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eAppendix. Development of the AI-Guidance Algorithm 
Background: The overall approach of this artificial intelligence (AI) echo guidance can be summarized as capturing 

the expertise of sonographers.  Specifically, sonographers know what they are looking for, the diagnostic quality of 

what they are currently imaging, and know how to move the probe to acquire the desired imagery by examining the 

current ultrasound imagery.  We used deep learning (DL), a form of AI, which is uniquely suited to capturing this 

perceptual ability. 

DL is a form of machine learning based on artificial neural networks and refers to a number of techniques, but 

common attributes include composing simple computational elements into a layer, combining many layers into deep 

stacks, and adapting the parameters of the elements using supervised learning.  While the theoretical underpinnings 

of deep learning have been around for decades, only recently have enough computational power, training data, and 

practical knowledge been available to achieve success. 

DL has recently achieved a wide range of successes, including speech processing1 and image understanding 2 as well 

as genomics3 and medical imaging.4 Our own work has indicated that deep learning algorithms for visual object 

recognition now rival the abilities of high-level primate cortex for rapid visual processing5.  The ability of expert 

sonographers to interpret ultrasound in the “blink of an eye” is a similar form of visual discrimination, and capturing 

this ability with deep learning is the goal of this AI-guidance approach. 

In order to help users to acquire high-quality echocardiograms, the guidance algorithm must be able to estimate the 

positioning of the ultrasound probe from the current imaging and provide real-time guidance based on that 

estimation for the user to arrive at the ideal positioning and image.  It must first be able to grade the quality of the 

imagery and determine whether it meets diagnostic criteria.  Therefore, the AI-guidance deep learning algorithm 

makes three simultaneous estimates: 1) diagnostic quality of the imagery, 2) six-dimensional (6D, probe position 

plus orientation) geometric distance between current probe location and a probe location anticipated to optimize the 

image, and 3) corrective probe manipulations to improve diagnostic quality.  Importantly, the deep learning 

algorithm makes these estimates from only the ultrasound imagery; no trackers, fiducial markers, or additional 

sensors are needed for operation. 

Training the network: As shown in eFigure 1, the deep learning algorithm was developed to guide operators to 10 

diagnostic views of the heart: parasternal long axis view (PLAX); parasternal short axis view at aortic valve level 

(PSAX-AV), mitral valve level (PSAX-MV), and papillary muscle level (PSAX-PM); apical 2, 3, 4, 5 chamber 

views (Ap2, Ap3, Ap4, and Ap5); and subcostal 4 chamber (SC-4) and inferior vena cava view (SC-IVC).  Fifteen 

(15) registered sonographers captured imagery on subjects over a range of BMI and clinical pathology to train the 

deep learning algorithm. This training dataset contained >5,000,000 individual data points on transducer 

location/orientation and observed imagery using ultrasound machines from multiple vendors.  This dataset was 

curated and augmented with approximately 500,000 labels from expert sonographers and cardiologists annotating 

diagnostic quality and suggesting prescriptive guidance actions to improve the imaging (eFigure 1 left).  Using this 

dataset, the algorithm was trained to estimate the 6D distance to each of the 10 views, define 81 unique prescriptive 

guidance actions, and diagnostic thresholds for each of the 10 views.  The algorithm, consisting of more than 

7,000,000 parameters, was trained using standard machine learning optimization techniques on a 31 tFLOP (trillion 

floating point operations per second) GPU array. Training the model took approximately 7.2 exaFLOP (1 exaFLOP 

is one million teraFLOPs or a quintillion (1018) 32-bit multiplication floating point operations) over two weeks 

(eFigure 1 center).  Further information on Caption Guidance may be found in the talk, “Development and 

Validation of a Breakthrough AI-Guided Echocardiography System” presented at the FDA-hosted public workshop 

titled, “Evolving Role of Artificial Intelligence in Radiological Imaging” held in Bethesda, Maryland on February 

25 and 26, 2020, with slides  [https://www.fda.gov/media/135734/download], and video 

[http://fda.yorkcast.com/webcast/Play/5ac1c24f9e48455c82011ab26837afad1d, with the relevant portion beginning 

at 42:10 of the video available. 

