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ABSTRACT

Context: Kazinol B (KB), an isoprenylated flavan derived from Broussonetia kazinoki Sieb. (Moraceae) root,
has long been used in folk medicine.

Objective: This study examines the protective effects of KB and its underlying mechanisms in hypoxia
and reoxygenation (H/R)-induced cardiac injury in H9c2 rat cardiac myoblasts.

Materials and methods: H9c2 cells were incubated with various concentrations of KB (0, 0.3, 1, 3, 10 and
30uM) for 2h and then subjected to H/R insults. The protective effects of KB and its underlying mecha-
nisms were explored.

Results: KB significantly elevated cell viability (1 uM, 1.21-fold; 3 uM, 1.36-fold, and 10 uM, 1.47-fold) and
suppressed LDH release (1 uM, 0.77-fold; 3 uM, 0.68-fold, and 10 uM, 0.59-fold) in H/R-induced H9c2 cells.
Further, 10 uM KB blocked apoptotic cascades, as shown by the Annexin-V/PI (0.41-fold), DNA fragmenta-
tion (0.51-fold), caspase-3 (0.52-fold), PARP activation (0.27-fold) and Bax/Bcl-2 expression (0.28-fold)
assays. KB (10 uM) downregulated reactive oxygen species production (0.51-fold) and lipid peroxidation
(0.48-fold); it upregulated the activities of GSH-Px (2.08-fold) and SOD (1.72-fold). KB (10 uM) induced Nrf2
nuclear accumulation (1.94-fold) and increased ARE promoter activity (2.15-fold), HO-1 expression (3.07-
fold), AKT (3.07-fold) and AMPK (3.07-fold) phosphorylation. Nrf2 knockdown via using Nrf2 siRNA abro-
gated KB-mediated protective effects against H/R insults. Moreover, pharmacological inhibitors of AKT
and AMPK also abrogated KB-induced Nrf2 activation and its protective function.

Discussion and conclusions: KB prevented H/R-induced cardiomyocyte injury via modulating the AKT
and AMPK-mediated Nrf2 induction. KB might be a promising drug candidate for managing ischemic car-
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diac disorders.

Introduction

Coronary heart disease is one of the most common causes of
mortality and morbidity worldwide (Moran et al. 2014; Thomas
et al. 2018). Myocardial ischemia injury is the primary factor
causing cardiovascular dysfunctions in patients suffering from
coronary heart diseases (Moran et al. 2014; Thomas et al. 2018).
Extreme intracellular reactive oxygen species (ROS) production
and cellular injury directly affect cellular structures and functions
in myocardial tissues with ischemic and reperfusion insults
(Kalogeris et al. 2012; Chatauret et al. 2014). Thus, preventing
oxidative stress and cardiomyocyte injury is one of the effective
strategies for treating myocardial ischemia and coronary heart
disease (Kalogeris et al. 2012; Chatauret et al. 2014).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-
sensitive transcriptional factor that modulates cellular antioxidant
defence and maintains redox homeostasis (Bubb et al. 2017;
Strom and Chen 2017; Chen G et al. 2019). Under stress or
stimulation, Nrf2 dissociates, translocates into the nucleus, and
binds to the antioxidant response element (ARE) in the

promoters of genes encoding for antioxidants and detoxifications
that protect against oxidative stress damage, including heme oxy-
genase-1 (HO-1), glutathione peroxidase (GSH-Px) and super-
oxide dismutase (SOD) (Bubb et al. 2017; Strom and Chen 2017;
Chen G et al. 2019). The phosphatidylinositol 3-hydroxy kinase/-
protein kinase B (PI3K/AKT) axis is an essential signalling path-
way involved in myocardial ischemia-reperfusion injury (Li X
et al. 2018; Huang J et al. 2019). The AMP-activated protein kin-
ase (AMPK) signalling pathway, a critical regulator of energetic
stress, controls glucose uptake and glycolysis and protects myo-
cardial tissue from ischemic injury (Shibata et al. 2005;
Penumathsa et al. 2009; Feng et al. 2018). The phosphorylation
of AKT and AMPK induces the activation of Nrf2 pathways
(Chen X et al. 2018; Nudelman et al. 2020). Thus, Nrf2, AKT
and AMPK are targeted to develop novel agents for myocardial
ischemia and coronary heart disease.

