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Human brain-related disorders, such as autism spectrum disorder (ASD), are often
characterized by cell heterogeneity, as the cell atlas of brains consists of diverse cell
types. There are commonality and specificity in gene expression among different cell types
of brains; hence, there may also be commonality and specificity in dysregulated gene
expression affected by ASD among brain cells. Moreover, as genes interact together, it is
important to identify shared and cell-type-specific ASD-related gene modules for studying
the cell heterogeneity of ASD. To this end, we propose integrative regularized non-negative
matrix factorization (iRNMF) by imposing a new regularization based on integrative non-
negative matrix factorization. Using iRNMF, we analyze gene expression data of multiple
cell types of the human brain to obtain shared and cell-type-specific gene modules. Based
on ASD risk genes, we identify shared and cell-type-specific ASD-associated gene
modules. By analyzing these gene modules, we study the commonality and specificity
among different cell types in dysregulated gene expression affected by ASD. The shared
ASD-associated gene modules are mostly relevant to the functioning of synapses, while in
different cell types, different kinds of gene functions may be specifically dysregulated in
ASD, such as inhibitory extracellular ligand-gated ion channel activity in GABAergic
interneurons and excitatory postsynaptic potential and ionotropic glutamate receptor
signaling pathway in glutamatergic neurons. Our results provide new insights into the
molecular mechanism and pathogenesis of ASD. The identification of shared and cell-type-
specific ASD-related gene modules can facilitate the development of more targeted
biomarkers and treatments for ASD.
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negative matrix factorization

INTRODUCTION

The human brain is a highly heterogeneous organ, consisting of multiple kinds of cell types. Brain-
related disorders, such as autism spectrum disorder (ASD), are often characterized by cell
heterogeneity and mainly affect some specific cell types. ASD, a set of neuropsychiatric
disorders, is characterized by highly genetic and phenotypic heterogeneity. To date, its actual
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causes and underlying mechanisms remain unclear. Although
there have been hundreds of genes identified to be associated with
ASD, they only account for 10–20% of ASD cases (Rylaarsdam
and Guemez-Gamboa, 2019). Genes do not act alone, and what
determines the manifestation of a disease in different cell types is
the presence of disease-associated gene modules instead of
individual genes (Kitsak et al., 2016; Guan et al., 2021).
Moreover, as there are commonality and specificity in gene
expression among different cell types of brains, there may also
be commonality and specificity in dysregulated gene expression
affected by ASD among brain cells. Therefore, based on gene
expression datasets of multiple human brain cells, the detection of
shared and cell-type-specific ASD-associated gene modules is of
significance to study the molecular mechanism and pathogenesis
of ASD.

Non-negative matrix factorization (NMF)-based methods
have been developed and applied to the analyses of biological
sequencing data, such as sparse NMF (sNMF) (Mairal et al., 2010)
and sparse modular activity factorization (SMAF) (Cleary et al.,
2017). In the context of integrating heterogeneous datasets,
several methods have been proposed recently. Many of them
were developed to integrate multi-modal or multi-omics data and
focus on the analysis of samples, such as the joint definition of cell
types of samples by taking the advantage of multiple
heterogeneous datasets. For example, LIGER (Welch et al.,
2019) was developed based on integrative non-negative matrix
factorization (iNMF) (Yang and Michailidis, 2016) to factorize
multiple datasets into a common gene-factor matrix, multiple
dataset-specific gene-factor matrices, and multiple dataset-
specific sample-factor matrices. Compared with the original
algorithm of iNMF, LIGER adopted a novel block coordinate
descent algorithm for performing iNMF, which can converge
quickly. iNMF can extract consistent patterns embedded in
various data sources by separating the homogeneous and
heterogeneous effects among the sources, and it was mainly
adopted to analyze the low-dimensional sample-factor matrices
based on different kinds of data. The low-dimensional gene-
factor matrices should be given more attention. The sparsity of
sample representation (Yang and Michailidis, 2016) is beneficial
to sample analyses, such as cell-type definition, while to perform
gene module analyses, the sparsity or regularization of gene
representation could be induced. Except for integrating multi-
modal data, performing integrative and comparative analyses on
the same type of data frommultiple biological conditions, such as
various cancer types or subtypes, various cell lines, and various
cell types, is also valuable (Zhang and Zhang, 2019).

