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New reconstruction algorithm for digital
breast tomosynthesis: better image
quality for humans and computers
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Abstract
Background: The image quality of digital breast tomosynthesis (DBT) volumes depends greatly on the reconstruction

algorithm.

Purpose: To compare two DBT reconstruction algorithms used by the Siemens Mammomat Inspiration system, filtered

back projection (FBP), and FBP with iterative optimizations (EMPIRE), using qualitative analysis by human readers and

detection performance of machine learning algorithms.

Material and Methods: Visual grading analysis was performed by four readers specialized in breast imaging who scored

100 cases reconstructed with both algorithms (70 lesions). Scoring (5-point scale: 1¼ poor to 5¼ excellent quality) was

performed on presence of noise and artifacts, visualization of skin-line and Cooper’s ligaments, contrast, and image

quality, and, when present, lesion visibility. In parallel, a three-dimensional deep-learning convolutional neural network

(3D-CNN) was trained (n¼ 259 patients, 51 positives with BI-RADS 3, 4, or 5 calcifications) and tested (n¼ 46 patients,

nine positives), separately with FBP and EMPIRE volumes, to discriminate between samples with and without calcifica-

tions. The partial area under the receiver operating characteristic curve (pAUC) of each 3D-CNN was used for

comparison.

Results: EMPIRE reconstructions showed better contrast (3.23 vs. 3.10, P¼ 0.010), image quality (3.22 vs. 3.03,

P< 0.001), visibility of calcifications (3.53 vs. 3.37, P¼ 0.053, significant for one reader), and fewer artifacts (3.26 vs.

2.97, P< 0.001). The 3D-CNN-EMPIRE had better performance than 3D-CNN-FBP (pAUC-EMPIRE¼ 0.880 vs.

pAUC-FBP¼ 0.857; P< 0.001).

Conclusion: The new algorithm provides DBT volumes with better contrast and image quality, fewer artifacts, and

improved visibility of calcifications for human observers, as well as improved detection performance with deep-learning

algorithms.
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Introduction

Digital mammography (DM) is currently the most used
technique for breast cancer detection, and population-
based mammography screening programs have been
proven to reduce mortality among women while being
cost-effective (1,2). However, mammography projects a
three-dimensional (3D) object, the breast, onto a two-
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dimensional (2D) image. As a consequence, there is an
inherent loss of sensitivity and specificity due to ana-
tomical noise arising from tissue superposition. Digital
breast tomosynthesis (DBT) can overcome the limita-
tions of DM by providing a pseudo-3D image of the
breast (3), and many prospective trials and retrospect-
ive studies have demonstrated the clinical benefit of
introducing DBT for breast cancer detection (4–9).
Therefore, DBT might be considered a potential
candidate to replace DM for population-based screen-
ing (10,11).

DBT consists of the acquisition of several low-dose
planar X-ray projections of the compressed breast over
a limited angular range, which are then reconstructed
into a pseudo-3D volume. This acquisition strategy has
inherent challenges that deteriorate image quality (3).
The limited angle acquisition gives rise to out-of-plane
artefacts and low vertical resolution (12–15), the low-
dose per projection increases the impact of noise, and
X-ray scatter decreases contrast (16). The reconstruc-
tion algorithm is one of the main aspects of image cre-
ation that could ameliorate these technical drawbacks,
and therefore can greatly affect the final quality of DBT
images.

Many different reconstruction approaches have been
studied over time (17). Traditionally, the most wide-
spread algorithm across DBT systems is filtered back
projection (FBP), an analytical reconstruction method
widely used in computed tomography (CT) and
adapted for DBT (18,19). Fully iterative reconstruction
algorithms are also in use (20–22). In order to make the
most out of both approaches, FBP is recently being
complemented with a posteriori iterative optimizations,
in order to reduce artifacts and noise, and increase con-
trast of the DBT images (23,24), without lengthening
the reconstruction time substantially (one of the main
drawbacks of iterative reconstructions).