Kazinol B (KB, Figure 1(A)) is an isoprenylated flavan that is
derived from the root of Broussonetia kazinoki Sieb. (Moraceae)
(Ryu et al. 2003; Lee H et al. 2016). The B. kazinoki plant is

CONTACT Guo-Dong Zheng @) gd200237@126.com; Chu-Wen Li €) lichuwen@gzhmu.edu.cn &) School of Pharmaceutical Sciences, Guangzhou Medical

University, Guangzhou, Guangdong, China
*These authors contributed equally to this work.

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://crossmark.crossref.org/dialog/?doi=10.1080/13880209.2023.2173247&domain=pdf&date_stamp=2023-02-03
http://creativecommons.org/licenses/by-nc/4.0/
http://www.tandfonline.com

150+

—

o

o
1
|_|

Cell vitality
(% of control)

[4))

it

(R
KB(uM) 003 1 3 10 30100

PHARMACEUTICAL BIOLOGY 363

O

150+

1004 L

50+

LDH release
(% of control)

0L
KB(uM) 0 03 1 3 10 30100

Figure 1. Chemical structure of KB and its effects on cell viability and cytotoxicity in H9c2 cells. (A) Chemical structure of KB. (B, C) H9¢c2 cells were treated with vari-
ous doses of KB for 24 h, and cell viability and cytotoxicity were measured using the CCK8 and LDH assays, respectively. The cell viability and LDH release are
expressed as % of vehicle control. The vehicle control group was treated with only DMSO. Results are shown as mean = SEM (n=9). *p< 0.05 vs. the vehicle group.

widely distributed in the East Asia, especially in China, Korea
and Japan. This plant has a long history of being used as a folk
medicine (Zhang PC et al. 2001; Lee DY et al. 2010). Previous
studies demonstrate that KB suppresses oxidative stress and
inflammatory response in lipopolysaccharide-induced macro-
phages (Ryu et al. 2003). Moreover, KB confers antidiabetic
effects by modulating the AKT and AMPK pathways in mouse
3T3-L1 preadipocytes (Lee H et al. 2016). Thus, KB-mediated
cytoprotective effects and activation of AKT and AMPK path-
ways protect against myocardial ischemia. Hence, in this study,
we investigate whether KB could protect hypoxia and reoxygena-
tion (H/R)-induced ischemic injury in H9c2 rat cardiac myo-
blasts. We also explored how KB modulates the Nrf2, AKT and
AMPK signalling pathways to mediate its protective effect.

Materials and methods
Chemicals and reagents

Kazinol B (purity in HPLC > 98%, the chemical structure is
shown in Figure 1(A)) was purchased from Weikeqi
Biotechnology (Chengdu, China). LY294002 and Compound-C
were purchased from Selleck (Houston, TX). DMEM and FBS
were obtained from Gibco (Grand Island, NY).

Cell culture and treatment

The H9c2 rat cardiac myoblasts were obtained from the
American Type Culture Collection or ATCC (Manassas, VA)
and maintained in DMEM with 10% FBS in a humidified atmos-
phere at 37°C with 5% CO, (95% air). The chemical compound,
KB, was first dissolved in dimethyl sulphoxide (DMSO) and then
added to the medium. The vehicle control was dissolved with
DMSO (final concentration was 0.1%, v/v).

Hypoxia and reoxygenation

Hypoxia and reoxygenation were induced according to previous
studies (Peng et al. 2019; Jia et al. 2022). Briefly, the H9c2 cells
were incubated with the serum-free and glucose-free medium
and cultured in a hypoxic chamber (95% N, and 5% CO,,
STEMCELL Technologies, Vancouver, Canada) for 6 h. Next, the
cells were subjected to reoxygenation with a normal culture
medium in a normal incubator (95% air and 5% CO,) for 24 h.