To depict the common and dataset-specific gene expression
patterns, we proposed integrative regularized non-negative
matrix factorization (iRNMF), by adopting iNMF and
imposing a new regularization, to obtain a common gene-
factor matrix and multiple dataset-specific gene-factor
matrices. With iRNMF, we analyzed the gene expression data
of multiple human brain cell types and obtained shared and cell-
type-specific gene modules. Then, ASD-related risk genes were
used to identify shared and cell-type-specific ASD-associated
gene modules. By analyzing these gene modules, we studied

the shared and cell-type-specific dysregulated gene expression
patterns in ASD.

MATERIALS AND METHODS

Integrative Regularized Non-Negative
Matrix Factorization
Non-negative matrix factorization can factorize a high-
dimensional gene expression matrix into two low-dimensional
matrices, i.e., a gene-factor matrix and a sample-factor matrix,
achieving the purpose of dimension reduction. To integrate and
factorize multiple gene expression datasets into a common gene-
factor matrix, multiple dataset-specific gene-factor matrices, and
sample-factor matrices, iNMF (Yang and Michailidis, 2016) was
proposed. The optimization problem is:

min
W,V1 ,...,Vk,H1 ,...Hk

∑k
i�1

����Xi −Hi(W + Vi)
����2F + λ∑k

i�1

����HiVi

����2F,
s.t. W≥ 0, Vi ≥ 0, Hi ≥ 0, i � 1, 2, . . . k,

where Xi ∈ Rni×g denotes each gene expression dataset, g denotes
the number of genes, and ni denotes the number of samples in the
ith dataset. Xi is factorized into three low-dimensional matrices,
Hi ∈ Rni×m,W ∈ Rm×g, and Vi ∈ Rm×g, where m denotes the
number of factors/gene modules. Hi is the representation of
samples in the low-dimensional space. Vi and W are the
dataset-specific and shared gene modules, respectively. λ is a
regularization parameter.

The regularization of iNMF can make Vi sparser to some
degree, while to facilitate the analyses of shared and dataset-
specific gene modules, we propose integrative regularized non-
negative matrix factorization (iRNMF) by imposing a new
regularization. The optimization problem is:

min
W,V1 ,...,Vk,H1 ,...Hk

∑k
i�1

����Xi −Hi(W + Vi)
����2F + λ 1∑k

i�1

����HiVi

����2F + λ2∑k
i�1

����HiW
����2F,

s.t. W≥ 0, Vi ≥ 0, Hi ≥ 0, i � 1, 2, . . . k,

where λ 1 and λ2 are regularization parameters. Themultiplicative
updates often used for NMF-like optimization problems do not
have a convergence guarantee and may need more iterations;
therefore, we applied the block coordinate descent algorithm used
in LIGER (Welch et al., 2019). We divided the variables into 2k +
1 blocks (corresponding to Hi, Vi for each dataset, and W) and
performed block coordinate descent, iteratively minimizing the
objective with respect to each block, holding the others fixed. We
iterated:

W � argmin
W≥0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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√
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√
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Hi � argmin
Hi ≥ 0
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Vi � argmin
Vi ≥ 0

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣( Hi��

λ1
√

Hi
)Vi − (Xi −HiW

Oni × g
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F

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣,

until convergence. Each of the optimization subproblems
mentioned previously requires solving a non-negative least-
squares problem, and we used the fast block principal pivoting
algorithm (Kim et al., 2014) to solve each of these subproblems.

