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ABSTRACT

Intervention packages may result in a greater public health impact than single interventions. Un-

derstanding the separate impact of each component in the overall package effectiveness can improve

intervention delivery. We adapted an approach to evaluate the effects of a time-varying interven-

tion package in a network-randomized study. In some network-randomized studies, only a subset of

participants in exposed networks receive the intervention themselves. The spillover effect contrasts

average potential outcomes if a person was not exposed themselves under intervention in the network

versus no intervention in a control network. We estimated effects of components of the intervention

package in HIV Prevention Trials Network 037, a Phase III network-randomized HIV prevention trial

among people who inject drugs and their risk networks using Marginal Structural Models to adjust

for time-varying confounding. The index participant in an intervention network received a peer ed-

ucation intervention initially at baseline, then boosters at 6 and 12 months. All participants were

followed to ascertain HIV risk behaviors. There were 560 participants with at least one follow-up

visit, 48% of whom were randomized to the intervention, and 1,598 participant-visits were observed.

The spillover effect of the boosters in the presence of initial peer education training was a 39% rate

reduction (Rate Ratio = 0.61; 95% confidence interval= 0.43, 0.87). These methods will be useful to

evaluate intervention packages in studies with network features.

ABBREVIATIONS: Confidence interval (CI), Generalized estimating equations (GEEs), HIV Pre-

vention Trials Network (HPTN), Human Immunodeficiency Virus (HIV), People who inject drugs

(PWID), Risk/Rate ratio (RR)

KEY WORDS: Causal inference; Cluster-randomized trials; Spillover/Indirect effects; HIV/AIDS;

Implementation Science; Interference; Package Interventions; Substance use
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Introduction

Design and scale-up of intervention packages could help to control the HIV/AIDS epidemic by meet-

ing target population needs [1–3]. Intervention packages are defined herein as a set of individual

components to simultaneously prevent or treat a disease or condition through multiple pathways.

Many interventions confer partial protection against HIV transmission [1, 4]. Offering these inter-

ventions in combination (e.g., HIV testing, treatment as prevention (TasP)) is an important strategy.

TasP is HIV treatment that suppresses an individual’s viremia and also prevents onward transmission

[5]. Several cluster-randomized trials of packages of HIV prevention and treatment interventions were

conducted in Sub-Saharan Africa and demonstrated a range of effectiveness for TasP in combination

with other HIV interventions [6–13]. Intervention packages are often tailored to specific subpopula-

tions, such as people who inject drugs (PWID), in an effort to achieve a larger and more sustainable

intervention impact [14–16].

In studies of intervention packages, treatment may be randomly assigned to individuals and/or

networks (e.g., social groupings), or treatments can be self-selected by individuals. Previous causal

inference approaches accounted for implementation factors that were not randomized [17, 18], but did

not consider possible spillover. Methods to evaluate the joint causal effects of two non-randomized

exposures [19, 20] considered an interaction in the presence of time-varying confounding in an obser-

vational study, employing joint Marginal Structural Models (MSMs), but did not consider spillover

effects. He et al. [21] developed MSMs for studies of a single intervention with spillover and fit the

models using cluster-level propensity scores. MSMs are a class of causal models that typically model

the marginal mean of the counterfactual outcome, and the parameters correspond to average causal

effects [22].

We adapted methods to disentangle the effects of time-varying components of intervention pack-

ages in studies where spillover may be present. We considered a network-randomized trial in which

only one member of each intervention network was eligible to be exposed to the HIV intervention

package by the study investigators and each participant belongs to only one network. The par-

ticipants eligible to receive the intervention package are hereafter denoted as “index participants”.

Participants came forward to be an index, then centered around each index, investigators ascertained

their immediate HIV risk contacts, defined as all individuals reporting injection or sexual behavior

with the index, known as an egocentric network. These networks were randomized to intervention

(index is peer educator) or control condition. After the initial training, the index participants in
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intervention networks then educated their network members (all participants in the network besides

the index) about HIV risk reduction behavior. At 6- and 12-month visits, the index participant could

attend a voluntary booster session (second component) aimed at strengthening the initial interven-

tion (first component). This study design is frequently utilized in HIV prevention research among

PWID [23–26]. There was only one intervention component per visit; however, the MSM approach

presented herein is more broadly applicable to multiple components per visit and aimed at evalu-

ating joint causal effects. With only one component per visit, a time-varying mediation approach

could alternatively be used with the exposure defined as the initial component and the subsequent

components defined as mediators to understand how the initial intervention operates through the

subsequent boosters [27].