Cell viability and cytotoxicity

Viability and toxicity were measured using the CCK8 (Dojindo,
Kumamoto, Japan) and LDH assay kits (Roche, Mannheim,
Germany). In brief, cells were seeded into the culture plate for
24h and treated with KB or specific inhibitors followed by the
H/R insults. Subsequently, the supernatant was removed for the
LDH assay, while the cells were subjected to the CCK8 assay.
The absorbances were measured at 450 nm and 490nm for the
CCK-8 and LDH assay, respectively.

Annexin V-FITC and Pl apoptosis analysis

Cell apoptosis and death were measured using the Annexin V-
FITC and PI apoptosis detection kits (Beyotime, Shanghai,
China). Quantitative analysis was performed using a C6 flow-
cytometer (BD Biosciences, San Jose, CA).

Determination of DNA fragmentation and caspase-3 activity

DNA fragmentation was measured using the DNA
Fragmentations ELISA kit (Roche, Mannheim, Germany). The
absorbance (490 nm) was detected and represented as DNA frag-
mentations. Caspase-3 activity was analysed using the caspase-3
activity assay kit (Beyotime, Shanghai, China). The absorbance at
405 nm was measured, and the data were normalized to the pro-
tein concentrations.

Measurement of cytochrome c release

The cytoplasm and mitochondria of cells were separated using
the mitochondria isolation kit (Beyotime, Shanghai, China).
Cytochrome ¢ release in the cytoplasm and mitochondria was
measured using the cytochrome C Quantikine ELISA kit (R&D
Systems, Minneapolis, MN). The result was normalized to the
protein concentration.

Measurement of ATP synthesis

ATP synthesis was measured using the luciferin-luciferase-
based enhanced ATP assay kit (Beyotime, Shanghai, China). In
brief, cells were collected and prepared with lysis buffers, centri-
fuged, and the supernatants were collected for ATP synthesis
assay. The luminescence was monitored for 3min using a
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FlexStation3 multi-mode microplate-reader (Molecular Devices,
Sunnyvale, CA).

Measurements of Aym, ROS, lipid peroxidation, GSH-Px
and SOD

The mitochondrial membrane potential (Aym) was monitored
using the fluorescent probe JC-1 (Invitrogen, Carlsbad, CA). The
fluorescence intensity was detected, and the Aym was repre-
sented by the ratio of JC-1 red/green intensity. ROS production
was measured using the fluorescent probe CM-H2DCFDA
(Invitrogen, Carlsbad, CA). The lipid peroxidation was deter-
mined by malondialdehyde (MDA) levels using the MDA assay
kits (Beyotime, Shanghai, China).

ARE luciferase activity assay

H9c2 cells were transfected with the pARE-Luc reporter plasmid
(SABiosciences, Frederick, MD) for 24h and then treated with
KB followed by the H/R insults. The cell samples were prepared,
and the luciferase activity of the samples was measured using the
Dual-Luciferase reporter assay systems (Promega, Madison, WI).

Nrf2 siRNA transfection

The cells were transfected with the Nrf2 siRNA (100 nM) or
scrambled control siRNA (Santa Cruz, Santa Cruz, CA) for 36h
using Lipofectamine 3000 (Invitrogen, Carlsbad, CA), after which
the cells were collected for further tests.

Quantitative PCR assay

Total RNA and cDNA were prepared using the HighPure RNA
isolation and Transcriptor c¢DNA synthesis kits (Roche,
Mannheim, Germany), respectively, according to the manufac-
turer’s protocol. qPCR was performed using the FastStart
Universal SYBR Green Master reagents in the 7900 HT System
(Applied Biosystems, Foster City, CA). The relative fold changes
were normalized to Gapdh and calculated as folds of the control
group using the 2722 method. The primer sequences used were
as follows: HO-1, forward primer: CTGGAAGAGGAGATAG
AGCGAA, reverse primer: TCTTAGCCTCTTCTGTCACCCT;
Gapdh, forward primer: GACATGCCGCCTGGAGAAAC,
reverse primer: AGCCCAGGATGCCCTTTAGT.