Gene Expression Data
We downloaded the single-nucleus gene expression data derived
from the middle temporal gyrus (MTG) of the human cortex
(Hodge et al., 2019) from the Allen Institute for Brain Science. It
includes 15,928 nuclei sampled from eight human donor brains,
of which 15,206 were from postmortem donors with no known
neuropsychiatric or neurological conditions and 722 were from
distal and normal tissues of neurosurgical donors. We
preprocessed the data with R packages of scatter (McCarthy
et al., 2017) and scran (Lun et al., 2016), including the quality
control of nuclei and genes, and removing a minority of nuclei
assigned to different cell cycle phases by the function of cyclone in
scran. Nuclear and mitochondrial genes downloaded from
Human MitoCarta2.0 (Calvo et al., 2016) were excluded, and
protein-coding genes were retained. After removing the nuclei
not assigned to any specific cell type, we obtained the expression
level of 17,120 protein-coding genes in 12,246 nuclei. Then, we
used scran to obtain 7,011 highly variable protein-coding genes
across all nuclei, which were defined as genes with biological
components that are significantly greater than zero at a false
discovery rate (FDR) of 0.1. After removing the cell types
containing less than 20 nuclei, we obtained the gene
expression data of nuclei from glutamatergic neuron (Gluta),
GABAergic interneuron (GABA), astrocyte (Ast),
oligodendrocyte (Oli), and oligodendrocyte precursor cell
(OPC), including 8994, 2762, 227, 112, and 133 nuclei,
respectively. The gene expression of 7,011 highly variable
protein-coding genes in these five cell types was used for analyses.

Determination of Parameters
To determine the number of factors/gene modulesm, we used the
same way with LIGER, applying Kullback–Leibler (KL)
divergence as a criterion. When the number of factors is too
low, factors will include many genes and samples will load on
many factors, with the distribution of factor loadings for a
particular sample approaching a uniform distribution (Welch
et al., 2019). As the number of factors approaches the true
number of gene modules, each sample will generally load on
only a few factors. Therefore, we calculated the KL divergence,
compared to a uniform distribution, of the factor loadings for each
sample and plotted the median across samples as a function ofm to
select the saturation point of the curve as the optimal m. We also
considered the mean squared error (MSE) between Xi and the
reconstructed data X̂i, i.e.,∑k

i�11/(ni × g)||Xi −Hi(W + Vi)||2F, to
help to determine the optimal m. To select the regularization

parameters λ 1 and λ2, we applied the alignment metric (Butler
et al., 2018) as a criterion, which LIGER also used, and plotted the
alignment metric as a function of a combination of λ 1 and λ2 to
choose the point at which the alignment metric reaches the
minimum value. λ 1 and λ2 can be a value among 0.01, 0.1, 1,
10, and 100.

Gene Module Analyses
We used iRNMF to analyze gene expression datasets of multiple
cell types derived from human MTG. After obtaining the cell-
type-specific and shared gene module matrices Vi and W, for
each gene module, we calculated the z-scores of genes, and the
genes whose z-scores are larger than one were regarded as module
genes. The modules with no less than 20 module genes were
reported. The gene modules significantly enriched with ASD
genes were regarded as ASD-associated gene modules. ASD
candidate genes were downloaded from the Simons
Foundation Autism Research Initiative (SFARI), version of 2
September 2021. We identified ASD-associated gene modules by
hypergeometric tests and performed the correction for multiple
testing by the Bonferroni method (Rupert, 2012). Gene Ontology
analysis was performed using the R package of clusterProfiler (Yu
et al., 2012), with background genes set at the genes in the
analyzed expression matrix. The GO term whose FDR-
adjusted p-value < 0.1 and the number of genes in the term is
not less than ten was reported.

