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Anzi Heji (AZHJ) has been used to treat anticardiolipin antibody- (ACA-) positive pregnant women at risk of spontaneous
abortion for many years. +e aim of this study was to investigate the protective mechanism of AZHJ in a mouse model of ACA-
positive pregnancy at risk of spontaneous abortion using label-free quantitative proteomics. Mice were divided into three groups:
normal pregnant mice (control group), ACA-positive pregnant mice administered normal saline (model group), and ACA-
positive pregnant mice administered AZHJ (AZHJ group). +e model was established by injecting β2-glycoprotein I (GPI) into
mice for 18 days.+eDEPs and their functions were analyzed by label-free quantitative proteomic and bioinformatic analyses.+e
levels of IL-6, IL-10, ACA, and TNF-α in the serum and placentas of the mice were measured by enzyme-linked immunosorbent
assays (ELISAs). Proteomic data were validated by western blot analysis. +e abnormal serum and placental levels of IL-6, ACA,
and TNF-α in the model group were reversed by AZHJ. +ere were 39 upregulated and 10 downregulated DEPs in the AZHJ
group relative to the model group. Bioinformatic analysis revealed that the DEPs were mainly involved in nucleic acid binding,
signal conduction, and posttranslational modification. +e placental levels of T-cell immunoglobulin mucin 3 (Tim-3) and Toll-
like receptor 4 (TLR4) expression and AKTphosphorylation in the three groups were consistent with the proteomic findings. Tim-
3/AKT signaling is involved in maternal-fetal immune tolerance, while TLR4 is associated with inflammatory responses.
Collectively, these results indicate that AZHJ may exert its protective effect in ACA-positive pregnant mice by regulating the
maternal-fetal immune tolerance and inflammatory response.

1. Introduction

Recurrent spontaneous abortion (RSA) refers to three or
more consecutive pregnancy losses [1, 2]. About 1–3% of
healthy women with normal fertility and >15% of women
experiencing RSA are positive for anticardiolipin antibody
(ACA) [3]. ACA-positive patients have decreased in vitro
fertilization, pregnancy, and implantation rates and an in-
creased risk of spontaneous abortion [3, 4]. +erefore, in-
creasing attention has been paid to the relationship between
ACA and RSA.

Extracts from traditional Chinese medicine herbs or
other herbs have been used to prevent abortion due to their

various abilities to regulate immune responses [5–7]. Anzi
Heji (AZHJ) is an approved prescription at Jiangsu Province
Hospital of Traditional Chinese Medicine, China (approval
no. 051226). It has been used to prevent spontaneous
abortion (especially in ACA-positive cases) for many years.
It has no toxic side effects [7]. +e main components of
AZHJ are Cuscuta chinensis, sangjisheng, ramie root, Dip-
sacus asperata, Salvia miltiorrhiza, Atractylodes macro-
cephala, Scutellaria baicalensis, radix Pseudostellariae, and
roasted Glycyrrhizae. Our previous clinical studies revealed
that AZHJ can significantly improve the clinical symptoms
of ACA-positive pregnant women at risk of spontaneous
abortion and improve pregnancy hormone levels [8–10].
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Fetal preservation was successful in >85% of cases, and the
conversion rate of ACA-positive to ACA-negative results
was 90% [8–10]. However, the mechanism underlying the
therapeutic effect of AZHJ remains largely unknown.

In this study, the proteomic changes in ACA-positive
pregnant mice in response to AZHJ treatment were inves-
tigated using nano-high-performance liquid chromatography
(HPLC)-tandem mass spectrometry (MS/MS) technology.
+ere were 39 upregulated and 10 downregulated differen-
tially expressed proteins (DEPs) after AZHJ treatment. +is
study provides a foundation for future studies investigating
the therapeutic mechanisms of AZHJ.

2. Materials and Methods

2.1. AZHJ Preparation. AZHJ extraction and quality control
were performed as described previously [7].

2.2. Animal Experiments. +e animal experiment design and
schedule are shown in Figure 1. Eight-week-old BALB/c fe-
male (25± 2 g) and male (30± 2 g) mice were obtained from
Cavens Laboratory Animal Co., Ltd (Changzhou, China).+e
mice were maintained in specific pathogen-free conditions at
25°C and 50–60% humidity with a 12 h/12 h light/dark cycle.
+e mice were fed standard chow and provided water.