Western blot assay

The cells were lysed using the RIPA lysis buffer. The protein
concentration was measured by the Pierce BCA protein assay kit
(Thermo Scientific, San Diego, CA). Same amounts of protein
were electrophoresed on SDS-PAGE and then transferred onto a
PVDF membrane (Bio-Rad, Hercules, CA). The membrane was
then incubated with different primary and secondary antibodies
at room temperature for 1h. The primary antibodies, including
cleaved-caspase 3, cleaved-PARP, Bax, Bcl-2, p-AKT, t-AKT, p-
AMPKo, t-AMPKoa, Lamin Bl, GAPDH and p-actin, were
obtained from Cell Signaling Technology (Boston, MA). The
Nrf2 and HO-1 antibodies were obtained from Abcam
(Waltham, MA). The western blot band was visualized using the
ECL assay kit (GE Healthcare, Milwaukee, WI). Finally, the blot

was analysed and quantified using the Image Lab software (Bio-
Rad, Hercules, CA).

Statistical analysis

Statistical analyses were performed with one-way ANOVA fol-
lowed by Bonferroni’s multiple comparisons test using GraphPad
Prism 7.00 software (GraphPad Prism, La Jolla, CA). All experi-
ments were performed three times and in triplicates. Data are
presented as mean+ SEM. A p value < 0.05 was considered stat-
istically significant.

Results
Effects of KB on cell viability and cytotoxicity in H9c2 cells

We measured the cytotoxic effects of KB on H9c2 cells using the
CCK8 and LDH assays. As shown in Figure 1(B,C), no cytotox-
icity was observed in cells treated with KB up to 30 uM for 24 h.
However, we observed cytotoxicity at a KB dose of 100 uM.
Hence, we chose KB doses up to 30 pM (0.3, 1, 3, 10 and
30 uM) for further experiments.

KB exerted protective effects against H/R-induced cell death
and apoptosis in H9¢c2 cells

Next, we investigated the effects of KB on cell death and apop-
tosis in H9c2 cells subjected to H/R insults. Based on previous
reports and our preliminary experiments, we induced cardiac
injury in H9¢2 cells by subjecting the cells to hypoxia for 6h,
followed by reoxygenation for 24h (Peng et al. 2019; Jia et al.
2022). First, KB (1, 3, 10 and 30 uM) inhibited the H/R-induced
decline in cell viability and H/R-induced LDH release in a dose-
dependent manner (Figure 2(A,B), respectively). The inhibitory
effects of KB against cell injury were detected by Annexin-V/PI
and DNA fragmentation assays. As shown in Figure 2(C), the
apoptotic and dead populations decreased upon KB treatment in
a dose-dependent manner (1, 3, 10 and 30 pM, all p< 0.05 com-
pared with the H/R-treated group). KB (1, 3, 10 and 30 pM) also
alleviated H/R-induced DNA fragmentation in a dose-dependent
manner in H9¢2 cells (Figure 2(D)). However, 10 and 30 pM of
KB exerted almost the same protective effects on H9¢2 cells with
H/R insults. Hence, we selected a KB dose of 10 uM for our fur-
ther experiments.

KB blocked apoptotic cascades in H/R-induced H9c2 cells

As shown in Figure 3(A), the H/R insult significantly increased
caspase-3 activity in H9c2 cells, whereas KB significantly sup-
pressed the caspase-3 activity. KB treatment also significantly
down-regulated the protein level of cleaved PARP in cells with
H/R insults (Figure 3(B,C)). Further, KB reversed the H/R-
induced decline in the ratio of Bcl-2/Bax (Figure 3(B,D)).

KB alleviated H/R-induced mitochondrial dysfunction in
H9c2 cells

The mitochondrial membrane potential (Aym) collapses during
an apoptotic cascade (Mansingh et al. 2018). As shown in Figure
4(A), KB significantly attenuated Aym disruption by H/R insults
in H9c2 cells, as evidenced by the increase in the ratio of red to
green fluorescence. Further, KB significantly inhibited H/R-
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Figure 2. KB protected H9c2 cells against H/R-induced cell death and apoptosis. H9c2 cells were treated with various doses of KB for 2h and then subjected to H/R
insults. (A) The cell viability was measured via CCK8 assay. (B) Cytotoxicity was measured via the LDH assay. The cell viability and LDH release are expressed as % of
vehicle control. (C) Cell apoptosis was measured by Annexin-V-FITC/PI flow cytometry assay. (D) The cytoplasmic histone-associated DNA fragmentation was measured
by ELISA. The vehicle control group was treated with only DMSO. Results are shown as mean+SEM (n=9). *p< 0.05 and *p< 0.01 vs. the vehicle group. *p< 0.05
and **p< 0.01 vs. the H/R-treated group.
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Figure 3. KB blocked H/R-induced apoptotic cascades in H9c2 cells. H9c2 cells were treated with KB and then subjected to H/R insults. (A) The caspase-3 activity was
measured by the caspase-3 assay. The results are expressed as fold of control. (B-E) Protein was prepared, and the level of cleaved PARP, Bcl-2 and Bax was detected
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treated group.