RESULTS

Overall Analytical Procedure
We proposed integrative regularized non-negative matrix
factorization (iRNMF) to learn homogeneous and
heterogeneous gene expression patterns across multiple
datasets. Single-nucleus gene expression datasets of multiple
cell types of human MTG (Hodge et al., 2019) were analyzed
using iRNMF, involving glutamatergic neuron (Gluta),
GABAergic interneuron (GABA), astrocyte (Ast),
oligodendrocyte (Oli), and oligodendrocyte precursor cell
(OPC) denoted by X1, . . . , X5, Xi ∈ Rni×g, i � 1, 2, . . . , 5,
where g denotes the number of genes and ni denotes the
number of samples in the ith cell type. iRNMF decomposed
each gene expression dataset, Xi, into three low-dimensional
matrices, including the representation of samples in the low-
dimensional space Hi ∈ Rni×m and the cell type-specific and
shared gene module matrices Vi ∈ Rm×g and W ∈ Rm×g,
respectively, where m denotes the number of factors/gene
modules. As we study the shared and cell type-specific gene
expression patterns across cells, we mainly focus on Vi and W.
Based on Vi andW, for each gene module, we first calculated the
z-scores of genes and determined the module genes as those with
z-score > 1. The modules with no less than 20 module genes were
reported. The genemodules determined fromWwere regarded as
shared gene modules, and those determined from Vi were
regarded as cell-type-specific gene modules. Then, we
identified the gene modules significantly enriched with SFARI
ASD candidate genes using hypergeometric tests. The gene
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modules whose Bonferroni-adjusted hypergeometric test
p-values < 0.1 were reported as ASD-associated gene modules.
By analyzing the shared and cell-type-specific ASD-associated
gene modules, we study the shared and cell-type-specific
dysregulated gene expression across different cells in ASD.

The Evaluation of Integrative Regularized
Non-Negative Matrix Factorization
To show the effectiveness of iRNMF, we compared iRNMF with
LIGER (which only imposes regularization on∑k

i�1||HiVi||2F but not
on ∑k

i�1||HiW||2F). First, we needed to determine the parameter
values for LIGER and iRNMF. KL divergence was used to determine
the optimal number of gene modules m, and the alignment metric
(Butler et al., 2018) was used to determine the regularization
parameters. For LIGER and iRNMF, we plotted the median of
KL divergence across samples as a function of m to select the
saturation point of the curve and also consideredmean squared error
(MSE), ∑k

i�11/(ni × g)||Xi −Hi(W + Vi)||2F (Supplementary
Figure S1A). Thus, m was set to 100 for both LIGER and
iRNMF. For LIGER, the regularization parameter λ was set to 1,
which makes the alignment metric reach the minimum value
(Supplementary Figure S1B). For iRNMF, we plotted the
alignment metric as a function of a combination of λ 1 and λ2.
The parameter values λ 1 = 0.01 and λ2 = 10 canmake the alignment
metric reach the minimum value, while we noticed that λ 1 = 1 and
λ2 = 10 can give the second smallest alignment metric
(Supplementary Figure S1C). The regularization parameter of
LIGER was determined as 1, which is actually our λ 1; to better
compare iRNMF with LIGER and analyze the effectiveness of the
newly added constraint, we chose λ 1 = 1 and λ2 = 10 instead. The
reason why we chose the minimum alignment instead of the
maximum alignment as a criterion is that the input datasets are
from different cell types and they could not be aligned together. The
alignment metric measures the uniformity of mixing for multiple
samples in the aligned latent space, which should be high when
datasets share underlying cell types and low when datasets do not
share cognate populations (Butler et al., 2018;Welch et al., 2019). As
our analyzed datasets are from different cell types, we used the
minimum alignment to determine the regularization parameters.