One manufacturer has followed this approach in
their DBT system (Mammomat Inspiration, Siemens
Healthineers, Forchheim, Germany), recently updating
the clinical standard reconstruction algorithm on their
system from FBP to FBP with a posteriori iterative
optimizations (called EMPIRE), with preliminary
results pointing to a decrease in artifacts and
noise while enhancing image contrast of DBT volumes
(23–25) (online only).

In this work, we compare this new DBT reconstruc-
tion algorithm to the previous one using clinical patient
images with two methodologies. First, in order to assess
the benefits of the new algorithm in terms of image
quality and lesion depiction, we perform a visual grad-
ing analysis (VGA) study (26) with human readers.
Second, we assess if the new DBT reconstruction algo-
rithm provides images that also benefit automated com-
puter detection systems. In particular, we trained and

tested two equivalent deep-learning based 3D convolu-
tional neural networks for the task of detecting calcifi-
cations in DBT, one using FBP images and the other
with EMPIRE images. Deep learning is an artificial
intelligence computer technique (27) that has achieved
similar to superior performance to humans for
many complex medical imaging tasks (28). In mammo-
grams, a small calcification may indicate the presence
of cancer, either in situ or invasive, thus detection
is important (29). However, their small size
(range¼ 0.050–3mm) increases detection time, and cer-
tainly deep-learning based computer systems could aid
humans in this task (30).

Material and Methods

Reconstruction algorithms

The two reconstruction algorithms compared in this
work are both clinical standard algorithms used by
the Siemens Mammomat Inspiration DBT system: the
FBP algorithm; and the new Enhanced Multiple
Parameter Iterative Reconstruction (EMPIRE), intro-
duced in 2016.

The FBP algorithm for DBT is described in detail in
the work by Mertelmeier et al. (19). It basically back
projects the DBT projections after application of differ-
ent filters to account for the limited sampling of DBT in
the vertical direction throughout the breast. The
EMPIRE algorithm is based on FBP, but it includes
additional processes aiming to achieve better artifact
suppression, higher resolution, and less noise (23–25).

Patient data

Out of a total of 2071 DBT patient studies acquired
during clinical routine work-up as per standard practice
at our institution between December 2014 and
December 2015, 374 were consecutively collected, with-
out any exclusion criteria, to obtain a case set with the
proportions described in Table 1. All participants con-
sented to participate in research studies within our insti-
tution and the need for specific written informed
consent for this study was waived by the ethics
committee.

All patients underwent an imaging protocol consist-
ing of at least unilateral one-view DBT and
digital mammography with a Siemens Mammomat
Inspiration DBT system. All images were acquired in
automatic exposure control mode. For a full DBT scan,
the X-ray tube moves in an arc of 50� and acquires 25
projection images with an angular range of approxi-
mately 46�, during a total scan time of 20 s. The pro-
jection images were subsequently reconstructed by the
DBT system into a pseudo-3D volume with focal planes
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parallel to the detector 1mm apart, using the standard
FBP algorithm. These raw projection images were
reconstructed using the EMPIRE reconstruction algo-
rithm on an off-line workstation only for this study,
so this process took place well after the acquisition of
each case.

Visual grading analysis study population

For the VGA study, 100 patient unilateral mediolateral
oblique (MLO) view DBT studies were consecutively
selected out of the 374 described above to achieve the
desired proportion of patient cases (Table 1): 40 biopsy
proven malignant cases; 30 biopsy proven benign cases;
and 30 normal cases. The latter were scored as
BIRADS� 1 or 2 and had at least one year of negative
follow-up. The ground truth location of the lesions was
annotated under the supervision of an experienced radi-
ologist (13 years of experience with mammography,
three with DBT) with access to pathology and radi-
ology reports.

Automated computer detection study population

For the computer detection study, out of our set of 374
cases, all abnormal cases due to calcifications scored as
BI-RADS 3, 4, or 5 cases were selected. Cases with
calcifications were used since visibility of this type of
lesion has been proposed to be the main advantage of
EMPIRE over FBP (24). No cases with soft tissue
lesions were included in this study. This yielded 60
DBT patient studies (Table 1). From these, 114 DBT
volumes (either MLO, cranio-caudal [CC], or both
views) were available. Location of calcifications were
annotated individually for each reconstructed volume
(independently in EMPIRE and FBP), under the super-
vision of the same experienced radiologist with access
to pathology and radiology reports. A sample of 245
normal patient studies (bilateral, BI-RADS 1 or 2) was
also selected for training of the computer detection
algorithms.