Each component of the intervention package is considered a time-varying non-randomized expo-

sure possibly subject to time-varying confounding. Effects can be estimated using inverse probability

weights to fit MSMs [28, 29]. MSMs can also be used to estimate spillover effects when only one

network member is exposed [30]. The spillover (indirect, disseminated) effect compares the risk of the

outcome if a participant is a network member (non-index) comparing network exposure to package

components versus no exposure [31, 32]. The direct effect compares the risk of the outcome if a

participant is an index versus a network member under network exposure to package components. Il-

lustrating with data from a network-randomized trial in the HIV Prevention Trials Network (HPTN)

[33, 34], we employ inverse probability weighted (IPW) generalized linear mixed models to estimate

these effects, adjusting for time-varying confounding.

Methods

Notation

Let uppercase letters denote random variables and lowercase letters denote realizations of those

random variables. We define the network as the index participant and their egocentric network.

Let K be the total number of networks and i = 1, . . . , nk denote nk participants in network k. Let∑
k nk = N be the total number of participants in the study, j = 0, . . . ,mki denote the study visit

for participant i in network k, where visit 0 corresponds to the baseline visit, Jk =
∑

imki, and

Mk = maximki. Define Ykij as the observed binary outcome for participant i in network k at visit j.

LetXk be the randomized intervention package for network k and let Rki denote index (versus network

member) status for participant i in network k. Let Ahkj denote exposure to the hth intervention

3
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component for network k at visit j, with h = 1, . . . , H. Let Āhkj = (Ahk0, Ahk1, . . . , Ahkj)
T be a

vector of size (j + 1)× 1 denoting the exposure histories for component h up to and including visit

j for network k. Let Akj = (A1kj, . . . , AHkj)
T denote the vector of size H × 1 denoting all package

component exposures in network k at visit j and let the history of the intervention package component

exposures be denoted by the matrix

Ākj =


A1k0 A1k1 · · · A1kj

A2k0 A2k1 · · · A2kj

...
...

. . .
...

AHk0 AHk1 · · · AHkj

 =
(
Ak0 Ak1 . . . Akj

)
=

(
Ā1kj Ā2kj . . . ĀHkj

)T

.

We assume that there is only one index per network and let ik denote the unique index member in

each network k. Let Rk = (Rk1, . . . , Rknk
)T be a vector of size nk×1 denoting the index membership

in network k. Let Yk = (Yk10, Yk11, . . . , Yk1m11 , . . . , Yknk0, . . . , Yknkmknk
)T be the vector of size Jk × 1

denoting outcomes across all participant-visits in network k. Let Zki denote a p × 1 vector of

baseline (i.e., time invariant) covariates for participant i in network k and Zkij denote a q× 1 vector

of time-varying covariates for participant i in network k at visit j. Let Z̄kij = (Zki0,Zki1, . . . ,Zkij)

denote a p×j matrix for an individual’s covariate history up to and including visit j. At the network

level, let Z̃kj be a qj × 1 vector of network-level aggregate functions of the covariates, such as the

history of the mean for a given covariate, in network k up to and including visit j. Let Z̄kikj the

index member covariates in network k up to and including visit j. Let Uki be a vector of size s× 1

of unmeasured baseline covariates for participant i in network k. Let Uk denote a vector of the

unmeasured baseline covariates of all participants in network k. Let āj denote a possible history of

all package components from baseline up to and including visit j and r a realization of Rk. Assuming

partial interference (i.e., allowing for spillover between any members of an egocentric network but

not between networks) [35], each participant has potential outcomes Yki,j+1(r, āj), which correspond

to the 2H×j×nk vector of potential outcomes for participant i in network k at visit j under the index

status indicator vector Rk = r and package component history Ākj = āj. Assuming only one index

per network and that the potential outcomes depend on the package component history and index

status of the participant, but not specifically who is the index (i.e., stratified interference assumption

[35]), the potential outcomes of interest are Yki,j+1(r, āj).
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Estimands

The direct package effect is a contrast in average potential outcomes under index versus network

member status if the network is exposed component history āj. On the ratio scale, RRD(āj) =

