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LETTER TO EDITOR

A high-resolution cross-species comparative analysis of the
subchondral bone provides insight into critical
topographical patterns of the osteochondral unit

Dear Editor,
Deciphering the hierarchical and species-specific

topographical structure of the subchondral bone has
far-reaching implications. The subchondral bone is
in the focus of many pathological conditions, includ-
ing osteoarthritis (OA). Location-dependent OA
development,1 topographical differences within indi-
vidual subregions,2,3 all influenced by the meniscus
coverage2,3 highlight the urgent need to precisely repro-
duce pathological alterations at high quantitative detail
in appropriate in vivo models.4,5 We performed a detailed
comprehensive analysis of the zonal characteristics of the
subchondral bone of mice, rats, rabbits, minipigs, and
sheep, the most common animal models in orthopaedic
research, applying the human tibial plateau as a model
(Figure 1A), to identify the species with the highest
morphological agreement.
Macroscopic morphology was largely conserved

(Figure 1B–F; Figure S1). The groove of the extensor
digitorum longus tendon was present only in sheep,
minipigs, and rabbits (Figure 1B,C; Figure S1). Normalized
ratios of anatomical landmarks were highly similar in
the larger species (Figure 1D–F; Figure S1). Humans had
an extremely thin, porous and less compact subchondral
bone plate (SCBP), similar in many characteristics to
rabbits and minipigs, strikingly different from rats and
mice (Figure 1G–N; Figure S2). Solely in larger species
(humans, sheep, minipigs; partly in rabbits), the SCBPwas
thinner under the meniscus-covered peripheral areas than
in the not meniscus-covered central area (Figure 1H), a
finding highly relevant for translational studies, for exam-
ple, examining OA induction by meniscus tears. Of note,
mice and rats did not exhibit such pattern. Multivariate
analyses of all SCBP parameters characterized minipigs
and rabbits as most similar to humans, followed by sheep,
rats and mice (Figure 1M,N; Figure S2D).
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Human OA induces distinct degrees of architectural
alterations in the subarticular spongiosa.2,3 Species with
larger joint size, especially humans, had a lower relative
bone surface with fewer, thicker subarticular trabeculae in
a less connected and complex arrangement (Figure 2A–L).
Gait-specific4,5 biomechanical forces and human seden-
tary lifestyle may explain such structural adaptations. Rats
and mice significantly differed in most parameters from
humans (Figure 2A–L). Multivariate analyses indicated
that the structurally weaker human subarticular spongiosa
is matched by no other species, althoughminipigs, rabbits,
and sheep offer compromises (Figure 2M–O).
Meniscal coverage dictates a topographical pattern of the

SCBP microstructure that becomes disturbed in advanced
OA.2 Detailed analysis of the tibial plateaus identified a
denser and more solid bone structure in the more exposed
central locations (not covered by menisci) in humans,
sheep, minipigs mostly laterally (Figure 3B–E; Figure S3).
It is possible that larger species depend more on the
osteochondroprotective effect of the menisci on the (lat-
eral) SCBP. In contrast, rabbits, rats, and mice lack such
adaptation (Figure 3B–E; Figure S3). The human sub-
articular spongiosa is sclerotic in not meniscus-covered
subregions.6 We identified an expanded trabecular struc-
ture only in minipigs at these locations (Figure 3F–N;
Figure S4). In contrast, the trabecular network of sheep,
rabbits, and partly also humans is reduced at the central
region, with an uncertain relation to meniscal coverage
(Figure 3F–N; Figure S4). If characteristic topographical
patterns according tomeniscal coverage are of importance,
only sheep and minipigs reflect the human situation. The
marked differences of small rodents discourage their use
as realistic models to reflect the human subchondral tra-
becular structure and meniscal structural patterns.
Lateral-to-medial differences exist in humans, sheep,