Implementation: For real-time operation, the AI-guidance algorithm is implemented on a Terason uSmart 3200t 

Plus, which is a point-of-care ultrasound system with a phased-array transducer for cardiac imaging and an on-board 

P3000 NVIDIA GPU.  The guidance implementation that runs on the Terason device as a relatively compact (1.5 

GB) stand-alone executable and does not require any cloud connectivity or additional computational infrastructure.  

For real-time operation, the guidance algorithm is implemented in TensorFlow, an open source platform for machine 

learning originally developed by Google.  The framerate of the ultrasound imagery is 30 fps with <20ms latency 

from ultrasound image formation to algorithm estimation, and the user is provided guidance updates 10 times per 

second.  Note that even more compact implementations of the software have been developed for handheld 

ultrasound devices running on tablets and smartphones, which may enable use of this guidance on such devices in 

the future.   

https://www.fda.gov/media/135734/download
http://fda.yorkcast.com/webcast/Play/5ac1c24f9e48455c82011ab26837afad1d
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Detailed Description of Caption Guidance User Workflow: As shown in eFigure 1 right, the user interface is 

designed to aid medical professionals without prior ultrasound experience to perform diagnostic imaging.  The user 

interface guides users through a predefined and customizable imaging workflow to capture a specific set of 

ultrasound views.  In the clinical study, a protocol of 10 views was utilized.  Each view was attempted sequentially 

according to the preset protocol.  The user interface contains static guidance, which indicates the approximate 

starting location on the surface of the body, and a canonical image for the desired view in the protocol.  Other 

relevant user interface features include the “quality meter,” “prescriptive guidance,” and “save best clip.”  Users 

were instructed to first observe the static guidance display to orient the probe to begin and to familiarize themselves 

with the desired view.  They are then instructed to begin scanning and observe the response of the quality meter.  

Because the quality meter provides an estimate of the 6D distance from the desired view, the user can observe the 

response of the quality meter as it corresponds to their probe movements and choose to continue probe movements 

that increase the response of the quality meter.  For example, moving the probe more medially may reduce the 

quality meter response, but moving more laterally may increase the response, thus giving the user feedback to 

continue with a lateral probe movement.   

When the underlying algorithms detect a recognizable image appearance, users are presented with prescriptive 

guidance cues to guide probe movement with a specific motion.  For example, an under-rotation may be detected for 

a parasternal long axis view acquisition, and the prescriptive guidance would then instruct the user to rotate slowly 

counterclockwise.  When the user follows the recommended prescriptive guidance command, the quality meter 

typically responds with increasing response and users are instructed to continue their motion until they maximize the 

response of the quality meter. 

The quality meter also indicates a diagnostic quality threshold, and if the user maintains a quality meter level above 

this threshold, the software will automatically begin to capture a clip prospectively (called auto-capture) and store 

the clip as long as the user maintains the meter level above the threshold for at least 2 seconds up to 4 seconds; a clip 

shorter than 2 seconds will be discarded. This auto-captured 2 to 4 second clip is then utilized as the resulting clip 

for that view.  If during scanning, the user does not cross the auto-record threshold within 2 minutes, the save best 

clip option will appear, enabling the user to proceed with the selection of the 2 second image sequence that produced 

the highest quality meter response over the 2 minutes.  The user may either choose to tap on the save best clip option 

and proceed to the next view, or may continue to scan and attempt to achieve an auto-captured image.  The save best 

clip feature was utilized in a high proportion of patient exams, most of which were deemed to be diagnostic quality 

even though they did not cross the auto-capture threshold.  Note that the diagnostic threshold has been optimized to 

have high precision, rather than high recall, so as to optimize for high-diagnostic quality scans. 

