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Abstract

The assessment of musculo-articular stiffness (MAS) with the free-oscillation technique is a popular method with a variety of
applications. This study examined the sources of variability (load applied and frequency of oscillation) when MAS is
assessed. Over two testing occasions, 14 healthy men (27.765.2 yr, 1.8260.04 m, 79.568.4 kg) were measured for
isometric maximum voluntary contraction and MAS of the knee flexors using submaximal loads relative to the individual’s
maximum voluntary contraction (MAS%MVC) and a single absolute load (MASABS). As assessment load increased, MAS%MVC

(coefficient of variation (CV) = 8.1–12.1%; standard error of measurement (SEM) = 51.6–98.8 Nm21) and frequency (CV =
4.8–7.0%; SEM = 0.060–0.075 s21) variability increased consequently. Further, similar levels of variability arising from load
(CV = 6.7%) and frequency (CV = 4.8–7.0%) contributed to the overall MAS%MVC variability. The single absolute load
condition yielded better reliability scores for MASABS (CV = 6.5%; SEM = 40.2 Nm21) and frequency (CV = 3.3%; SEM =
0.039 s21). Low and constant loads for MAS assessment, which are particularly relevant in the clinical setting, exhibited
superior reliability compared to higher loads expressed as a percentage of maximum voluntary contraction, which are more
suitable for sporting situations. Appropriate sample size and minimum detectable change can therefore be determined
when prospective studies are carried out.
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Introduction

Musculo-articular stiffness (MAS) measured with the free-

oscillation technique is a comprehensive measurement of joint

stiffness which includes the stiffness of the muscle-tendon unit,

skin, ligaments and articular capsule, along with a number of other

mechanical and neuromuscular factors [1]. The assessment of

MAS has implications for muscular performance, injury occur-

rence and gender differences [1]. The construct validity of the

free-oscillation technique has been ascertained with a positive

linear relationship between MAS and rate of torque development

[2] and a negative relationship between MAS and either

electromechanical delay [3] or performance augmentation (as a

result of the pre-stretch action) [4]. Reliability of the method has

also been established in a number of papers, with an overall level

of absolute reliability higher than the relative reliability [1].

When assessing MAS with the free-oscillation technique, the

joint is modelled as a single-degree of freedom spring-mass system

with a damping element, with an assumption of linearity of the

model [5,6]. Despite some evidence of nonlinearity of the damped

acceleration signal [7], the vast majority of studies using the free-

oscillation technique adopted a linear model, which is easier to use

and has been granted construct validity [1]. The stiffness value is

obtained as follows [4,6]:

k~m (4p2f 2zc2) ðeq:1Þ

where k is the MAS (N?m21), m is the load supported (kg), f is

the damped natural frequency (s21) and c is the coefficient of

damping (s21). It was previously demonstrated that c is negligible

as it contributes less than 1% to the total stiffness value [8].

Therefore, eq. 1 can be approximated as:

k~m 4p2f 2 ðeq:2Þ

Accordingly, k varies linearly with mass and exponentially with

frequency variation.

While frequency is a measured variable which depends on the

elastic characteristics of the structure assessed [9], mass is the load

added, along with the weight of the body segment under analysis.

Typically, either fixed loads or multiple loads expressed as a

percentage of maximal voluntary contraction (MVC) are utilised

with the aim of reproducing the loads supported during functional

activities [3]. Specifically, if an investigation applies a repeated-

measures design, absolute assessment loads may be appropriate

[10]. Conversely, when comparing MAS between individuals,

relative loads must be used to prevent bias due to differences in

mass and strength, as occurs when comparing males and females

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63719



[8], subjects of different body mass [11] or athletes of different

levels [2].

By virtue of equation 2, it is evident that a component of any

change in stiffness originates from a change in frequency, while an

additional element comes from the variability in MVC assessment

and its consequent use in determining the submaximal load. The

latter is exacerbated when MAS is measured prior to and following

an intervention which has probably altered the level of MVC

[12,13].