E[Yki,j+1(r = 1, āj)]/E[Yki,j+1(r = 0, āj)]. The spillover package effect compares the average poten-

tial outcomes if a participant is a network member under network component history āj versus no

component history exposure 0̄. RRS(āj) = E[Yki,j+1(r = 0, āj)]/E[Yki,j+1(r = 0, 0̄)]. The composite

package effect is RRComp(āj) = E[Yki,j+1(r = 1, āj)]/E[Yki,j+1(r = 0, 0̄)], a comparison of the aver-

age potential outcomes if an index under network component history exposure āj versus if a network

member under no component history exposure 0̄. Marginalizing over the index status, the overall

package effect compares average potential outcomes under component history exposure āj versus no

exposure, denoted RROverall(āj) = E[Yki,j+1(āj)]/E[Yki,j+1(0̄)][30]. Analogous effects can be defined

on the difference scale and other definitions of these effects are possible.

Assumptions

We assume there may be correlation between outcomes in a network and no contamination across

study intervention arms (e.g., the intervention does not affect participants in the control group) [31].

At the individual level conditional on Zki, we assume conditional index member exchangeability for

the self-selected index status; that is, Yki,j+1(r, āj) ⊥ Rki|Zki [30, 36]. For the time-varying package

components Akj, network component exchangeability may not hold because the network-level expo-

sure is determined by index visit attendance that may depend on covariates. However, we assume

Yki,j+1(r, āj) ⊥ Akj|{Āk,j−1 = āj−1,Rk = r, Z̃kj, Z̄kikj} for j = 0, . . . ,mki; that is, network compo-

nent exchangeability of potential outcomes holds conditional on each network’s package component

history (determined by the network-level intervention, index status, and index visit attendance) and a

network-level aggregate of covariate history, as well as its index member’s covariate history, up to and

including the prior visit j. In the HPTN trial, covariates are ascertained from previous visits because

the component exposure is defined by index visit attendance, which can only be modeled across all

indexes using information from previous visits. We assume positivity: 0 < Pr(Rki = r|Zki = z) < 1

and 0 < Pr(Ākj = āj|Āk,j−1 = āj−1,Rk = r, Z̃kj = z̃, Z̄kikj = z̄) < 1 for all r, āj, r, z, z̃ and z̄,

requiring index and non-index members at each level of individual covariates and networks exposed

(and not exposed) to each of the components at each level of the index and network-level covariates.

The latter can hold when there is non-compliance to package components. If two components were
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always delivered simultaneously, we would not be able to disentangle the package component effects.

Related to causal consistency, we also assume treatment variation irrelevance for the package com-

ponents, which implies we have only one version of the outcome for exposure to each component and

one version for no exposure [37]. We also assume that data from missed visits and dropout due to

loss-to-follow-up are Missing Completely at Random [38].

Estimation and Inference

We estimate the effect of each package component in a single model, while considering the presence

of the remaining package components [30]. This outcome model is adjusted for individual-level

confounding at baseline and IPW to adjust for network level time-varying confounding (Appendix

A). We assume that the effects of the package components and index status are not modified by

covariates (e.g., there are no (r, āj) by Zki interactions) and the log-binomial generalized linear

mixed model fits the data. The MSM is

log{E[Yki,j+1(r, āj)|Zki, bki, bk]} = β0 + rβ1 + g(āj)β2 + rg(āj)β3 + ZT
kiβ4 + bki + bk , (1)

where g(āj) is a known function of the package component history with g(āj = 0̄) = 0̄ and the param-

eters β2, β3 are column vectors with dimensions determined by g(āj). For example, g(āj) =
∑j

l=0 al

could be defined as cumulative exposure or a simple time-updated exposure with exposure status at

baseline for each package component, g(āj) =
(
aT
0 aT

j

)
. Two random intercepts, bki ∼ N(0, ψ1)

and bk ∼ N(0, ψ2), account for correlation within participants and within networks, respectively. We

assume the corresponding observed outcomes Yk ⊥ Yk′ are independent for k ̸= k
′
. The vector of

unmeasured baseline covariates Uki may affect Rki within levels of the baseline covariates Zki. The