At completion of the 10 view protocol, users are presented a summary page that enables them to review the imagery 

they have acquired for each view.  Upon review, users can elect to re-record a specific view, which then enters them 

into the workflow for that specific view before returning them to the summary page.  Once review is complete, users 

chose to end the study and save the results.  Studies were then transferred for storage and the clinical read using 

standard methods. 

eFigure 2 shows in greater detail how an operator uses AI-guided feedback as they acquire each ultrasound view, 

including the process of following the Quality Meter and Prescriptive Guidance prompts to achieve Auto-Capture, 

and also a situation where the Save Best Clip is triggered.  Through this process, operators obtain a video clip of the 

desired view by either achieving Auto-Capture or a Save Best Clip capture, repeating this process for each of the 10 

views (which are shown in eFigure 3). 

Testing / Validation: The individual components of the AI-guidance have been evaluated for the precision of 

estimates vs sonographer judgements, estimation of diagnostic quality, performance of prescriptive guidance cues, 

and pilot testing of novice user performance.  In preparation for the prospective study described in this paper, we 

performed a pilot study of 4 nurses with no prior ultrasound experience.  This study included 16 subjects with 

cardiac pathology and a range of body mass index (BMI).  The pilot study produced numbers utilized in the power 

analyses we performed to determine the study size of this pivotal study.  We obtained consistent results in the final 

study as compared to the pilot study.  Additional descriptions of the component testing activities of neural network 

are beyond the scope of this paper.   

In calculating the sample size for the current study, we recognized two sources of random variance in the data: the 

nurses and the patients.  Accordingly, we approached this as a multi-reader, multi-case (MRMC) study (with the 

nurses serving as “readers” in this context): the MRMC approach does not assume that all nurses have the same skill 

level nor that all the patients present the same level of scanning “difficulty.”  Note that the variability of RN skill 

level can influence the precision of our estimate of acquisition success rate. Because the success/failure of the 

clinical trial depends not just on the level of acquisition success but the precision as well, we sized the study to 
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sufficiently demonstrate the generalizability to our conclusions in a statistically significant manner.  In particular, 

the study was powered to detect the primary endpoint’s exceeding the performance goal of 80% (alpha = 0.05, beta 

= 0.2).  This was done based on the result of the pilot study with the same study design (with a minor difference in 

initial RN training duration).  The statistical power was estimated using iMRMC 4.0 software developed in the 

FDA, which provides the 95% CI around the point estimate for a given parameter and was used for the primary 

endpoint analysis.  The software considers the variability of the performance of RNs as a source of variability as 

well as the variability of the outcomes across different patients as another source of variability (random effects 

model), performing multi-reader, multi-case analysis based on Gallas et al.6 It was assumed that the mean effect 

size, the variance of RN performance, and the variance of success rates across patients would remain the same 

between the pilot study and the main study. As detailed in the manuscript, a study design with eight RNs performing 

30 cases each led to a power of 0.92 for the sequential testing of the four primary endpoints with the above 

performance requirement. 

  



© 2021 American Medical Association. All rights reserved. 

 

 

 

 

eFigure 1. Evidence base (left), neural network optimization (center), and user interface (right) 

of the AI guidance for echo acquisition. 

Schematic diagram illustrating the deep learning algorithm training dataset, optimization, and 

runtime operation.  To the left is shown how the impact on image appearance from millions of 

probe movements was captured along with hundreds of thousands of expert sonographer and 

cardiologist judgements of quality, as well as suggested manipulations to improve the image. 

This then was provided as the input training dataset to a multilayer convolutional neural network 

(center) to optimize the deep learning algorithm parameters using massive calculations on a 31 

teraFLOPS (trillion floating point operations per second) GPU array running for two weeks (for 

a total of 7.2x1018 32-bit calculations).  To the right depicts the operation of the deep learning 

algorithm at runtime (during the operation by the nurses in the study).  Note that during runtime 

the deep learning algorithm’s only input is the live ultrasound image, and no positioning 

information or clinician input is necessary for the algorithm to judge quality and issue guidance 

commands. In the right panel, the guidance indicates that the user needs to “rotate [the probe] 

slowly counter-clockwise” in order to improve the parasternal long-axis image.  Abbreviations: 

GPU, graphical processing unit; exaflops, 1018 floating point operations. 
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eFigure 2. The typical workflow for user interaction with the AI guidance.  