Next, we compared iRNMF with LIGER based on cell
representation. For each cell type, we calculated the Pearson
correlation between flatten Xi and X̂i � Hi(W + Vi)
(Supplementary Figure S2A) to evaluate the reconstruction.
Also, we calculated sample–sample distance matrices using Xi

and X̂i and then flatten the distance matrices to calculate their
Pearson correlation (Supplementary Figure S2B). Both
correlations of iRNMF are slightly better than those of LIGER.
Then, for each cell, we calculated the Pearson correlation between
the gene expression levels of this cell in Xi and X̂i

(Supplementary Figure S2C). We found that iRNMF is better
than LIGER in the cell type GABA, and in the other four cell
types, iRNMF and LIGER are evenly matched. To compare the
low-dimensional Hi obtained from LIGER and iRNMF, we
combined all Hi as H and performed cell clustering based on
H to check if different cell types are distinguishable. We
performed K-means based on H and calculated the clustering

indexes, including ARI (adjusted Rand index), FMI (Fowlkes and
Mallows index), JC (Jaccard coefficient), NMI (normalized
mutual information), PUR (purity), and SC (silhouette
coefficient) (Supplementary Figure S2D). It can be noted that
the clustering performances of iRNMF are better than those of
LIGER when being faced with datasets of different cell types.

Lastly, we compared the gene modules obtained using LIGER
and iRNMF. We calculated gene–gene correlation matrices using
Xi and X̂i and then flatten the correlation matrices to calculate
their Pearson correlation (Supplementary Figure S2E). We also
calculated gene–gene correlation matrices using Xi and low-
dimensional gene representation W + Vi and then calculated
their Pearson correlation (Supplementary Figure S2F). It can
be seen that both correlations of iRNMF are better than those of
LIGER. Then, for each gene, we calculated the Pearson
correlation between the expression levels of this gene in Xi

and X̂i (Supplementary Figure S2G). The correlations of
iRNMF are significantly higher than those of LIGER in four
cell types, except for Gluta, in which iRNMF and LIGER are
evenly matched. Moreover, we expected that different modules
should represent distinct biological functions and should not
overlap too much. To evaluate the distinct biological functions of
gene modules, we adopted the evaluation way as in Cleary et al
(2017), using the number of uniquely enriched gene sets. For each
gene module of W and Vi, we tested it for enrichment in GO
terms and considered its top five significant GO terms. Then, we
identified the uniquely enriched GO terms of each module, which
are the terms enriched in at most one module of this considered
cell type, and calculated the average number of unique gene sets
per module (Supplementary Figure S2H). It can be seen that in
all cell types, the number of uniquely enriched GO terms of
iRNMF is larger than that of LIGER. The comparisons indicate
that iRNMF is effective, and the obtained low-dimensional
matrices are helpful for subsequent gene module analysis.

Shared Gene Expression Patterns
Associated With Autism Spectrum Disorder
Among all shared gene modules determined from W, 46 are
significantly enriched with ASD genes (Supplementary Table
S1). For the top ten shared ASD-associated gene modules, we list
their Bonferroni-adjusted p-values, top three z-score genes
(Figure 1A1), and top one significant GO term (Figure 1A2).
Some top genes are ASD genes, including PDE1C and MKX in
W_M42, GPC6 in W_M10, and NTNG1 in W_M26. The top one
significant GO term is all related to synapses, whose dysregulation
has been proven to be associated with ASD. Then, we checked
which kinds of GO terms are the most common among all GO
terms of all shared ASD-associated gene modules and found that
the top ten common GO terms are also associated with the
functioning of synapses, appearing in all shared ASD-associated
gene modules (Figure 1B1). Next, we focused on the modules
which have module-specific gene functions, by removing the
repeated GO terms between gene modules. There are 36
shared ASD-associated gene modules with module-specific GO
terms (Supplementary Table S2). The top ten modules with
module-specific gene functions are also the ones shown in
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Figure 1A1, and their top one module-specific GO term is shown
in Figure 1B2. The top three modules most significantly enriched
with ASD genes, W_M78, W_M91, and W_M42, are related to
cortical actin cytoskeleton, heparan sulfate proteoglycan
metabolic process, and regulation of sodium ion
transmembrane transport, respectively. The actin cytoskeleton
has been associated with ASD and provides a strategy for ASD
treatment by targeting actin regulators (Duffney et al., 2015;
Hlushchenko et al., 2018). The lacking of heparin sulfate, a
proteoglycan involved in a variety of neurodevelopmental
processes, has been correlated with ASD (Irie et al., 2012;
Pérez et al., 2016). Ion channels, including sodium, calcium,
and potassium, are implicated in the etiology of ASD (Daghsni
et al., 2018). It can be seen that the identified gene modules are
meaningful.