β1 term represents outcome differences between index and non-index members in the absence of the

intervention after conditioning on Zki. Note that RRD(0̄) = exp(β1). We assume that index status

can only have an effect on the outcome in an intervention network because an index in an intervention

network is the only individual assigned to receive the training from the study team (i.e., peer edu-

cator); that is, RRD(0̄) = 1 and thus β1 = 0. If conditional exchangeability does not hold for index

status, β̂1 could be different from the null due to unmeasured differences between index participants

and network members. The differences in the observed outcomes between index participants in the

intervention arm and network members in the intervention arm (for direct effect) or in the control

arm (for the composite effect) are due to both the causal effects and the differences between the two

groups due to unmeasured confounding. Therefore, dividing by its exponent exp(β1) on the ratio
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scale would result in the causal effects. To note, identification of the MSM parameters under unmea-

sured confounding of index status is a consequence of the functional form of the model. Extending

results in Buchanan et al. [30], suppressing the notation for the random effects and covariates for

ease of notation, estimators for each of the parameters are:

R̂R
D
(āj) =

(
Ê[Yki,j+1(r = 1, āj)]/Ê[Yki,j+1(r = 0, āj)]

)
exp(β̂1)

−1 = exp
(
g(āj)β̂3

)
,

R̂R
S
(āj) = Ê[Yki,j+1(r = 0, āj)]/Ê[Yki,j+1(r = 0, 0̄)] = exp

(
g(āj)β̂2

)
,

R̂R
Comp

(āj) =
(
Ê[Yki,j+1(r = 1, āj)]/Ê[Yki,j+1(r = 0, 0̄)]

)
exp(β̂1)

−1 = exp
(
g(āj)(β̂2 + β̂3)

)
.

On the relative rate scale under the assumptions described above, RRD(ā) can be interpreted as the

causal spillover effect if a participant is a network member under network exposure to intervention

package component history exposure āj versus no network exposure. For log links, the conditional

mean is additive in the fixed and random effects rendering the conditional and marginal treatment

effects equivalent and these estimated effects can be interpreted as either participant-level and/or

population-level estimates [39, 40]. We consider a model for quantifying the effects of multiple package

components that includes pairwise interactions between components in a single model (Appendix B).

Ignoring the estimation of the weights [41], we used a conservative empirical sandwich estimator of

the variance from a generalized linear mixed model with a working binomial variance and independent

correlation specified by within-participant and within-network random intercepts to construct 95%

Wald-type confidence intervals (CIs) [38, 42].

Illustrative Example

The HPTN Protocol 037 was a Phase III, network-randomized controlled HIV prevention trial with

696 participants who were PWID and their HIV risk networks in Philadelphia, PA [14]. HPTN

037 evaluated the efficacy of a network-oriented peer education intervention package to promote

HIV risk reduction among HIV risk networks. Participants were followed for up to 30 months

with visits every six months. Index participants whose network was randomized to the intervention

received an intervention package that consisted of an initial intervention at baseline with six 2-

hour peer educator sessions during the first four weeks and boosters at six and 12 months. The

initial training educated indexes in the intervention networks through role-playing activities and

developing communication skills including: 1) promote safer sex and drug injection skills among

network members, and 2) communication strategies to reach peers and promote norms about HIV
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risk reduction. At the booster sessions, indexes had the opportunity to troubleshoot, share their

experiences, improve communication, and bolster motivation. An intervention network was exposed

if its index member attended a visit when a package component (initial or boosters) was administered.

Participants in both the intervention and control conditions received HIV counseling and testing at

each visit [14]. Table 1 presents the intervention package evaluated in HPTN 037.

We are interested in the overall effect of the additional boosters among those who received the

initial intervention and the direct and spillover effects of the intervention package components (i.e,

initial and boosters). Exposure to the booster was defined as a time-updated variable for the booster

exposure at time j with the outcome at time j + 1. The package components were defined as

initial only and recent exposure to the 6- or 12-month booster in addition to the initial intervention.

Across all study visits, we estimated effects of the initial intervention only and the boosters in the

presence of the initial intervention that describe the patterns of change in the response probability

over time (Appendix D). We evaluated the effects at the 6-, 12-, and 18-month visits (following

the delivery of the initial intervention) and 12- and 18-month visits (following the delivery of each

booster intervention). Direct and spillover effects of the package components were assessed through

comparisons of the report of any injection-related risk behavior across all study visits defined by:

sharing injection equipment (needles, cookers, cotton, and rinse water), front and back loading (i.e.,

injecting drugs from one syringe to another), and injecting with people not well known or in a shooting

gallery/public place in the past month. Following the original analysis of this study [14], outcomes

among participants who reported injection drug use in the six months prior to baseline were included.