induced cytochrome c release from mitochondria into the cyto-
plasm in H9c2 cells (Figure 4(B,C)). KB also rescued the
decrease in H/R-induced dysfunction in ATP production in
H9c2 cells (Figure 4(D)).

KB attenuated H/R-induced oxidative stress in H9c2 cells

Oxidative stress is critical in H/R-induced cellular damage (Zhou
P et al. 2022). Therefore, we further investigated the antioxidant
capability of KB. KB significantly suppressed ROS production
and H/R-aroused lipid peroxidation (MDA production) in H9c2
cells subjected to H/R insults (Figure 5(A,B), respectively).
Furthermore, KB improved GSH-Px and SOD activity in H/R-
induced H9c2 cells (Figure 5(C,D)).

KB promoted Nrf2 nuclear translocation and activated the
Nrf2/ARE/HO-1 pathway in H/R-induced H9c2 cells

The Nrf2/ARE pathway is crucial for the protective effects of
various natural products in cardiomyocyte injury models (Lu
et al. 2022). Thus, we examined the effects of KB on the
Nrf2/ARE axis. KB significantly facilitated Nrf2 nuclear accumu-
lation (Figure 6(A,B)) and improved ARE promoter activity
(Figure 6(D)) in H/R-induced H9c2 cells. Further, KB up-regu-
lated the HO-1 protein (Figure 6(E,F)) and mRNA expression
(Figure 6(G)) in H/R-induced H9¢2 cells.

KB-induced Nrf2/ARE activation protected the cells against
H/R-induced cardiac injury

Nrf2 siRNA was used to investigate the specific role of Nrf2 in
KB-mediated protection against H/R-induced injury. H9¢c2 cells

were transfected with Nrf2 siRNA, which significantly abrogated
the Nrf2 expression in H9¢2 cells (Figure 7(A)). As expected,
Nrf2 siRNA abrogated the protective effect of KB against H/R-
induced toxicity, as shown by the decreased cell viability and
increased LDH release in Nrf2 siRNA-treated groups
(Figure 7(B,C)).

KB up-regulated phosphorylation of AKT and AMPK in H/R-
induced H9c2 cells

KB confers beneficial functions via modulating several pathways,
including AKT and AMPK (Mansingh et al. 2018; Huang J et al.
2019). Thus, we explored the effect of KB on AKT and AMPK
signalling to reveal its underlying mechanisms in H/R-induced
cardiomyocyte injury. As shown in Figure 8(A,B), H/R insults
decreased the phosphorylation of AKT and AMPKa in H9c2
cells. However, KB significantly restored AKT phosphorylation
in H9c2 cells under the H/R lesioning condition. Further, KB
up-regulated AMPKo phosphorylation in H/R-induced H9c2
cells (Figure 8(C,D)). Thus, our results showed that KB alone
could promote and facilitate AKT and AMPKa phosphorylation
in H9c2 cells without H/R insults (Figure 8(A,C)).

KB-induced AKT and AMPK were involved in KB-mediated
Nrf2/ARE activation in H/R-induced H9c2 cells

Several protein kinases, including PI3K/AKT and AMPK, have
been implicated in Nrf2 induction (Huang J et al. 2019).
Therefore, we used specific inhibitors to block AKT and AMPK
activity and determine whether AKT and AMPK were involved
in KB-mediated Nrf2 activation. Interestingly, AKT and AMPK
inhibitors abrogated Nrf2 nuclear translocation (Figure 9(A,B))
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in H/R-induced H9¢2 cells. Moreover, AKT and AMPK inhibi-
tors abolished the protective effect of KB against H/R-induced
decline in cell viability and the increase in LDH release (Figure
9(C,D)). Thus, these results indicated that AKT and AMPK acti-
vation by KB was associated with the induction of the
Nrf2/ARE/HO-1 pathway, which contributed to the protective
effect of KB on H/R-induced H9c2 cells.