Whilst two studies have identified the issue of a dual source of

error [3,14], the proportional contribution of each component to

the overall MAS variability at varying loads has yet to be

established. Accordingly, the aim of this study was to determine

and quantify the sources of variance when MAS is assessed with

multiple loads relative to MVC, or a constant absolute load.

Methods

Fourteen men (27.765.2 yr, 1.8260.04 m, 79.568.4 kg),

physically active but not involved in competitive sport, volunteered

to participate in this study. They gave written informed consent

and avoided any strenuous physical activity 24 hours prior to each

testing session. Ethical clearance was granted from the Ethical

Committee of University College Dublin (Ireland). Two series of

tests, separated by at least 2 weeks, were carried out and

administered randomly, both requiring 2 sessions within 7 days.

Participants were tested for MVC of the knee flexors (KF) and

MAS using submaximal loads relative to the individual’s MVC

(MAS%MVC) over two sessions. In a further two sessions the

participants were tested for MAS using a single, absolute load

(MASABS). MAS of the KF has been commonly assessed due to its

relationship with locomotion [6] and injury [15]. Only the right

leg was considered in all testing sessions which were preceded by a

standardized warm-up.

Isometric MVC of the KF was measured with participants

positioned prone on a padded table, firmly strapped at the hip,

with the thighs supported in 30u of hip flexion below the

horizontal and the knee flexed at 50u above the horizontal with a

knee angle of 100u [15]. A custom-made leg-curl machine,

equipped with a load cell (Leane International, Parma, Italy,

measurement range: 0–500 kg, output: 2.00 mV/V), was used for

the test described (figure 1A). The subjects were required to exert a

force against the dynamometer lever as strongly and as quickly as

possible for 3–4 seconds while verbal encouragement was given.

They underwent a number of trials until 2 results were obtained

which did not differ by more than 5%. Data was low-pass filtered

(fourth order, zero lag Butterworth filter, cut-off frequency 15 Hz)

and the trial with the highest peak force was used for later analysis.

MVC (N) was determined as the trial with the highest peak force

with the addition of the weight of the limb [16] and the weight of

the lever of the dynamometer.

Using the same machine and set-up described above, KF MAS

was measured with a free-oscillation technique. The participant’s

leg, which was thoroughly strapped to the lever arm of the

machine, supported the load on the distal portion of the lower leg,

approximately 2 cm superior to the lateral malleolus, with the

knee flexed at the correct angle. The participant was instructed to

hold the load for approximately 3–5 s, with the foot in neutral

position (0 deg at the ankle), during which a downward manual

perturbation in the order of 100–150 N was applied perpendicular

to the distal end of the lever arm. The ensuing damped oscillations

were recorded by means of an accelerometer (Crossbow Tech-

nology, Milpitas, California, USA) attached immediately proximal

to the point where the perturbation was applied (figure 1B). After

thorough familiarization, where the participant was instructed not

to react to the perturbation, but to focus their attention on keeping

the same level of contraction throughout, four technically correct

trials were recorded for each load. The average of them was

calculated, so that one result for each variable was obtained and

used for later analysis. The absence of bursts of electrical activity of

the muscles (measured via surface electromyography of biceps

femoris), along with the presence of damped oscillations were used

to assist in judging an acceptable trial.

The acceleration signals were filtered using a fourth order

Butterworth filter with a cut-off frequency of 4 Hz, and the

frequency of the first cycle of oscillations was determined along

with the average frequency of the four trials, which was considered

for later analysis. For the two sessions of MAS%MVC assessment,

loads of 15, 30, 45, 60% of the specific MVC measured on each

day were used in a non-randomized order. At the two constant

load sessions to assess MASABS, a load of 6.5 kg was applied as

described above. This load corresponded to approximately 35% of

MVC.