Schematic diagram illustrating the user operation by the nurses during the study.  Users begin (Step 1) by 

manipulating the probe position and watching for feedback from the quality meter.  A guidance command may 

appear directing the user to make a specific probe manipulation to acquire a more diagnostic image.  (Step 2) If the 

user follows the instruction, the guidance meter is likely to increase to a level appropriate for diagnostic purposes, as 

indicated by the quality meter.  After holding the probe such that the quality meter remains in the diagnostic regime 

for sufficient time (Step 3a), the image will be auto recorded. If after a pre-specified time interval (Step 3b), this 

threshold has not been reached, the user may opt to capture the highest scoring clip thus far or continue scanning in 

hopes of achieving auto-capture. 
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eFigure 3. Ten representative still images acquired by a study nurse from a single patient.  

Representative still images of 10 standard TTE views acquired by a nurse using the DL 

algorithm that were judged to be of diagnostic quality.  Moving images are provided in the on-

line supplement (eVideo 2-11). Abbreviations: PLAX, parasternal long-axis view; PSAX-AV, -

MV, -PM, parasternal short axis view at the aortic valve, mitral valve, and papillary muscle 
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levels; Ap4, 5, 2, 3, apical 4, 5, 2, 3 chamber view, SC-4, subcostal 4-chamber view; SC-IVC, 

subcostal inferior vena cava view.  
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eTable 1.  Demographics of Enrolled Patients  

 Total 

Total Enrolled 244 

Sex, n (% of enrolled)  

Female 103 (42.2%) 

Male 141 (57.8%) 

Ethnicity, n (% of enrolled)  

Hispanic or Latino 7 (2.9%) 

Not Hispanic or Latino 232 (95.1%) 

Unknown/Not Reported 5 (2.0%) 

Race, n (% of enrolled)  

White 187 (76.6%) 

Black/ African American 43 (17.6%) 

Asian 4 (1.6%) 

American Indian / Alaska Native 2 (0.8%) 

Unknown/ Not Reported 5 (2.0%) 

Other 3 (1.2%) 

Age (years), range 61.3 ± 15.67 (20-

91) 

Prior Cardiac Diagnoses  

    Hypertension 149 (61.1%) 

    Hyperlipidemia 110(45.1%) 

    Diabetes 48 (19.7%) 

    Heart Failure 53 (21.%) 

    Atrial Fibrillation 62 (25.4%) 

    Other Arrythmias 36 (14.8%) 

    Coronary Artery Disease 75 (30.7%) 

    Prior Heart Attack 26 (10.7%) 

    Valvular Heart Disease 121 (49.6%) 

    Pulmonary Hypertension 12 (4.9%) 

    Heart Transplant 0 

    Cardiomyopathies 36 (14.3%) 

    Congenital Heart Disease 17 (7.0%) 

    Other 56 (23%) 

    None 23 (9.4%) 

    Not Reported 12 (4.9%) 

Prior Non-Cardiac Diagnosis  

   Renal Disease 32 (13.1%) 

   COPD/Emphysema 16 (6.6%) 

   Pulmonary Embolus 8 (3.3%) 

    Systemic infiltrative disease like amyloid 

or hemachromatosis 

1 (0.4%) 

    Cancer 42 (17.2%) 

           Underwent Chemotherapy 15 (6.1%) 

           Underwent Radiation 11 (4.5%) 

    Other 44 (18%) 

    None 132 (54.1%) 

   Not Reported 2 (0.8%) 
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eTable 2.  Summary of Patients with Cardiac Abnormalities Identified through 
Scheduled Standard-of-Care Echocardiogram by Study Site  