Discussion

In this study, we explored the protective effect of KB on H/R-
induced cardiac injury and its underlying mechanisms. We
found that KB improved cell survival and decreased cell death

against H/R damage. KB also reversed H/R-induced apoptotic
cascades, as evidenced by the decrease in the ratio of apoptotic
populations in the DNA fragmentation assay. Further, KB
reversed the decline of Aym in H/R-treated H9c2 cells. The col-
lapse of Aym leads to mitochondrial membrane depolarization,
which usually serves as a marker of early apoptotic events (Chen
Y et al. 2018; Mansingh et al. 2018). Thus, the effects of KB on
the collapse of Aym could also confirm its inhibitory actions on
H/R-mediated cell apoptosis. H/R insult modulates other intrin-
sic apoptotic cascades, including caspase-3, PARP, Bcl-2 and Bax
(Kaushal et al. 2004). Caspase-3 activation leads to the execution
phase of apoptotic cascades and mediates cellular degradation.
Moreover, caspase-3 also interacts with other apoptosis markers,
including the PARP and Bcl-2 family proteins (Elmore 2007).
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KB also modulates Bcl-2 and Bax (Kaushal et al. 2004; Chen Y
et al. 2018; Mansingh et al. 2018; Kalpage et al. 2019; Peng et al.
2019). The Bcl-2 and Bax are two important proteins of the Bcl
protein family, which execute diverse functions in intrinsic apop-
tosis (Kaushal et al. 2004; Elmore 2007; Peng et al. 2019). Bcl-2
is anti-apoptotic while Bax is pro-apoptotic (Kaushal et al. 2004).
Thus, in this study, the modulation of Bcl-2 and Bax by KB con-
firmed that KB could inhibit H/R-induced apoptotic cascades,
which demonstrated the protective effect of KB on H/R-induced
H9c2 cells.

Cardiac injury resulting from H/R-aroused cell damage is
closely related to ROS productions and oxidative stress in cardio-
myocytes (Hayyan et al. 2016; Cadenas 2018; Zhou P et al.
2022). The myocardial cells are more susceptible to free radical
damage because they have lesser antioxidants and antioxidant
enzymes like GSH, SOD and catalase (Valko et al. 2007; Zhou P
et al. 2022). KB also acts as an indirect antioxidant that induces
endogenous antioxidants and enzymes. In this study, we also
confirmed that KB could suppress H/R-mediated ROS generation
and lipid peroxidation inhibition in H9¢2 cells. Further, the up-
regulation of antioxidant enzymes was also observed in KB-
treated cells. Thus, based on these results, we suggested that KB
could suppress H/R-induced oxidative damages in H9¢2 cells.

H/R insults induce mitochondria dysfunction injury in cardi-
omyocytes (Solaini and Harris 2005; Kang et al. 2017; Jia et al.
2022). Myocardial cells have abundant mitochondria, which
mainly contribute to the principal ROS generation, and are usu-
ally exposed to high oxygen tension (Solaini and Harris 2005;
Kang et al. 2017; Jia et al. 2022). In this study, KB alleviated

H/R-induced mitochondrial dysfunction. Accumulating evidence
indicates that H/R could induce mitochondrial dysfunction fol-
lowed by the prompt efflux of ROS, which leads to apoptosis
(Huang CH et al. 2015; Quan et al. 2021). Hence, the inhibition
of H/R-induced mitochondrial dysfunction by KB might be
essential in protecting against H/R-induced apoptosis.