Visual grading analysis study

An absolute VGA observer study (26) was performed
to assess several aspects of image quality in both recon-
struction algorithms. It was carried out by four readers
specializing in breast imaging (one radiologist, one clin-
ical PhD student, and two physicists specializing in
mammography), who had a median of 12 years of
experience in breast imaging (range¼ 3–21 years).

Two reading sessions separated by at least two weeks
were performed in order to avoid possible bias in the
results due to a direct comparison between reconstruc-
tion algorithms of the same patient. Both reconstruc-
tions (FBP and EMPIRE) of each patient were
alternatively and randomly split between the two read-
ing sessions. In total, 50 FBP volumes and 50 EMPIRE
volumes were scored during each session. Scoring was
performed on a 5-point scale (1¼ poor quality to
5¼ excellent quality) on six aspects of normal anatomy
(presence of noise and artifacts, visualization of skin
line and Cooper’s ligaments, contrast, and overall
image quality) and, when present, visibility and sharp-
ness of both types of lesions (calcifications and soft
tissue). The location of the lesions was outlined for
the readers. The reading was performed on an in-
house developed workstation (CIRRUS Observer,
Diagnostic Image Analysis Group, Nijmegen, the
Netherlands) (Fig. 1), using high-resolution mammo-
graphic monitors of at least 5 MP.

To account for repeated measures and multiple inde-
pendent reader variability, the average results were ana-
lyzed with generalized estimating equations (GEE)
models, using as outcome the scores of each of the
questions. The two-way GEE models were built using
the reconstruction algorithm and reader as main effects
as well as their interaction term. An exchangeable
working correlation matrix structure was chosen.
Wald 95% confidence intervals (CI) were computed.
Differences in the scores between reconstruction
algorithms for each reader were tested with the
Mann–Whitney U (Wilcoxon) non-parametric test.

Table 1. DBT patient studies used in each experiment.

Total included patients (n¼ 374)

Normal

(BI-RADS 1–2) Biopsied benign Biopsied malignant

VGA study (n¼ 100) 30 30 (soft tissue, n¼ 19;

calcifications, n¼ 10;

both types, n¼ 1)

40 (soft tissue, n¼ 22;

calcifications, n¼ 11;

both types, n¼ 7)

Automated computer

detection study*

(n¼ 305)

245 18 (calcifications n¼ 18) 42 (calcifications n¼ 42)

*No cases with soft tissue lesions were included in the automated computer detection study.
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A two-tailed P value< 0.05 was considered to indicate
significant difference. All analyses were performed
using SPSS (version 24, IBM Inc., Armonk, NY, USA).

Computer automated detection study

A 3D deep-learning based computer detection system
based on convolutional neural networks (3D-CNN)
was trained, validated, and tested for the task of detect-
ing suspicious calcifications (scored as BI-RADS 3, 4,
or 5) in DBT images, using data reconstructed both
with EMPIRE and FBP. At the end, the performance
of the network trained and evaluated with EMPIRE
data was compared to the performance of the network
trained and evaluated with FBP data. The 305 DBT
patient studies were split into training, validation, and
test in a case-level to avoid bias, with the proportions
shown in Table 2.

The 3D-CNN used in this study is an extension of
the 2D deep-learning approach to detect calcifications
in mammography developed by Mordang et al. (31). It
was trained to discriminate between 3D DBT patches
(size¼ 29� 29� 9 voxels) with and without suspicious
calcifications. More details regarding the architecture
and training strategy of the 3D-CNN can be found in
Appendix 1.