Cardiac Abnormality Identified 

through Scheduled Echocardiogram 

Study Site 

All 
Northwestern 

(N=121) 

n (%) 

Minneapolis 

(N=123) 

n (%) 

Patients with any cardiac abnormality 111 (91.7) 112 (91.1) 223 (91.4) 

Abnormal left ventricular size or function 93 (76.9) 84 (68.3) 177 (72.5) 

Abnormal right ventricular size or 

function 
36 (29.8) 19 (15.4) 55 (22.5) 

Abnormal left atrial size 50 (41.3) 52 (42.3) 102 (41.8) 

Abnormal right atrial size 34 (28.1) 33 (26.8) 67 (27.5) 

Septal defect 2 (1.7) 0 (0) 2 (0.8) 

Abnormal mitral valve 86 (71.1) 65 (52.8) 151 (61.9) 

Abnormal tricuspid valve 53 (43.8) 67 (54.5) 120 (49.2) 

Abnormal aortic valve 54 (44.6) 58 (47.2) 112 (45.9) 

Non-trivial pericardial effusion 6 (5.0) 2 (1.6) 8 (3.3) 

Abnormal inferior vena cava size 0 (0) 6 (4.9) 6 (2.5) 

Patent foramen ovale 1 (0.8) 0 (0) 1 (0.4) 

Other abnormality 4 (3.3) 5 (4.1) 9 (3.7) 

Implanted Medical Devices 22 (18.2) 32 (26.0) 54 (22.1) 

  Pacemaker/ICD 11 (9.1) 12 (9.8) 23 (9.4) 

  Leadless pacemaker 0 0 0 

  Prosthetic heart valve 10 (8.3) 20 (16.3) 30 (12.3) 

  LAA closure device 0 0 0 

  Atrial septal defect closure device 2 (1.7) 0 2 (0.8) 

  Ventricular septal defect closure device 0 1 (0.8) 1 (0.4) 

Patent foramen ovale closure device 0 0 0 

Valve repair device 6 (5.0) 4 (3.3) 10 (4.1) 
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eTable 3.  Proportion of Nurse-Acquired EchoGPS Echocardiography of Sufficient 
Quality to Assess Clinical Parameters (Secondary Endpoints) in Nurse Scan 
Population. 
 

Endpoint # Clinical Parameter 
Performance 

Goal 

Total Number 

Scans 

Performed 

Number of 

Scans of 

Sufficient 

Quality 

% of Scans of 

Sufficient Quality 

(95% CI) 

Secondary 

Endpoints 

1 

Qualitative visual 

assessment of right 

ventricular function 

N/A 240 219 
91.3% 

(85.7%, 96.8%) 

2 

Qualitative visual 

assessment of left atrial 

size 

N/A 240 227 
94.6% 

(90.7%, 98.5%) 

3 

Qualitative visual 

assessment of aortic 

valve 

N/A 240 220 
91.7% 

(88.0%, 95.3%) 

4 

Qualitative visual 

assessment of mitral 

valve 

N/A 240 231 
96.3% 

(93.9%, 98.6%) 

5 

Qualitative visual 

assessment of tricuspid 

valve 

N/A 240 200 
83.3% 

(77.0%, 89.7%) 

6 

Qualitative visual 

assessment of inferior 

vena cava size 

N/A 240 138 
57.5% 

(41.5%, 73.5%) 

 
  



© 2021 American Medical Association. All rights reserved. 

eTable 4.  Performance of nurse scans for primary and secondary endpoints 
stratified by BMI and presence of cardiac pathology.  