and rats. The more complex and solid subarticular spon-
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F IGURE 1 Macroscopic dimensions of the tibial plateau and comparison of the subchondral bone plate (SCBP) microstructure of six
species. (A) Schematic figure (images created with BioRender.com) of the study design. (B,C) Representative 3D reconstructed micro-CT
models of human, sheep, minipig, rabbit, rat, and mouse tibial plateaus (asterisks: groove of the extensor digitorum longus tendon). Box plots
(boxes: 75th–25th percentiles, whiskers: minimum and maximum, middle line: median, +: mean, dots: individual data points) of the (D)
entire tibial plateau width, (E) medial/lateral tibial plateau width ratio, (F) entire tibial plateau length/width ratio, (G) SCBP thickness. (H)
Representative colour-coded 3D reconstructed micro-CT models of SCBP thickness of the tibial plateaus of six species. Box plots of the SCBP
(I) thickness normalized to the entire tibial plateau width, (J) percent bone volume (BV/TV), (K) bone surface-to-volume ratio (BS/BV), and
(L) total porosity. (M) Principal components analysis and (N) PERMANOVA (higher F values indicate the larger difference between the
groups; all p ≤ .042, except between rabbit and minipig p = .1575 and rat and mouse p = .0525) of the SCBP parameters. Data points represent
individual samples. Abbreviations: a, anterior; d, distal; l, lateral; m, medial; p, posterior, pr, proximal. n = 6 per species. p-Values above the
box plots show comparisons to human and were determined with ANOVA or Kruskal–Wallis ANOVA
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F IGURE 2 Comparison of the subarticular spongiosa microstructure of six species. (A) Representative 2D micro-CT images of human,
sheep, minipig, rabbit, rat, and mouse tibial plateaus. Box plots of the (B) percent bone volume (BV/TV), (C) bone surface-to-volume ratio
(BS/BV), (D) bone surface density (BS/TV), (E) trabecular pattern factor (Tb.Pf), (F) structure model index (SMI), (G) trabecular thickness
(Tb.Th), (H) trabecular number (Tb.N), (I) trabecular separation (Tb.Sp), (J) degree of anisotropy (DA), (K) fractal dimension (FD), and (L)
connectivity density (Conn.Dn) of the subarticular spongiosa (SAS). (M) Principal components analysis, (N) cluster analysis, and (O)
PERMANOVA (all p ≤ .0465) of the subarticular spongiosa parameters. Data points represent individual samples. Abbreviations: d, distal; l,
lateral; m, medial; pr, proximal. n = 6 per species. p-Values above the box plots show comparisons to human and were determined with
ANOVA or Kruskal–Wallis ANOVA
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F IGURE 3 Detailed regional analysis of the subchondral bone plate and subarticular spongiosa microstructure in six species. (A)
Representative 2D micro-CT image of a sheep, and 3D reconstructed micro-CT models of a sheep and a mouse tibial plateau showing the
volumes of interests used for the regional analyses. Box plots of the (B) thickness, (C) percent bone volume (BV/TV), (D) bone
surface-to-volume ratio (BS/BV), and (E) total porosity of the subchondral bone plate (SCBP), and the (F) BV/TV, (G) bone surface density
(BS/TV), (H) trabecular thickness (Tb.Th), (I) trabecular pattern factor (Tb.Pf), (J) degree of anisotropy (DA), (K) trabecular number (Tb.N),
(L) trabecular separation (Tb.Sp), (M) fractal dimension (FD), and (N) connectivity density (Conn.Dn) of the subarticular spongiosa (SAS) in
four regions. Abbreviations: a, anterior; d, distal; l, lateral; m, medial; p, posterior; pr, proximal; LTPc, lateral tibial plateau central; LTPp,
lateral tibial plateau peripheral; MTPc, medial tibial plateau central; MTPp, medial tibial plateau peripheral. n = 6 per species. p-Values above
the box plots were determined with RM-ANOVA or Friedman test. Only the relevant comparisons (i.e. MTPp vs. MTPc, LTPp vs. LTPc, MTPp
vs. LTPp, MTPc vs. LTPc) were performed
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F IGURE 4 Histology and correlations of the osteochondral unit and multivariate analysis of all examined parameters. Safranin O/fast
green, Masson–Goldner trichrome and haematoxylin-eosin stained histological sections of human, sheep, minipig, rabbit, rat, and mouse
tibial plateaus showing the (A) articular cartilage and the (B) subchondral bone. Dashed lines indicate the alignment of the images according
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giosa of the medial tibial plateau is largely absent in
rabbits and mice (Figure 3F–N; Figure S4). Minipigs, in
contrast, had expanded trabeculae in the lateral tibial
plateau. Since the medial tibiofemoral compartment is
involved in 67% of all OA cases, and the load distribution
can be (non)surgically modified,7 such lateral-medial
dissimilarities are of major translational relevance. Sheep
or rats reflect these patterns, the former are better suited
for precision surgical interventions.7
Chondrocytes were always typically organized, except in