The 3D-CNN with the parameters that achieved the
best accuracy on the validation data during the training

was then used to compute the receiver operating char-
acteristic curve (ROC) on the test dataset. The partial
area under the receiver operating characteristic (ROC)
curve (pAUC) for a false-positive rate of 0–0.05 was
computed. This range was empirically defined as the
range where the largest difference of pAUC between
EMPIRE and FBP was found. The pAUC was

Fig. 1. In-house developed workstation for the scoring of the visual grading analysis reader study. The readers answered ten

questions on a 5-point scale (1¼ poor quality to 5¼ excellent quality) and the lesions were outlined. The workstation automatically

registered the results and provided a summary report per reader after each session.

Table 2. Number of DBT patient studies, DBT image volumes,

and extracted patches used for the training, validation, and

testing of the 3D-CNNs.

Training Validation Test

Patients

Positive 42 9 9

Negative 172 36 37

Volumes

Positive 79 17 18

Negative 624 124 94

Patches*

Positive EMPIRE: 928

FBP: 725

EMPIRE: 201

FBP: 178

EMPIRE: 119

FBP: 86

Negative EMPIRE: 928

FBP: 725

EMPIRE: 201

FBP: 178

EMPIRE: 47,000

FBP: 39,500

*Differences on a patch level between EMPIRE and FBP reconstruction

algorithms are due to different individual calcification annotations

between reconstructed volumes.
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compared between the 3D-CNN trained with FBP data
(3D-CNN-FBP) and the 3D-CNN trained with
EMPIRE data (3D-CNN-EMPIRE) after bootstrap-
ping (n¼ 5000), via the Mann–Whitney U (Wilcoxon)
non-parametric test. A two-tailed P value< 0.05 was
considered to indicate significant difference. All statis-
tical analyses were performed using MATLAB�
R2017a (MathWorks, Natick, MA, USA).

Results

Visual grading analysis study

The averaged results from the GEE model (Table 3)
yielded that EMPIRE reconstructions showed slightly
better contrast (significant for one reader, the radiolo-
gist) and fewer artifacts (significant for all readers). In
general, a better overall image quality (significant for
three readers) was also assessed for the EMPIRE DBT
volumes. No significant difference was found between
reconstruction algorithms for the level of noise and the
skin line visualization, while Cooper’s ligaments were
slightly better represented with EMPIRE (significant
for one reader, the radiologist). Regarding the lesion
representation of both algorithms, on average a better
visibility of calcifications was found for EMPIRE. All
readers scored EMPIRE higher than FBP for visibility
of calcifications (significant for one reader, the clinical
PhD student), while no difference was found for soft
tissue lesions.

There was significant inter-reader variability in all
the scores (P< 0.001). Cumulative percentage of the
scores of all readers are shown in Fig. 2, which shows

that EMPIRE achieves higher scores for the four
most significant aspects found on the GEE
models: presence of artifacts; adequate image contrast;
visibility of calcifications; and overall image quality.
For these, the results for each reader are also
shown in Fig. 3. Two examples of cases that were
scored by most readers higher with EMPIRE than
with FBP for the visualization of calcifications are
shown in Fig. 4. Fig. 5 shows a case with a soft tissue
lesion, equally well-visualized in EMPIRE as in FBP.
Finally, an example of a case scored by all readers as

Table 3. Average scores (1¼ poor quality to 5¼ excellent quality) of each of the parameters of the visual

grading analysis (VGA) for each reconstruction algorithm, obtained with a generalized estimating equations

(GEE) model, which accounts for the variability of repeated measures by multiple independent readers.

FBP EMPIRE P value*

General image quality

Absence of disturbing noise 3.09 (3.02–3.15) 3.12 (3.06–3.19) 0.424

Absence of artifacts 2.97 (2.87–3.07) 3.26 (3.15–3.36) <0.001

Adequate image contrast 3.10 (2.99–3.20) 3.23 (3.12–3.33) 0.010

Overall image quality 3.03 (2.94–3.13) 3.22 (3.12–3.31) <0.001

Skin line visualization 3.10 (3.02–3.18) 3.11 (3.01–3.20) 0.855

Cooper’s ligaments visualization 3.39 (3.32–3.47) 3.47 (3.40–3.54) 0.057

Lesions

Visibility calcifications 3.37 (3.19–3.55) 3.53 (3.35–3.71) 0.053

Sharpness calcifications 3.02 (2.85–3.16) 3.03 (2.88–3.18) 0.875

Visibility soft tissue 3.77 (3.58–3.96) 3.84 (3.64–4.04) 0.365

Sharpness soft tissue 3.51 (3.33–3.69) 3.52 (3.34–3.70) 0.918

Within parentheses, 95% Wald CIs are shown.