Results are expressed as mean 6 SD. Coefficient of variation

(CV) of load, frequency and MAS variables were calculated as:

s

mean
100 ðeq:3Þ

where s is the standard deviation and mean is the mean of the

two results obtained on testing session 1 and 2. Standard error of

measurement (SEM) was also calculated as

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{ICC)

p
ðeq:4Þ

where s is the square root of the total sum of squares divided by

‘number of observations - 1’ (as in an ANOVA analysis) and ICC

is the intraclass correlation coefficient. Confidence limits of CV

and SEM were also determined [17,18]. Repeated measure

ANOVA was used to examine the difference between CVs

obtained at various loads (15, 30, 45, 60% of MVC and constant

load) for two dependent variables (frequency and MAS). When a

significant effect was found, the post-hoc Tukey’s method was used

to identify where significant differences lay.

Systematic bias between testing sessions was analyzed using a

paired t-test and an alpha level of p,0.05 was considered

statistically significant for all tests.

The calculations related to the propagation of errors (uncer-

tainties that attend all measurements) [19] were used to assess the

theoretical specific contribution of variation related to mass (CVm)

and frequency (CVf) to the overall MAS variation (CVMAS). With

reference to equation 2, the error related to k, m and f are dk, dm

and df, respectively, whereas there is no error associated to 4p2.

Since dm and df are independent from each other, dk can be

estimated as follows [19]:

dk

k
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dm

m

� �2

z 2
d f

f

� �2
s

ðeq:5Þ

As dk/k, dm/m, and df/f are percentage errors, CV can be

substituted into equation 5 to obtain:

Variability in Stiffness Measurement
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CVMAS&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVm

2z(2 CVf )2
q

ðeq:6Þ

The statistical analysis was performed using MicrosoftH Office

ExcelH 2007 and Statistica software, version 9.1 (StatSoft LTD,

Bedford, UK)

Results

The mean 6 SD of MVC for KF was 180.6 6 42.7 and 192.1

6 49.9 N on testing session 1 and 2, respectively, with no

significant difference (p = 0.15). No systematic bias was detected

(p.0.05) in any of the variables considered. The results of load,

frequency and MAS from the two testing sessions, along with the

reliability coefficients, are summarized in tables 1, 2 and 3,

respectively. Notably, while CV was constant for the load variable

(6.7%), MAS (table 3) and frequency (table 2) CV increased as

load increased, however the ANOVA post-hoc analysis did not

show a significant difference (p = 0.15 to 0.44). In contrast, when a

constant load was used, CV was considerably lower in MAS

(table 3) and frequency (table 2) variables compared to multiple

loads and the post-hoc analysis revealed to be significant different

from MASMVC60% (6.5 vs 12.6% and 3.3 vs 7.0%, respectively;

p,0.05). A similar pattern was observed for SEM, which

increased as load increased for all variables, though when a

constant load was used it was reduced, on average, by 35% (0.039

vs 0.060 s21) to 48% (0.039 vs 0.075 s21) (frequency, table 2) and

by 22% (40.2 vs 51.6 Nm21) to 59% (40.2 vs 98.8 Nm21) (MAS,

table 3).

Further, the load CV (table 1) was slightly higher than the

frequency CV (table 2) at low loads, whereas the trend was

reversed at high loads (i.e. 60% of MVC).

Discussion

This study quantified the contribution of variance in each

component of MAS assessment. Although no statistical differences

were detected between the two testing sessions for the variables

examined, the current assessment procedures exhibited a CV of up

to 12.6% for MAS. This magnitude of variability is certainly

relevant when longitudinal changes in MAS are examined with

reference to injury occurrence [15,20], training [12] or fatigue

[13]. Specifically, when conducting longitudinal or comparative

research designs where stiffness is hypothesized to be influenced by

a particular intervention, condition or timeframe, the identifica-

tion of this variability dictates the required magnitude of change

for a meaningful outcome. The level of variability in this study is

slightly higher than that reported for different musculature which

required different set-ups [4,21]. This is probably due to the

specific set-up needed for the assessment of the knee flexors, which

is undoubtedly less comfortable for the participants than the

assessment of the ankle flexors or the knee extensors.