Cell-Type-Specific Gene Expression
Patterns Associated With Autism Spectrum
Disorder
Among all cell-type-specific gene modules, we identified 11,
25, 29, 45, and 14 cell-type-specific ASD-associated gene

modules for Ast, GABA, Gluta, Oli, and OPC, respectively
(Supplementary Table S1). We list the top ten significant gene
modules along with their Bonferroni-adjusted p-values, top
three z-score genes, and top one significant GO term
(Figure 2). Noted that for the two kinds of neurons, GABA
and Gluta, the cell-type-specific ASD-associated gene modules
are more significantly enriched with ASD genes and more top
three genes are ASD genes, compared with glial cells. Many of
the top GO terms of cell-type-specific ASD-associated gene
modules are related to synapses, while different gene functions
may still be dysregulated in different cell types. For instance,
gamma-tubulin complex, cadherin binding, and protein
tyrosine kinase activity are associated with Ast-specific
ASD-associated gene modules; regulation of microtubule
cytoskeleton organization, phosphatase binding, and
desmosome are significant in OPC-specific ASD-associated
gene modules. These may indicate that different gene
functions may be dysregulated by ASD in different cells,
demonstrating the cell heterogeneity of ASD.

Then, we checked which kinds of GO terms are the most
common among all cell-type-specific ASD-associated gene
modules in each cell type. Indeed, the functioning of

FIGURE 1 | Top ten shared ASD-associated gene modules along with (A1) their Bonferroni-adjusted p-values, top three z-score genes, and (A2) top one
significant GO term. (B1) Top ten common enriched GO terms among all shared ASD-associated gene modules along with the frequency of occurrence and the total
number of gene modules. (B2) Module-specific top one GO term of the top ten shared ASD-associated modules. The SFARI ASD genes are bold. The Bonferroni-
adjusted p-values were derived from the hypergeometric tests using module genes and ASD genes.
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synapses is important across all cell types (Figure 3A). Next,
we focused on the modules which have module-specific gene
functions. There are 7, 23, 24, 24, and 8 cell-type-specific ASD-
associated gene modules left in Ast, GABA, Gluta, Oli, and
OPC, respectively (Supplementary Table S2). We reported the
top ten, along with their top three z-score genes (Figure 3B),
and top one GO term (Figure 3C). In Ast, locomotory
behavior, integral component of the postsynaptic
membrane, and cadherin binding are functions specific to
the top three modules, Ast_M99, Ast_M63, and Ast_M39.
For GABA, it can be noted that inhibitory extracellular ligand-
gated ion channel activity is specific to GABA_M7. On the
contrary, the modulation of excitatory postsynaptic potential
and ionotropic glutamate receptor signaling pathway are
specific to Gluta_M10 and Gluta_M99, respectively. These
gene functions are obviously associated with particular cell
types. Neurons communicate with one another at synapses
using two types of signals, electrical and chemical signals. At
an electrical synapse, ions flow directly between cells. At a
chemical synapse, neurotransmitters pass messages from the
presynaptic to the postsynaptic neuron. The major excitatory
and inhibitory neurotransmitters in brains are glutamate and
GABA (gamma-aminobutyric acid), respectively. For Oli,
regulation of dendrite morphogenesis and regulation of
gliogenesis are specific to Oli_M82 and Oli_M97. For OPC,
protein homooligomerization and endoplasmic reticulum
unfolded protein response are specific to the top two

modules, OPC_M34 and OPC_M54, respectively. The
analysis of module-specific gene functions and top genes of
cell-type-specific ASD-related gene modules can facilitate the
development of more targeted biomarkers and treatments
for ASD.