*A two-tailed P value< 0.05 was considered to indicate significant difference between reconstruction algorithms.

Fig. 2. Cumulative percentages of the scores (1¼ poor quality,

5¼ excellent quality) across readers for the four most relevant

aspects that were found on average better for EMPIRE compared

to FBP. (a) Absence of artifacts, (b) Image contrast, (c) Visibility

calcifications, (d) Overall image quality.
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better in EMPIRE regarding artefacts is displayed
in Fig. 6.

Computer automated detection study

The ROC curves of the 3D-CNN for FBP and
EMPIRE are shown in Fig. 7a. The 3D-CNN-
EMPIRE showed similar high performance as the one
trained and tested with FBP (AUC-EMPIRE¼ 0.990
vs. AUC-FBP¼ 0.986). This is mainly influenced by
the operating points at high false-positive rate (FPR,
or 1 – Specificity), which have a sensitivity almost equal
to 1. However, at low FPRs, we observed that 3D-
CNN-EMPIRE performed better than 3D-CNN-FBP.
For instance, at FPR¼ 0.01, 3D-CNN-EMPIRE
achieved a sensitivity of 0.958 while 3D-CNN-FBP
achieved a sensitivity of 0.845. The partial ROC curve
delimited in the range with FPR of 0–0.05 is shown in
Fig. 7b. After bootstrapping, the partial AUC (pAUC)
of EMPIRE is 0.880 (95% CI¼ 0.846–0.897), signifi-
cantly better (P< 0.001) than pAUC-FBP¼ 0.857
(95% CI¼ 0.815–0.881).

Discussion

The comparison of breast tomosynthesis reconstruction
algorithms shows that the new EMPIRE reconstruction
improves the image quality of the standard FBP recon-
struction on the Siemens Mammomat Inspiration DBT
system. The VGA results yielded in average better
results for EMPIRE in some of the analyzed aspects

of image quality. Also, the 3D-CNN using EMPIRE
images achieved higher performance with a better ROC
curve, specially at the range of high specificity, relevant
for screening.

In general, performing additional iterative processes
on the FBP reconstructed volumes appears useful in
order to enhance the visualization of DBT images,
heavily degraded due to the acquisition limitations of
DBT. In particular, we have observed that image con-
trast can be enhanced and the presence of artifacts
reduced. In addition, Cooper’s ligaments are slightly
better visualized with EMPIRE. Cooper’s ligaments
are fibrous connective tissue between the inner side of
the skin and the pectoral muscles. Usually, changes in
their structure yield a high predictive value for malig-
nant mass lesions (32).

Furthermore, skin line visualization was similar
among both algorithms. An excellent skin line visual-
ization and sharpness is one of the main reported bene-
fits of FBP in comparison to fully iterative algorithms
(17). This remains unchanged with EMPIRE.
Assessment of possible breast skin thickening anoma-
lies is of importance since it may be associated with
malignancy (33).

As pointed out in preliminary studies (24), it has
been confirmed in our study that the new EMPIRE

Fig. 4. Example ROIs of two DBT cases containing malignant

calcifications (outlined) reconstructed with EMPIRE (left) and

standard FBP (right). Three observers scored calcification visi-

bility higher for EMPIRE in case (a), while all four of them scored

EMPIRE higher in case (b). These images are displayed with the

default window width and level set by the DBT system.

Fig. 3. Average scores per reader (1¼ poor quality, 5¼ excel-

lent quality) for the four more relevant aspects that were found

on average better for EMPIRE in comparison with FBP recon-

struction. Differences between reconstruction algorithms for

each reader were tested with the Mann–Whitney U (Wilcoxon)

non-parametric test. (a) Absence of artefacts, (b) Image contrast,

(c) Visibility calcifications, (d) Overall image quality.
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algorithm significantly improves the visibility of calcifi-
cations in the DBT volumes for humans. In addition,
we also showed a similar benefit for a deep-learning
based computer detection system when it comes to clas-
sification of calcifications. The higher contrast of calci-
fications achieved by EMPIRE, combined with a
similar visualization of soft tissue lesions, suggests
that EMPIRE might improve the clinical performance
of DBT for lesion detection in a clinical setting.