the extremely thin mouse cartilage (Figure 4A,B). Abso-
lute cartilage thickness decreased towards species with
smaller body size in a simple8 or a negative allometric
relationship.9,10 When normalized to tibial plateau width,
only rabbits displayed an outstandingly large relative car-
tilage thickness. Of special translational importance, we
detected thicker cartilage in the not meniscus-protected
central subregions in humans, sheep, minipigs, and rab-
bits, but not in small rodents (Figure 4A–F; Figure S5A).
The similarity to humans was ranked in decreasing order:
Sheep, minipigs, rabbits, rats, mice considering all eval-
uated parameters (Figure 4G,H; Figure S5B), supporting
their applicability as models to study subchondral bone
alterations.
Considering all species together, most osteochondral

parameters presented strong and significant correlations
with joint size (Figure 4I–P; Figure S6),9,10 suggesting that
the relation between these metrics is conserved across
species. Interestingly, due to the extreme thinness of the
human SCBP, the correlation between the SCBP thickness
and joint size was only moderate when all species (includ-
ing humans) were considered. Excluding humans, correla-
tion became very strong (Figure 4L).
Limitations are that morphological parameters of the

osteochondral unit of only one strain of each species were
included. Functional, cellular, andphysiological character-
istics were not examined. Due to the extreme differences in
joint sizes, scanning resolution standardizationwas impos-
sible.

In summary, our study makes five major contribu-
tions to better capture the topographical subchondral bone
cross-species complexity: (i) The human SCBP is remark-
ably thin and porous compared to larger animals, simi-
lar in many characteristics to minipigs and rabbits, dis-
tinctly different from small rodents. (ii)The subarticular
trabecular structure of all animal species is more dense
and complex than humans. (iii) Regional patterns in the
SCBP according to meniscal coverage exist only in larger
species (humans, sheep, minipigs). The subarticular spon-
giosa displays structural lateral-to-medial differences in
humans, sheep, rats and minipigs, largely absent in rab-
bits and mice. (iv) Most of the osteochondral parameters
show strong and significant correlations with joint size. (v)
The declining rate of analogy in macroscopic anatomy and
microstructure of the tibial plateau of the animal species to
humans is: sheep ≈ minipigs > rabbits > > rats > >mice.
Together this comparative investigation closes major gaps
in our understanding of the cross-species topographical
patterning of subchondral bone that will be critical for
future clinical and translational approaches.
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to the cement line, dotted lines indicate the border between the subchondral bone plate (SCBP) and subarticular spongiosa. (C) Articular
cartilage thickness was measured with micro-CT. Articular cartilage thickness normalized to the (D) entire tibial plateau (TP) width, and (E)
SCBP thickness. p-Values above the box plots show comparisons to human and were determined with ANOVA. (F) Detailed regional analysis
of the subarticular spongiosa microstructure in six species. p-Values above the box plots were determined with RM-ANOVA or Friedman test.
(G) Principal components analysis and (H) PERMANOVA (all p ≤ .048) of all data, including cartilage thickness, tibial plateau dimensions
and subchondral bone parameters, were evaluated in the study. Data points represent individual samples. (I) Pearson correlation matrix of the
p-values and the correlation coefficients (r) of the examined osteochondral parameters compared with the entire tibial plateau (TP) width and
length. Scatter plot and linear regression of the Pearson correlation between entire tibial plateau width and (J) entire tibial plateau length, (K)
articular cartilage thickness, (L) SCBP thickness (dark red ellipse: outlying human data; grey line: linear regression of only the quadruped
animals, excluding the human data; r = 0.961, p = 1.8 × 10–17), (M) SCBP total porosity, (N) subarticular spongiosa (SAS) trabecular number
(Tb.N), (O) SAS degree of anisotropy (DA), and (P) SAS trabecular thickness (Tb.Th). n = 6 per species. Abbreviations: LTP, lateral tibial
plateau; LTS, lateral tibial spine; MTP, medial tibial plateau; MTS, medial tibial spine; th., thickness
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