The longitudinal data were used to assess the effects of the intervention on the inter-visit rates of

any injection-related risk behavior using a multilevel generalized linear mixed model (see Estimation

and Inference).

Ideally, we would include all covariates that were known or suspected risk factors; however, this

resulted in overparameterization of the model given the study’s sample size. We employed a variable

selection procedure (Appendix C). The outcome models were adjusted for baseline individual-level

covariates that were known or suspected risk factors for the outcome, including race (nonwhite vs.

white), ethnicity (Hispanic vs. non-Hispanic), report of any injection risk behavior (yes vs. no),

injected daily in the last month (yes vs. no), alcohol use (got drunk vs. no), and injected heroin

and cocaine (yes vs. no) and network-level average age and prevalence of nonwhite race, report of

any injection risk behavior, cocaine use, and injected heroin and cocaine. Models with time-varying

covariates adjusted for the same set of individual-, index-, and network-level covariates included in

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2024. ; https://doi.org/10.1101/2022.03.24.22272909doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.24.22272909
http://creativecommons.org/licenses/by-nc-nd/4.0/


the baseline model, with baseline index- and network-level covariates replaced with their time-varying

version when applicable.

Time-varying confounding was adjusted for using stabilized inverse probability weights (Appendix

A). The IPW generalized linear mixed model with a log link and binomial distribution was fit by

weighting individual participants according to their estimated stabilized weights. In intervention

networks only, the weight models were estimated in the network-level data with one record per

network per visit, pooling across the visits where the network-level exposure status could change (e.g.,

12- to 18-month visits). The denominator weight models included selected time-varying network-

level aggregate covariates, index member covariates that were known or suspected risk factors for

the outcome, and selected pairwise interactions, which allowed for more flexibility in the model

specification, and the package component exposure at the previous visit. The numerator weight model

included the package component exposure at the previous visit and selected baseline network-level

covariates and index member covariates that were known or suspected risk factors for the outcome,

which were also included in the outcome model. Both the models for the numerator and denominator

of the weights included a variable for time specified as study visit month. For some of the models,

the log-binomial models did not converge and log-Poisson models, which provide consistent but not

fully efficient estimates of the relative risk, were used [39, 43]. There was no evidence of model

misspecification or positivity violations because the average of the stabilized weights distribution was

approximately one (mean = 0.99; standard deviation = 0.08; minimum = 0.10; maximum = 2.13;

Table A1), using the criterion in [44]. For comparison to traditional methods, we presented models

adjusting for baseline covariates only or including the time-varying covariates in the outcome model,

and both methods may result in estimates that do not confer a causal interpretation due to bias

(Appendix A). Additional results, including a sensitivity analysis for effect measure modification by

study visit month, are provided (Appendix D, Tables A2 and A3). The data analysis for this paper

was generated using SAS software (Version 9.4), and we provide example SAS code (Appendix E).

Results

There were 696 participants, 651 reported injection drug use at baseline, and 560 participants had at

least one follow-up visit with a total of 1,598 person visits. The size of the networks ranged from two

to seven participants and network size was not associated with the outcome (unadjusted rate ratio

(RR) = 0.96; 95% CI = 0.87, 1.06). Among the 560 participants, 270 (48%) were in intervention

networks. Of the 232 indexes who reported injection drug behavior at baseline, 112 (48%) received
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the initial peer education intervention. Table 2 displays the number of participants who received

initial peer education and each booster session; in intervention networks, 70 (63%) index participants

received the 6-month booster, and 59 (53%) index participants received the 12-month booster.

Regardless of the adjustment approach, the estimated spillover effect for the initial peer educa-

tion intervention was comparable (Table 3). In the IPW models, there was an estimated 13% rate

reduction in the spillover rate of report of any injection risk behavior (RR = 0.87; 95% CI = 0.69,

1.10). We expect a spillover rate of reporting any injection risk behavior to be 39% lower if a partic-

ipant is a network member in an intervention network whose index had recent exposure to the 6- or

12-month booster in addition to the initial training, compared to if a participant is a control network

member (RR = 0.61; 95% CI = 0.43, 0.87). The estimated direct effect of the initial peer education

intervention was protective, regardless of the covariate adjustment approach; however, the estimated

direct effect of the booster in addition to the initial intervention was null. In the IPW models, the

estimated initial and booster composite effects were protective with a 24% (RR = 0.76; 95% CI =