A topic of future work is to study the impact of the
EMPIRE algorithm on tests designed for quality con-
trol of the reconstructed slices of breast tomosynthesis
(13). Moreover, further expansion of the 3D-CNN for
EMPIRE is also still required, since here we just used a
basic network while, similar techniques can also be
applied in order to detect/classify groups of calcifica-
tions, as well as other types of lesions.

A limitation of this study is the fact that an actual
detection reader study was not performed to account
for lesion visibility. In addition, some of the observers
were not breast radiologists, but given the non-clinical
task of evaluating image quality, we believe this is a
minor limitation. Also, the medical physicist observers
provided the least number of significantly different
assessments between the two reconstruction algorithms
in the VGA study. Therefore, any potential bias would
be in favor of the FBP algorithm.

It should also be noted that, although images from
both algorithms were objectively and independently
annotated, not the same calcifications were included
for evaluation of the 3D-CNN with EMPIRE and
FBP. We observed that more calcifications were anno-
tated in EMPIRE. This might support that calcification
visibility for human observers is higher in EMPIRE. As
a consequence, this might lead to a bias in favor of
FBP, since likely many true-positive calcifications for
EMPIRE were labeled as true negatives in FBP, while
they could have been considered as false negatives.

In conclusion, the new EMPIRE reconstruction
algorithm, in comparison with FBP, provides breast
tomosynthesis volumes with better contrast and overall
image quality, fewer artifacts, and improved visibility
of calcifications according to the human observers, as
well as improved detection capability in deep-learning
systems. As a consequence, this new algorithm might
enhance DBT clinical performance of radiologists and

Fig. 5. Example ROIs of a DBT case containing a malignant soft tissue lesion (outlined) reconstructed with EMPIRE (left) and standard

FBP (right). Three observers scored soft tissue visibility similar between EMPIRE and FBP (one reader scored EMPIRE higher than

FBP). Also note how an artefact nearby the nipple (white circle), due to a calcification in another DBT plane, is visible in FBP but not in

EMPIRE. These images are displayed with the default window width and level set by the DBT system.

Fig. 6. Example of patient DBT slice reconstructed with EMPIRE

(left) and standard FBP (right). All four observers scored the

artefacts on the FBP volume worse than on EMPIRE. It can be

seen that for tissue near the skin line, EMPIRE provides a better

visualization compared with FBP. Also, the large vein on the

lateral side of the breast (under the star mark) shows more

overshooting artefact (shadow like artefact, 21) in FBP than in

EMPIRE. These images are displayed with the default window

width and level set by the DBT system.
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improve the accuracy of deep-learning based computer
detection systems.

Acknowledgments

The authors thank Itsara Wichakam for the help with the
calcification annotations on the digital breast tomosynthesis
images.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of
interest with respect to the research, authorship, and/or pub-
lication of this article: I Sechopoulos has research and speaker

agreements with Siemens Healthineers (Erlangen, Germany),
a research agreement with Toshiba Medical (Otawara,
Japan), and is a scientific advisor of Fischer Imaging
(Broomfield, USA); N Karssemeijer is one of the co-founders

of Volpara Health Technologies Solutions (Wellington New
Zealand), Qview Medical (Los Altos, CA, USA), and
ScreenPoint Medical (Nijmegen, the Netherlands); R Mann

has relationships with the following companies: ScreenPoint
Medical (Nijmegen, the Netherlands), Seno Medical
(San Antonio, USA), Micrima (Bristol, UK), and Transonic

Imaging.

Funding

The author(s) received the following financial support for the
research, authorship, and/or publication of this article: this

work was partly funded by Siemens Healthineers (Erlangen,
Germany).