Next, we further examined the modules with both cell-type-
specific and module-specific gene functions, which are those
GO terms that only appear in one module of one cell type. In
GABA, Gluta, Oli, and OPC, there are 14, 18, 1, and 1 cell-type-
specific ASD-associated gene modules that have both cell-
type-specific and module-specific gene functions
(Supplementary Table S3). It can be noted that more
modules have cell type-specific and module-specific gene
functions in neuronal cells, emphasizing the neurons are
mainly affected by ASD. For the cell types with more than
one cell-type-specific ASD-associated gene modules, we show
the top ten modules along with their Bonferroni-adjusted
p-values, the enriched top one GO term, and the top three
z-score genes (Figure 4). Among the top three genes, CTNNA2
in GABA_M42, ZBTB2 in GABA_M40, and SLC9A9 in
GABA_M75 are ASD genes. MKX and PDE1C in
Gluta_M42, GPC6 and CUX2 in Gluta_M10, and PXDN and
NFIA in Gluta_M99 are ASD genes. These gene modules may
need more attention. We note that different kinds of gene
functions are specific to ASD-associated modules of different
cell types. GABA-specific ASD-associated gene modules are
responsible for inhibitory extracellular ligand-gated ion

FIGURE 2 | Top ten cell-type-specific ASD-associated gene modules along with their Bonferroni-adjusted hypergeometric test p-values, top three z-score genes,
and top one significant GO term. The SFARI ASD genes are bold. The Bonferroni-adjusted p-values were derived from the hypergeometric tests usingmodule genes and
ASD genes.
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FIGURE 3 | (A) Top ten common enriched GO terms among all cell-type-specific ASD-associated gene modules along with the frequency of occurrence and the
total number of cell-type-specific ASD-associated genemodules. For the top ten cell-type-specific ASD-associatedmodules, which havemodule-specific GO terms, (B)
their Bonferroni-adjusted hypergeometric test p-values, top three z-score genes, and (C) top one GO term are shown. The SFARI ASD genes are bold. The Bonferroni-
adjusted p-values were derived from the hypergeometric tests using module genes and ASD genes.
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channel activity and forebrain neuron differentiation, and so
on. Gluta-specific ASD-associated gene modules are
responsible for nerve growth factors, excitatory postsynaptic
potential, and ionotropic glutamate receptor signaling
pathway, and so on. Oli_M60 and OPC_M12 have a cell-
type-specific and module-specific function, regulation of bone
mineralization and lipid transporter activity, respectively
(Supplementary Table S3). These results indicate that in
different cell types, different kinds of gene functions may be
specifically dysregulated in ASD, highlighting the cell
heterogeneity of ASD.

DISCUSSION

Brain-related diseases are often characterized by cell
heterogeneity and mainly affect some specific cell types, as the

brain is highly heterogeneous. To study the common and cell
type-specific gene expression patterns across different brain cell
types, we proposed iRNMF by adopting iNMF and imposing a
further regularization. With iRNMF, we analyzed the gene
expression data of multiple human brain cell types to obtain
shared and cell-type-specific gene modules and cell-type-specific
cell representations. By comparing iRNMF with LIGER in terms
of cell representations and gene modules, it has been shown that
iRNMF is effective, and the obtained low-dimensional matrices
are beneficial for the downstream analyses, especially gene
module analyses.