The repeatability of the MVC measurement affects the

assessment load added to the system, which consequently

contributes variance to the MAS%MVC. Further, variability in

the frequency of oscillation also affects the precision of MAS%MVC

results. Based on equation 4, it can be empirically proven that with

the level of variability reported in this study (8 to 12.5%), CVMAS

is calculated as approximately the sum of CVf and CVm, despite

CVf being multiplied by 2. The minor discrepancy between the

reported results and the theoretical equation is likely due to the

Figure 1. Schematic diagram of the position used to assess knee flexor maximal voluntary contraction (A) and musculo-articular
stiffness (B).
doi:10.1371/journal.pone.0063719.g001
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fact that the tables only report mean values which exhibit medium

to large confidence limits. CVMAS and CVf exhibited a clear trend

towards an increase as the assessment load increased and this

could at least be partially explained as an impaired ability to

maintain a stable position and the augmented physiological tremor

when the test is performed at higher loads [22]. Further, Jaskolski

et al [23] reported that repeated submaximal eccentric contrac-

tions (at 50% of MVC) caused an acute increase in tremor and

contractile impairments in the elbow flexors. Such a response may

have been present in the current study since the mechanical

perturbations administered to generate the damped oscillations

involved several eccentric contractions. It has to be acknowledged

that despite the apparent trend CVMAS and CVf did not reach

statistical significance and this can be attributed to the high inter-

subject variability as expressed by the confidence limits for CV

(table 2 and 3) and potentially to the sample size.

During MASABS assessment, frequency was the only variable

that could contribute to variance in equation 2. As depicted in

equation 4, under such conditions the CVMAS was calculated as

the CVf62. Interestingly, the use of a constant load yielded a very

good level of reliability in frequency and MASABS (tables 2 & 3),

noticeably higher than that reported for the multiple load

assessment and statistically significant when compared to a load

corresponding to 60% of MVC. The lower variability can

conceivably be attributed to the more standard conditions of

testing administration for MASABS, which probably elicited more

stable responses from the subjects. Further, the MAS%MVC testing

sessions were far longer and involved a number of measurements

(MVC and MAS%MVC with a range of loads). It can be advocated

that fatigue may have increased the overall variability of

MASMVC% compared to MVCABS, as emerged in a recent

examination of sub-maximal force up to 60% of MVC [24].

Table 1. Summary of the loads corresponding to different
percentages of maximal voluntary contraction, along with a
constant load of 6.5 kg, adopted during the two testing
sessions.

Mean (SD) (kg) Reliability coefficients

T1 T2
CV
(%)

95%
CL

SEM
(kg)

95%
CL

MASMVC15% 2.76 (0.65) 2.94 (0.76) 6.7 3.5–9.8 0.19 0.13–0.31

MASMVC30% 5.52 (1.31) 5.88 (1.53) 6.7 3.5–9.8 0.37 0.26–0.62

MASMVC45% 8.28 (1.96) 8.81 (2.29) 6.7 3.5–9.8 0.56 0.39–0.94

MASMVC60% 11.04 (2.61) 11.75 (3.05) 6.7 3.5–9.8 0.74 0.52–1.26

MASABS 6.5 6.5 \ \ \ \

Coefficients of reliability are also displayed.
MASMVC = musculo-articular stiffness measured with a load corresponding to a
percentage of maximal voluntary contraction; MASABS = musculo-articular
stiffness measured with a constant absolute load; T1, T2 = testing session
number 1 and 2; CV = coefficient of variation; SEM = standard error of
measurement; CL = confidence limits for CV and SEM.
doi:10.1371/journal.pone.0063719.t001

Table 2. Summary of the frequency results obtained with a
load corresponding to different percentages of maximal
voluntary contraction, along with a constant load of 6.5 kg,
over two testing sessions.