0.56, 1.02) and 37% rate reduction (RR = 0.63; 95% CI = 0.43, 0.92), respectively. The estimated

overall effect of the initial was protective with a 17% rate reduction (RR = 0.83; 95% CI = 0.69,

0.99). We expect a 38% decrease in the overall rate of reporting injection risk behavior if networks

are recently exposed to the 6- or 12-month booster in addition to the initial training compared to if

networks were assigned to the control condition (RR = 0.62; 95% CI = 0.46, 0.82). Based on the

MSM parameterization, the rate ratios could be interpreted as the estimates from a trial in which

participants are randomized to the booster at six months, 12 months, or no booster at each visit

[45]. The effect measure modification of the four different intervention effects by visit time on the

multiplicative scale are reported in Table A3. The magnitude of the estimated spillover effect of the

booster was larger at 12 months (RR = 0.54; 95% CI = (0.36, 0.81)), compared to 18 months (RR

= 0.69; 95% CI = 0.44, 1.10; P value = 0.54). The magnitude of the estimated spillover effect of the

initial intervention was comparable across study visits (P value = 0.96).

Discussion

We adapted existing causal inference methods to evaluate time-varying components of intervention

packages in studies where spillover may be present. Estimating these effects provides information

about the impact of package interventions and their spillover to network members from an exposed

index participant. These methods provide a more in-depth understanding of package components’
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effects for exposed index participants and those sharing networks with exposed participants. In HPTN

037, the estimated overall effect was larger in magnitude for the booster with initial intervention,

as compared to the initial intervention alone, highlighting the importance of continued training for

peer educators in this context. A protective spillover effect was observed for network members for

the initial and booster interventions, without a corresponding direct benefit for those trained to be

peer educators. We found evidence that booster sessions strengthen the spillover of the intervention,

which can be utilized when developing peer-led interventions [46].

This work is particularly timely as these methods are applicable to several HIV combination

prevention cluster-randomized trials that warrant evaluation of the intervention package component

effects with multiple components at each visit, as well as the spillover effects within communities, to

better understand the effects of TasP [3, 47]. Understanding the components that may be driving the

observed effects of the intervention package could inform modifications to the existing public health

strategies in these settings by strengthening highly effective components and redeveloping those

found to be partially effective or ineffective [6–8, 10, 12, 13]. Evaluation of the universal “test and

treat” intervention could include the impact on the health outcomes among those in the communities

assigned to immediate ART scale-up but who did not receive immediate ART themselves. As in

vaccine campaign design, this could inform the level of ART coverage needed to benefit the community

and consistently achieve targets such as the UNAIDS 2025 [48]. Potential impact of a number of

other HIV prevention strategies could be informed by estimating spillover effects in the community

or social network [49–51].

The assumption of no unmeasured covariates associated with the network-level exposure and

outcome is untestable. Future work could develop methods to assess the sensitivity of these methods

to unmeasured confounders [52]. We assumed that index status has no effect in the absence of an

intervention conditional on measured confounders; however, if features of the intervention are not

exclusive to the study and the indexes are more (or less) health seeking than others in their network,

there could be a non-null index effect in the control. The weight and outcome models were assumed

to be correct (e.g., correct functional forms of covariates). This is not guaranteed in practice, and

sensitivity analyses could be performed to evaluate the robustness of results to model specification.

We do not expect any structural violations of positivity, as both the index status and each of the

package components can occur at each level of the measured covariates; however, given the number

of covariates included, we used a parametric model for the weights [44]. We also assumed that any

data from missing visits were ignorable with respect to valid estimation of intervention effects. These
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models could be extended to include censoring weights to adjust for possibly differential loss to follow-

up due to dropout [53, 54]. The ascertainment of personal networks of index participants is likely

only a partial ascertainment of each person’s network, which limits the evaluation of spillover within

the networks to recruited individuals. These methods will be a valuable tool to evaluate randomized

and non-randomized intervention packages in a single study with network features.
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Table 1: Interventions in HPTN 037 by study arm and network membership

Study Arm Behavioral Intervention

Index Participant Network Members

Experimental Arm Enhanced HIV counseling and

testing plus Six 2-hour network-

orientated peer-educator sessions

during weeks 1 to 4 (initial inter-

vention) and Booster session at

months 6 and 12

Enhanced HIV Counseling and

Testing

Control Arm Enhanced HIV Counseling and

Testing

Enhanced HIV Counseling and

Testing
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Table 2: Package components received by index and network members during follow-up among HPTN

037 participants who reported injecting drugs at baseline and had at least one follow-up visit after

baseline (n = 560)

Network Member Role

Index Network

Member1

Initial Peer Education (n = 560)2 97/201 (48%) 173/359 (48%)

6-Month Booster (n = 447) 70/159 (44%) 128/288 (44%)

12-Month Booster (n = 344) 59/125 (47%) 106/219 (48%)

1Network member exposure determined by randomized package and their index’s visit attendance.