By using curated ASD candidate genes, shared and cell-
type-specific ASD-associated gene modules were identified.
For the shared ASD-associated gene modules, their significant
gene functions are mostly relevant to the functioning of
synapses, which has already been proven to be associated
with ASD. Then, we identified the module-specific gene

FIGURE4 |Cell-type-specific ASD-associatedmodules, which have bothmodule-specific and cell type-specificGO terms, alongwith (A) their Bonferroni-adjusted
hypergeometric test p-values, (B) top one enriched GO term, and (C) top three z-score genes. The SFARI ASD genes are bold. The Bonferroni-adjusted p-values were
derived from the hypergeometric tests using module genes and ASD genes.
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functions, including cortical actin cytoskeleton, heparan
sulfate proteoglycan metabolic process, and regulation of
sodium ion transmembrane transport. As to cell-type-
specific ASD-associated gene modules, GABA-specific and
Gluta-specific ASD-associated gene modules are more
significantly enriched with ASD genes, and more top three
genes are ASD genes compared with glial cells, emphasizing
that the neurons are mainly affected by ASD. Many top GO
terms of cell-type-specific ASD-associated gene modules are
related to synapses, while different gene functions may still be
specifically dysregulated by ASD in different cell types.
Therefore, we focused on the functions which are specific to
modules and also cell types. We noted that inhibitory
extracellular ligand-gated ion channel activity and forebrain
neuron differentiation are functions specifically significant in
GABA; nerve growth factor, excitatory postsynaptic potential,
and ionotropic glutamate receptor signaling pathway are
specifically related to Gluta; lipid transporter activity is
specifically significant in OPC.

By analyzing the gene functions and top important genes of
shared and cell-type-specific ASD-associated gene modules,
we study the shared and cell-type-specific dysregulated gene
expression patterns in ASD. Moreover, we highlighted the
shared ASD-associated gene modules, which have module-
specific gene functions, and cell-type-specific ASD-associated
gene modules, which have both module-specific and cell-type-
specific gene functions. Analyzing these gene modules can
facilitate the development of more targeted biomarkers and
treatments for ASD. Our results provide new insights into the
molecular mechanism and pathogenesis of ASD, studying the
cell heterogeneity of ASD. Our method can also be used to
extract homogeneous and heterogeneous patterns embedded
in data from multiple biological conditions, such as various
cancer types or subtypes and various cell lines.
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Supplementary Figure S1 | Selection of parameter values of iRNMF and LIGER.
(A) Selection ofm using mean squared error (MSE) and KL divergence as criteria for
iRNMF and LIGER. (B) Selection of the regularization parameter λ using alignment
metric for LIGER. (C) Selection of the combination of regularization parameters (λ 1

and λ2) using alignment metric for iRNMF.

Supplementary Figure S2 | Comparisons between iRNMF and LIGER. (A)
Pearson correlation coefficient between original data Xi and reconstructed data
X̂i . (B) Pearson correlation coefficient between sample–sample distance matrices
calculated from Xi and X̂i . (C) Pearson correlation between the gene expression
levels of each cell in Xi and X̂i . (D) Performances of clustering based on H, including
ARI, FMI, JC, NMI, PUR, and SC. (E) Pearson correlation coefficient between
gene–gene correlation matrices calculated from Xi and X̂i . (F) Pearson correlation
coefficient between gene–gene correlation matrices calculated from Xi and low-
dimensional gene representation W + Vi . (G) Pearson correlation between the
expression levels of each gene in Xi and X̂i . (H) Number of uniquely enriched
GO terms. ns denotes not significant; * denotes p < 0.05, ** denotes p < 0.01, ***
denotes p < 0.001, and **** denotes p < 0.0001.

Supplementary Table S1 | Shared and cell-type-specific ASD-associated gene
modules. For these modules, their Bonferroni-adjusted hypergeometric p-values,
module genes sorted by z-scores, and enriched gene functions are listed.

Supplementary Table S2 | Shared and cell-type-specific ASD-associated gene
modules that have module-specific gene functions. For these modules, their
Bonferroni-adjusted hypergeometric p-values, module genes sorted by z-scores,
and enriched module-specific gene functions are listed.

Supplementary Table S3 | Cell-type-specific ASD-associated gene modules that
have bothmodule-specific and cell type-specific gene functions. For thesemodules, their
Bonferroni-adjusted hypergeometric p-values, module genes sorted by z-scores, and
enriched module-specific and cell-type-specific gene functions are listed.
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