Mean (SD) (s21) Reliability coefficients

T1 T2
CV
(%) 95% CL

SEM
(s21) 95% CL

MASMVC15% 1.615
(0.163)

1.622
(0.168)

4.8 2.8–6.7 0.060 0.040–
0.114

MASMVC30% 1.570
(0.162)

1.530
(0.179)

5.2 3.3–7.1 0.065 0.046–
0.111

MASMVC45% 1.407
(0.156)

1.414
(0.124)

6.4 3.9–8.8 0.071 0.051–
0.118

MASMVC60% 1.392
(0.093)

1.343
(0.116)

7.0 3.9–10.1 0.075 0.048–
0.165

MASABS 1.462
(0.104)

1.442
(0.125)

3.3* 2.1–4.5 0.039 0.029–
0.060

Coefficients of reliability are also displayed.
MASMVC = musculo-articular stiffness measured with a load corresponding to a
percentage of maximal voluntary contraction; MASABS = musculo-articular
stiffness measured with a constant absolute load; T1, T2 = testing session
number 1 and 2; CV = coefficient of variation; SEM = standard error of
measurement; CL = confidence limits for CV and SEM.
* = significantly different from MASMVC60% (p,0.05).
doi:10.1371/journal.pone.0063719.t002

Table 3. Summary of the musculo-articular stiffess results obtained with a load corresponding to different percentages of maximal
voluntary contraction, along with a constant load of 6.5 kg, over two testing sessions.

Mean (SD) (Nm21) Reliability coefficients

T1 T2 CV (%) 95% CL SEM (Nm21) 95% CL

MASMVC15% 588.2 (147.6) 653.7 (179.6) 9.7 4.8–14.8 51.6 35.5–94.3

MASMVC30% 889.3 (221.1) 859.8 (253.4) 8.1 3.4–12.7 60.3 43.2–99.4

MASMVC45% 949.1 (182.8) 959.7 (207.2) 10.9 6.4–15.5 85.9 60.9–145.9

MASMVC60% 1068.7 (276.2) 1016.9 (218.6) 12.6 6.3–18.8 98.8 63.7–217.6

MASABS 790.0 (127.9) 779.7 (126.3) 6.5* 4.1–8.9 40.2 29.7–62.6

Coefficients of reliability are also displayed.
MASMVC = musculo-articular stiffness measured with a load corresponding to a percentage of maximal voluntary contraction; MASABS = musculo-articular stiffness
measured with a constant absolute load; T1, T2 = testing session number 1 and 2; CV = coefficient of variation; SEM = standard error of measurement; CL =
confidence limits for CV and SEM.
* = significantly different from MASMVC60% (p,0.05).
doi:10.1371/journal.pone.0063719.t003
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In conclusion, the assessment of MAS%MVC is affected by a

combination of variability in determination of the load applied and

the frequency recorded, with approximately the same magnitude

of contribution for each variable. In contrast, the MASABS

variability was consistently lower than MAS%MVC variability.

Based on the results presented, low and constant loads for MAS

assessment yielded good to excellent levels of reliability and are

thus ideal to implement in longitudinal research. This is

particularly relevant in the clinical setting which typically uses

one constant relatively low assessment load [25]. The assessment

of MAS with multiple higher loads, which is more suitable for

sporting situations [12], incorporates higher error. Such informa-

tion can provide practitioners with a detailed understanding of the

strengths and limitations of the methodology. This may require a

compromise between the need to increase test specificity and the

need to reduce the measurement error. The results obtained in the

current study are particularly relevant for clinicians, physical

therapists, conditioning coaches and sports scientists who are

involved in athlete screening and physical development. The CV

(in percentage) and the SEM (using the same units as the variable

of interest) provide a useful measure of the expected trial-to-trial

noise in the data, which is relatively unaffected by the inter-subject

variability. Further, knowledge regarding the source and magni-

tude of error in assessment procedures can inform decision making

regarding the usefulness of such screening procedures, including

determination of appropriate sample size and minimum detectable

change.
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