Enhancing Nrf2 transcriptional activity and promoting the
transcription of genes encoding endogenous antioxidants is a
promising strategy to attenuate H/R-induced oxidative stress and
damage (Fan et al. 2018; Li CW et al. 2018; Qiu et al. 2018; Lv
et al. 2019; Zhou F et al. 2019). Thus, in this study, we investi-
gated the effects of KB on the Nrf2 pathway. The Nrf2/ARE
pathway is pivotal in regulating cellular defences against oxida-
tive damages, and the Nrf2/ARE pathway is also associated with
H/R-induced cardiac injury (Bubb et al. 2017; Strom and Chen
2017; Chen G et al. 2019; Lu et al. 2022). Nrf2 is one of the
redox-sensitive transcription factors that modulate cellular anti-
oxidant defences and maintain redox homeostasis (Bubb et al.
2017; Strom and Chen 2017; Chen G et al. 2019; Lu et al. 2022).
The expression of target genes in the Nrf2/ARE axis could
inhibit intracellular ROS generation (Bubb et al. 2017; Strom and
Chen 2017; Chen G et al. 2019). In this study, we found that KB
led to significant Nrf2 nuclear accumulation and enhanced ARE
promoter activity in H9c¢2 cells. Moreover, KB significantly
increased HO-1 expression, which could directly protect against
oxidative damage. Notably, the up-regulation of HO-1 promoted
cellular resistance to H/R-induced damage. Therefore, our data
demonstrated that KB could activate the Nrf2/ARE pathway,
which might contribute to KB-mediated protective effects. Next,
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we conducted Nrf2 gene silencing using specific Nrf2-siRNA.
Nrf2-siRNA transfection could abolish KB-mediated Nrf2 nuclear
activations and ARE promoter activities in H/R-treated H9c2
cells. As expected, we confirmed that Nrf2 knockdown could
abrogate KB-mediated anti-apoptotic actions in cells with H/R
treatments. Thus, the activation of the Nrf2/ARE/HO-1 pathway
contributed to KB-mediated protective effects against H/R
insults.

KB is beneficial to the cell since it modulates several path-
ways, including AKT and AMPK (Mansingh et al. 2018; Huang ]
et al. 2019). The AKT pathway is involved in myocardial ische-
mia-reperfusion injury (Mansingh et al. 2018; Huang ] et al.
2019). In addition, the AMPK signalling pathway serves as a crit-
ical regulator in modulating energetic stress, controls glucose
uptake and glycolysis, and protects myocardial tissue from ische-
mic injury (Cui et al. 2013; Nagaoka et al. 2015;
Thirunavukkarasu et al. 2015; Venardos et al. 2015; Kosuru et al.
2018; Potenza et al. 2019; Tian et al. 2019; Zhang BF et al. 2019).
Therefore, we hypothesized that the cardioprotective actions of
KB against H/R-induced injury were due to the AKT and AMPK
axis. Notably, the activation of AKT and AMPK pathways was
observed in KB-treated H9c2 cells with or without H/R insults.
AKT or AMPK inhibitors also abrogated KB-induced protection
against H/R injury. Therefore, we suggested the up-regulation of
AKT and AMPK activities might be essential for the protective
effect of KB. Further, several kinases, including AKT and AMPK,
could modulate the activation of the Nrf2 pathway (Fan et al.
2018; Li CW et al. 2018; Lv et al. 2019; Zhou F et al. 2019). In
this study, we not only found that KB promoted the phosphoryl-
ation of AKT and AMPK but also observed that blocking AKT
and AMPK pathways via pharmacological inhibitors abolished
the KB-mediated Nrf2 activation. Thus, we suggested that AKT
and AMPK pathways were involved in Nrf2 activation and con-
tributed to KB-induced protection against H/R-induced cardiac
injury.

Conclusions

This study showed that KB alleviated cardiomyocyte injury in
H/R-induced H9c2 rat cardiac myoblasts. Further, KB inhibited
ROS production and lipid peroxidation but promoted antioxi-
dant enzyme activity and the activation of the Nrf2/ARE/HO-1
pathway in H9c2 cells against H/R insults. Moreover, the KB-
mediated activation of Nrf2 pathways was associated with the
AKT and AMPK signal cascades. In conclusion, this study
revealed that KB confers protection to cardiomyocytes against
hypoxia/reoxygenation insult via the AKT and AMPK-mediated
activation of the Nrf2/ARE/HO-1 signalling pathway. We believe
that KB has the potential to become a promising drug candidate
for managing ischemic cardiac disorders.
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