Endpoint # Clinical Parameter 

BMI Category 

Presence of Known 

Cardiac Abnormality 

at Time of 

Enrollment 

Total 

(N=240) 

n (%) 

 

(95% CI) 

< 25 

(N=85) 

n (%) 

25 to < 

30 

(N=76) 

n (%) 

≥ 30 

(N=79) 

n (%) 

Present 
(N=153) 

n (%) 

Absent 
(N=87) 

n (%) 

Primary 

Endpoints 

1 

Qualitative Visual 

Assessment of Left 

Ventricular Size 

84 

(98.8%) 

76 

(100%) 
77 (97.5%) 

151 

(98.7%) 

86 

(98.9%) 

237 (98.8%) 

(96.7%, 

100%) 

2 

Qualitative visual 

assessment of global 

Left ventricular 

function 

84 

(98.8%) 

76 

(100%) 
77 (97.5%) 

151 

(98.7%) 

86 

(98.9%) 

237 (98.8%) 

(96.7%, 

100%) 

3 

Qualitative visual 

assessment of right 

ventricular size 

85 

(100%) 

70 

(92.1%) 
67 (84.8%) 

138 

(90.2%) 

84 

(96.6%) 

222 (92.5%) 

(88.1%, 

96.9%) 

4 

Qualitative visual 

assessment of non-

trivial pericardial 

effusion 

84 

(98.8%) 

76 

(100%) 
77 (97.5%) 

152 

(99.3%) 

85 

(97.7%) 

237 (98.8%) 

(96.7%, 

100%) 

 

 

 

 

Secondary 

Endpoints 

5 

Qualitative visual 

assessment of right 

ventricular function 

85 

(100.0%) 

70 

(92.1%) 
64 (81.0%) 

135 

(88.2%) 

84 

(96.6%) 

219 (91.3%) 

(85.7%, 

96.8%) 

6 

Qualitative visual 

assessment of left 

atrial size 

82 

(96.5%) 

73 

(96.1%) 
72 (91.1%) 

143 

(93.5%) 

84 

(96.6%) 

227 (94.6%) 

(90.7%, 

98.5%) 

7 

Qualitative visual 

assessment of aortic 

valve 

80 

(94.1%) 

73 

(96.1%) 
67 (84.8%) 

137 

(89.5%) 

83 

(95.4%) 

220 (91.7%) 

(88.0%, 

95.3%) 

8 

Qualitative visual 

assessment of mitral 

valve 

82 

(96.5%) 

74 

(97.4%) 
75 (94.9%) 

146 

(95.4%) 

85 

(97.7%) 

231 (96.3%) 

(93.9%, 

98.6%) 

9 

Qualitative visual 

assessment of 

tricuspid valve 

83 

(97.6%) 

62 

(81.6%) 
55 (69.6%) 

123 

(80.4%) 

77 

(88.5%) 

200 (83.3%) 

(77.0%, 

89.7%) 

10 

Qualitative visual 

assessment of inferior 

vena cava size 

62 

(72.9%) 

34 

(44.7%) 
42 (53.2%) 

82 

(53.6%) 

56 

(64.4%) 

138 (57.5%) 

(41.5%, 

73.5%) 
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eTable 5. Panel Variability: Extent of Agreement among Cardiologists in Rating 
Acceptability of Echocardiography for Clinical Parameter Assessment by Primary 
and Secondary Parameters 

  
All 5 out of 5 

cardiologists agree 
At least 4 out of 5 

cardiologists agree 
At least 3 out of 5 

cardiologists agree 

  n % n % n % 

Nurse Exams (N=240)  

1 - Qualitative Visual Assessment of Left Ventricular Size 232 96.7% 238 99.2% 240 100.0% 

2 - Qualitative Visual Assessment of Left Ventricular 
Global Function 

231 96.3% 238 99.2% 240 100.0% 

3 - Qualitative Visual Assessment of Right Ventricular 
Size 

143 59.6% 214 89.2% 240 100.0% 

4 - Qualitative Visual Assessment of Non-trivial 
Pericardial Effusion 

220 91.7% 230 95.8% 240 100.0% 

5 - Qualitative Visual Assessment of Inferior Vena Cava 
Size, 

147 61.3% 192 80.0% 240 100.0% 

6 - Qualitative Visual Assessment of Right Ventricular 
Function 

141 58.8% 216 90.0% 240 100.0% 

7 - Qualitative Visual Assessment of Left Atrial Size 206 85.8% 224 93.3% 240 100.0% 