2 Reported n is the total number of participants who had at least some follow-up after baseline.
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Table 3: Estimated rate ratios (RR) for the direct, spillover, composite and overall effects of the

HPTN 037 peer education package components on reducing report of any injection risk behavior (per

person-visit) during follow-up with 95% confidence intervals (CI) among participants with at least

one follow-up visit1

Direct Spillover

Initial Booster Initial Booster

Unadjusted 0.94 (0.65, 1.36) 1.03 (0.64, 1.66) 0.86 (0.66, 1.11) 0.59 (0.39, 0.87)

Adjusted for baseline covariates2 0.87 (0.59, 1.26) 1.05 (0.65, 1.68) 0.87 (0.68, 1.10) 0.62 (0.43, 0.88)

Adjusted for baseline and TV covariates2,3 0.83 (0.57, 1.21) 1.00 (0.62, 1.64) 0.88 (0.69, 1.11) 0.72 (0.49, 1.06)

IP-weighted2,4 0.87 (0.60, 1.27) 1.03 (0.64, 1.65) 0.87 (0.69, 1.10) 0.61 (0.43, 0.87)

Overall Composite

Initial Booster Initial Booster

Unadjusted 0.84 (0.68, 1.04) 0.59 (0.43, 0.82) 0.80 (0.59, 1.10) 0.60 (0.41, 0.89)

Adjusted for baseline covariates2 0.82 (0.68, 0.99) 0.63 (0.47, 0.83) 0.75 (0.56, 1.01) 0.64 (0.44, 0.94)

Adjusted for baseline and TV covariates2,3 0.82 (0.68, 0.98) 0.72 (0.54, 0.96) 0.73 (0.55, 0.96) 0.72 (0.51, 1.02)

IP-weighted2,4 0.83 (0.69, 0.99) 0.62 (0.46, 0.82) 0.76 (0.56, 1.02) 0.63 (0.43, 0.92)

1 Analysis included a total of 560 participants and 1,598 person-visits with 509 events total. One participant was excluded due to missing baseline information

on spending the night on the street (in the past 6 months) and spending time in jail (in the past 6 months) at baseline. The package components were defined

as initial only and recent exposure for the 6- or 12-month booster in addition to the initial intervention.

2 Baseline covariates included individual-level race (nonwhite vs. white), Hispanic (yes vs. no), report of any injection risk behavior (yes vs. no), injected

daily in the last month (yes vs. no), and alcohol use (got drunk vs. no), index member race (nonwhite vs. white), index report of any injection risk behavior

(yes vs. no), index injected daily in the last month (yes vs. no), and index injected heroin and cocaine (yes vs. no) and network-level average age and

network-level prevalence of nonwhite race, report of any injection risk behavior, cocaine use, and injected heroin and cocaine.

3 Adjusted for the same individual-level covariates included in the baseline model, network-level prevalence of report of any injection risk behavior at baseline,

index member race, baseline network-level average age, baseline network-level prevalence of nonwhite race, and also the time-varying version of the remaining

index member and network-level covariates included in the baseline model, except for time-varying index member report of injected heroin and cocaine

(Appendix C).

4 Adjusted for weights estimated using the same index member and network-level covariates included in the baseline model, time-varying network-level

prevalence of report of any injection risk behavior, cocaine use, and injected heroin and cocaine, the time-varying index report of any injection risk behavior

and index injected daily in the last month, and four interaction terms between selected time-varying covariates: index report of any injection risk behavior and

injected daily in the last month; network-level prevalence of injected heroin and cocaine and index report of any injection risk behavior; network-level

prevalence of injected heroin and cocaine and index injected daily in the last month; and network-level prevalence of injected heroin and cocaine and report of

any injection risk behavior.
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