References

1. Tabar L, Gad A, Holmberg L, et al. Reduction in mortal-

ity from breast cancer after mass screening with mammog-

raphy: randomised trial from the Breast Cancer Screening

Working Group of the Swedish National Board of Health

and Welfare. Lancet 1985;325:829–832.

2. Independent UK Panel on Breast Cancer Screening. The

benefits and harms of breast cancer screening: an inde-

pendent review. Lancet 2012;380:1778–1786.
3. Sechopoulos I. A review of breast tomosynthesis. Part I.

The image acquisition process. Med Phys 2013;40:

014301.

4. Andersson I, Ikeda DM, Zackrisson S, et al. Breast tomo-

synthesis and digital mammography: a comparison of

breast cancer visibility and BIRADS classification in a

population of cancers with subtle mammographic find-

ings. Eur Radiol 2008;18:2817–2825.

5. Skaane P, Gullien R, Bjorndal H, et al. Digital breast

tomosynthesis (DBT): initial experience in a clinical set-

ting. Acta Radiol 2012;53:524–529.
6. Ciatto S, Houssami N, Bernardi D, et al. Integration of

3D digital mammography with tomosynthesis for popu-

lation breast-cancer screening (STORM): a prospective

comparison study. Lancet Oncol 2013;14:583–589.
7. Gennaro G, Hendrick RE, Ruppel P, et al. Performance

comparison of single-view digital breast tomosynthesis

plus single-view digital mammography with two-view

digital mammography. Eur Radiol 2013;23:664–672.

8. Gilbert FJ, Tucker L, Gillan MG, et al. The TOMMY

trial: a comparison of TOMosynthesis with digital

MammographY in the UK NHS Breast Screening

Programme–a multicentre retrospective reading study

comparing the diagnostic performance of digital breast

tomosynthesis and digital mammography with digital

mammography alone. Health Technol Assess 2015;19:

i–xxv, 1–136.
9. Lång K, Andersson I, Rosso A, et al. Performance of

one-view breast tomosynthesis as a stand-alone breast

cancer screening modality: results from the Malmo

Breast Tomosynthesis Screening Trial, a population-

based study. Eur Radiol 2016;26:184–190.
10. Gilbert FJ, Tucker L, Young KC. Digital breast tomo-

synthesis (DBT): a review of the evidence for use as a

screening tool. Clin Radiol 2016;71:141–150.
11. Skaane P. Breast cancer screening with digital breast

tomosynthesis. Breast Cancer 2017;24:32–41.

Fig. 7. Complete (a) and partial (b) ROC curves of the same 3D-CNN trained and validated with EMPIRE images and trained and

validated with FBP images, for the task of detecting suspicious calcifications in DBT slices.

1058 Acta Radiologica 59(9)



12. Marshall NW, Bosmans H. Measurements of system
sharpness for two digital breast tomosynthesis systems.
Phys Med Biol 2012;57:7629–7650.

13. Rodriguez-Ruiz A, Castillo M, Garayoa J, et al.
Evaluation of the technical performance of three different
commercial digital breast tomosynthesis systems in the
clinical environment. Phys Med 2016;32:767–777.

14. Rodrı́guez-Ruiz A, Castillo M, Garayoa J, et al. Further
results on the evaluation of the performance of a digital
breast tomosynthesis system in the clinical environment.

Phys Med 2016;32:217.
15. Maldera A, De Marco P, Colombo P, et al. Digital breast

tomosynthesis: Dose and image quality assessment. Phys

Med 2017;33:56–67.
16. Wu G, Mainprize JG, Boone JM, et al. Evaluation of

scatter effects on image quality for breast tomosynthesis.

Med Phys 2009;36:4425–4432.
17. Sechopoulos I. A review of breast tomosynthesis. Part II.

Image reconstruction, processing and analysis, and
advanced applications. Med Phys 2013;40:014302.

18. Ren B, Ruth C, Stein J, et al. Design and performance of
the prototype full field breast tomosynthesis system with
selenium based flat panel detector. In: Flynn MJ (ed.)

Medical Imaging 2005: Physics of Medical Imaging.
Bellingham, WA: SPIE, 2005, pp.550–561.