8 - Qualitative Visual Assessment of Aortic Valve 169 70.4% 216 90.0% 240 100.0% 

9 - Qualitative Visual Assessment of Mitral Valve 224 93.3% 235 97.9% 240 100.0% 

10 - Qualitative Visual Assessment of Tricuspid Valve 157 65.4% 209 87.1% 240 100.0% 

Sonographer Exams (N=235)  

1 - Qualitative Visual Assessment of Left Ventricular Size 233 99.1% 235 100.0% 235 100.0% 

2 - Qualitative Visual Assessment of Left Ventricular 
Global Function 

232 98.7% 235 100.0% 235 100.0% 

3 - Qualitative Visual Assessment of Right Ventricular 
Size 

171 72.8% 218 92.8% 235 100.0% 

4 - Qualitative Visual Assessment of Non-trivial 
Pericardial Effusion 

229 97.4% 233 99.1% 235 100.0% 

5 - Qualitative Visual Assessment of Inferior Vena Cava 
Size 

167 71.1% 214 91.1% 235 100.0% 

6 - Qualitative Visual Assessment of Right Ventricular 
Function 

168 71.5% 220 93.6% 235 100.0% 

7 - Qualitative Visual Assessment of Left Atrial Size 228 97.0% 232 98.7% 235 100.0% 

8 - Qualitative Visual Assessment of Aortic Valve 219 93.2% 232 98.7% 235 100.0% 

9 - Qualitative Visual Assessment of Mitral Valve 232 98.7% 234 99.6% 235 100.0% 

10 - Qualitative Visual Assessment of Tricuspid Valve 175 74.5% 212 90.2% 235 100.0% 
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eTable 6. Acceptability of Nurse-Acquired Caption Guidance Echocardiography 
for Primary Clinical Parameter Assessment (Primary Endpoints) in Nurse Scan 
Population (N=240), by Sequence Number of Scan Within Nurse  

# Clinical Parameter 

Sequence Number of Scans Within Nurse 
All 

(N=240) 
n (%) 

1-10 
(N=80) 
n (%) 

11-20 
(N=80) 
n (%) 

21-30 
(N=80) 
n (%) 

1 
Qualitative Visual 

Assessment of Left 
Ventricular Size 

79 (98.8%) 80 (100.0%) 78 (97.5%) 237 (98.8%) 

2 

Qualitative Visual 
Assessment of Global 

Left Ventricular 
Function 

79 (98.8%) 80 (100.0%) 78 (97.5%) 237 (98.8%) 

3 
Qualitative Visual 

Assessment of Right 
Ventricular Size 

76 (95.0%) 72 (90.0%) 74 (92.5%) 222 (92.5%) 

4 

Qualitative Visual 
Assessment of Non-

Trivial Pericardial 
Effusion 

79 (98.8%) 79 (98.8%) 79 (98.8%) 237 (98.8%) 
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eTable 7. Cross-Classification of Cardiologists’ Clinical Assessment Using Nurse-

Acquired vs. Sonographer-Acquired Echocardiograms - Primary Endpoints 

Qualitative Visual Assessment among Patients for Whom a Qualitative Visual 

Assessment Could Be Made in Both Scan Populations 

 Sonographer-acquired echo w/o platform  

Clinical Parameter Assessed 

Nurse-acquired echo w/ Caption 

Guidance platform 

    

% Overall 

Agreement and 

C.I. 

