the proposed method.

5. Conclusions

We propose a new positioning source optimization method for low-anchor node
density wireless sensor networks, which comprehensively considers the positioning per-
formance, distance, location and other factors that affect the positioning accuracy of co-
operative nodes to select positioning sources. First, each node calculates its own CRLB
and transmits it to neighboring nodes through collaborative information. Neighboring
nodes calculate the CRLB, distance measurement and direction angle of neighboring co-
operative nodes to obtain the optimal evaluation matrix, and obtain the fuzzy evaluation
result through weight addition, and obtain the final optimal location source. In the fuzzy
comprehensive evaluation framework, the weights of various evaluation factors can be
flexibly configured. Therefore, the proposed method can screen out different neighbor
nodes as positioning sources according to requirements, and then obtain a combination of
positioning sources with good location performance and distribution, which can improve
the positioning accuracy of the node. Compared with the DRSL and MBIL method, the
positioning signal source obtained by this method can obtain higher positioning accuracy
about 33.9% and 19.4% under low anchor node density, and the sacrificed calculation time
is almost negligible.
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