19. Mertelmeier T, Orman J, Haerer W, et al. Optimizing

filtered backprojection reconstruction for a breast tomo-
synthesis prototype device. In: Flynn MJ (ed.) Medical
Imaging 2006: Physics of Medical Imaging. Bellingham,
WA: SPIE, 2006: 61420F.

20. Zhang Y, Chan H-P, Sahiner B, et al. Tomosynthesis
reconstruction using the simultaneous algebraic recon-
struction technique (SART) on breast phantom data.

In: Flynn MJ, Hsieh J (eds) Medical Imaging 2006:
Physics of Medical Imaging. Bellingham, WA: SPIE,
2006. 614249.

21. Sidky EY, Pan X, Reiser IS, et al. Enhanced imaging of
microcalcifications in digital breast tomosynthesis
through improved image-reconstruction algorithms.

Med Phys 2009;36:4920–4932.
22. Jerebko AK, Mertelmeier T. Evaluation and optimiza-

tion of the maximum-likelihood approach for image
reconstruction in digital breast tomosynthesis. In: Samei

E, Pelc NJ, editors. Medical Imaging 2010: Physics of
Medical Imaging. Bellingham, WA: SPIE, 2010:76220E..

23. Ludwig J, Mertelmeier T, Kunze H, et al. A novel

approach for filtered backprojection in tomosynthesis
based on filter kernels determined by iterative

reconstruction techniques. In: Krupinski EA (ed.)
Digital Mammography. IWDM 2008. Lecture Notes in
Computer Science. Vol. 5116, Berlin, Heidelberg:

Springer, 2008, pp.612–620.
24. Abdurahman S, Dennerlein F, Jerebko A, et al., editors.

Optimizing high resolution reconstruction in digital
breast tomosynthesis using filtered back projection. In:

Fujita H, Hara T, Muramatsu C, editors. Breast
Imaging. IWDM. Lecture Notes in Computer Science,
vol. 8539. Cham: Springer, 2014:520–527.

25. Abdurahman S, Jerebko A, Mertelmeier T, et al., editors.
Out-of-plane artifact reduction in tomosynthesis based
on regression modeling and outlier detection. In:

Maidment ADA, Bakic PR, Gavenonis S, editors.
Breast Imaging. IWDM 2012. Lecture Notes in
Computer Science, vol. 7361. Berlin, Heidelberg:

Springer, 2012:729–736.
26. Smedby O, Fredrikson M. Visual grading regression:

analysing data from visual grading experiments with
regression models. Br J Radiol 2010;83:767–775.

27. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature
2015;521:436–444.

28. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep

learning in medical image analysis. Med Image Anal
2017;42:60–88.

29. Bassett LW. Mammographic analysis of calcifications.

Radiol Clin North Am 1992;30:93–105.
30. Samala RK, Chan H-P, Hadjiiski LM, et al. Deep-learn-

ing convolution neural network for computer-aided
detection of microcalcifications in digital breast tomo-

synthesis. In: Tourassi GD, Armato SG, editors.
Medical Imaging 2016: Physics of Medical Imaging.
Bellingham, WA: SPIE, 2016:97850Y.

31. Mordang J-J, Janssen T, Bria A, et al., editors.
Automatic microcalcification detection in multi-vendor
mammography using convolutional neural networks. In:

Tingberg A, Lang K, Timberg P, editors. Breast Imaging.
IWDM 2016. Lecture Notes in Computer Science, vol.
9699. Cham: Springer, 2016:35–42.

32. Hong AS, Rosen EL, Soo MS, et al. BI-RADS for son-
ography: positive and negative predictive values of sono-
graphic features. Am J Roentgenol 2005;184:1260–1265.

33. Pope T Jr, Read M, Medsker T, et al. Breast skin thick-

ness: Normal range and causes of thickening shown on
film-screen mammography. J Can Assoc Radiol 1984;35:
365–368.

34. Chollet F. Keras. 2015. Available at: https://github.com/
fchollet/keras.

Rodriguez-Ruiz et al. 1059

https://github.com/fchollet/keras
https://github.com/fchollet/keras