1 - Qualitative Visual Assessment of 

Left Ventricular Size Normal or 

Borderline 

Abnormal 

(Enlarged) 

No majority 

assessment 

among 

cardiologists 

Total  

Normal or Borderline 203 8 1 212  

Abnormal (Enlarged) 1 19 0 20  

No majority assessment among 

cardiologists 
0 0 0 0  

Total 204 27 1 232 95.7 (92.2, 97.6) 

2 - Qualitative Visual Assessment of 

Left Ventricular Global Function Normal or 

Borderline 

Reduced (EF 

<=50) 

No majority 

assessment 

among 

cardiologists 

Total  

Normal or Borderline 187 5 0 192  

Reduced (EF <=50) 3 37 0 40  

No majority assessment among 

cardiologists 
0 0 0 0  

Total 190 42 0 232 96.6 (93.3, 98.2) 

3 - Qualitative Visual Assessment of 

Right Ventricular Size Normal or 

Borderline 

Abnormal 

(Enlarged) 

No majority 

assessment 

among 

cardiologists 

Total  

Normal or Borderline 185 1 3 189  

Abnormal (Enlarged) 5 11 2 18  

No majority assessment among 

cardiologists 
5 0 1 6  

Total 195 12 6 213 92.5 (88.1, 95.3) 

4 - Qualitative Visual 

Assessment of Non-trivial 

Pericardial Effusion 
Absent Present 

No majority 

assessment 

among 

cardiologists 

Total  

Absent 227 0 0 227  

Present 1 3 0 4  

No majority assessment among 

cardiologists 
0 0 0 0  

Total 228 3 0 231 99.6 (97.6, 99.9) 
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5 - Qualitative Visual Assessment of 

Right Ventricular Function Normal or 

Borderline 
Reduced 

No majority 

assessment 

among 

cardiologists 

Total  

Normal or Borderline 184 0 3 187  

Reduced 4 12 2 18  

No majority assessment among 

cardiologists 
5 1 1 7  

Total 193 13 6 212 92.9 (88.7, 95.7) 

6 - Qualitative Visual Assessment of 

Left Atrial Size 
Normal Enlarged 

No majority 

assessment 

among 

cardiologists 

Total  

Normal 160 18 1 179  

Enlarged 8 32 0 40  

No majority assessment among 

cardiologists 
0 2 1 3  

Total 
168 52 2 222 86.9 (81.9, 90.7) 

7 - Qualitative Visual 

Assessment of Aortic Valve Structurally 

normal 

Structurally 

abnormal 

Suspected 

device 

No majority 

assessment 

among 

cardiologists 

Total  

Structurally normal 172 2 1 0 175  

Structurally abnormal 4 11 0 0 15  

Suspected device 1 0 9 2 12  

No majority assessment 

among cardiologists 
4 4 2 1 11  

Total 181 17 12 3 213 90.6 (85.9, 93.8) 

8 - Qualitative Visual 

Assessment of Mitral Valve Structurally 

normal 

Structurally 

abnormal 

Suspected 

device 

No majority 

assessment 

among 

cardiologists 

Total  

Structurally normal 198 3 1 1 203  

Structurally abnormal 4 8 2 2 16  

Suspected device 0 0 4 0 4  

No majority assessment 

among cardiologists 
1 1 0 0 2  

Total 203 12 7 3 225 93.3 (89.3, 95.9) 
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9 - Qualitative Visual 

Assessment of 

Tricuspid Valve 

Structurally 

normal 

Structurally 

abnormal 

Suspected 

device 

No majority 

assessment 

among 

cardiologists 

Total  

Structurally normal 171 0 4 0 175  

Structurally abnormal 1 0 0 0 1  

Suspected device 1 0 5 0 6  

No majority assessment 

among cardiologists 

1 0 2 1 4  

Total 174 0 11 1 186 95.2 (91.1, 

97.4) 

10 - Qualitative Visual 

Assessment of Inferior Vena 

Cava Size 

Normal Dilated No majority 

assessment 

among 

cardiologists 

Total  

Normal 103 6 3 112  

Dilated 5 6 3 14  

No majority assessment 

among cardiologists 

4 1 0 5  

Total 112 13 6 131 83.2 (75.9, 

88.6) 
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