+e mouse model of ACA-positive pregnancy at risk of
spontaneous abortion was established by injecting 400 µg/mL
β2-glycoprotein I (GPI) into 20 female BALB/c mice for 18
days, as described previously [11–13]. Another 10 female
BALB/cmice were injected with normal saline for 18 days and
used as the normal controls. +e female mice were kept in
cages with the male mice (1:1), and the day of vaginal plug
appearance was considered day 0 of gestation (E0). +e 20
female GPI-treated pregnant BALB/c mice were randomly
divided into the AZHJ or model group.+emice in the AZHJ
group were intragastrically administered 37.7mg/g AZHJ for
15 days. +e mice in the model group were intragastrically
administered 0.1mL/10 g distilled water for 15 days. +e 10
normal controls were also intragastrically administered
0.1mL/10 g distilled water for 15 days.

+e pregnant mice were killed on E15. +e embryo re-
sorption rate, R, was calculated as R � Re/(Re + F), where Re
is the number of resorbed embryos and F is the number of
surviving embryos. +e mouse experiments were carried out
in accordance with guidelines approved by the Ethics Com-
mittee of Taicang Hospital of Traditional Chinese Medicine.

2.3. Enzyme-Linked Immunosorbent Assays (ELISAs). +e
levels of ACA, TNF-α, IL-6, IL-2, IFN-c, and IL-10 in serum
samples (n� 6 per group) and placental tissues (n� 6 per
group) were quantified using ELISA kits (Shanghai Joyee
Biotechnics Co., Ltd., Shanghai, China) according to the
manufacturer’s instructions.

2.4. Sample Preparation and Protein Digestion. +ree pla-
cental samples were obtained from each of the three groups
and mixed to create a 5 µl sample for each group.

Radioimmunoprecipitation assay (RIPA) lysis buffer was
added to the tissues, which were cut into pieces, mechanically
homogenized using a tissue homogenizer three times for 3 s,
and kept on ice for 15min. After centrifugation at 12,000 g for
15min at 4°C, the supernatant was collected and transferred
to an Eppendorf tube. +e proteins were redissolved in
500mM triethylammonium bicarbonate (TEAB).+e protein
concentration was determined using a bicinchoninic acid
(BCA) protein assay. Next, 100 μg protein per group was
transferred to a new tube and adjusted to a final volume of
100 μL with 8M urea. +ereafter, 11 μL of 1M dithiothreitol
(DTT) was added and the sample was incubated at 37°C for
1 h and then transferred into a 10K Microcon Centrifugal
Filter (Millipore, Billerica, MA, USA). To remove the urea,
100mM TEAB was added and the samples were centrifuged,
and this process was repeated twice. Next, 120 μL of 55mM
iodoacetamide was added and the sample was incubated for
20min in the dark at room temperature. +e proteins were
then digested with sequencing-grade modified trypsin
(Promega, Madison, WI, USA) and lyophilized.

2.5. Liquid Chromatography with TandemMass Spectrometry
(LC-MS/MS) Analysis. +e peptides were redissolved in
30 μL solvent A (A: 0.1% formic acid in water) and un-
derwent LC-MS/MS analysis using an Orbitrap Fusion
coupled to an EASY-nano-LC 1200 system (+ermo Fisher
Scientific, Waltham, MA, USA). A 6 μL peptide sample was
loaded into a trap column (Acclaim PepMap C18 Column,
75 μm× 2 cm; +ermo Fisher Scientific). +ey were subse-
quently separated using an analytical column (Acclaim
PepMap C18 Column, 75 μm× 50 cm) with a linear gradient
from 5% B (B: 0.1% formic acid in acetonitrile) to 38% B over
120min. +e column flow rate was maintained at 300 nL/
min with a column temperature of 40°C. An electrospray
voltage of 2 kV was applied between the spray emitter and
the inlet of the mass spectrometer.

2.6. Data Analysis. +eMS/MS spectra were processed using
PEAKS Studio v8.5 (Bioinformatics Solutions Inc., Waterloo,
Canada). PEAKS DB was used to search the UniProt mouse
database (v201711, 52194 entries), assuming trypsin as the
digestion enzyme and setting the fragment ion mass tolerance
to 0.05Da and the parent ion tolerance to 7 ppm. Carbami-
domethylation (C) was specified as the fixedmodification, and
oxidation (M), deamidation (NQ), and acetylation (protein
N-termini) were specified as the variable modifications. +e
peptides were filtered based on a 1% false discovery rate and a
minimum of one unique peptide per protein. Analysis of
variance (ANOVA) was used for the peptide and protein
abundance calculations. Normalization involved averaging the
abundance of all peptides (based on median values). DEPs
were defined as proteins with a fold change >1.5 and ≥2
unique peptides with significance >13 (p< 0.05).

2.7. Bioinformatic Analysis. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
used to identify the significantly enriched biological functions
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and signaling pathways related to the DEPs based on the GO
(geneontology.org/) and KEGG (genome.jp/kegg/) databases.
To categorize the DEPs based on protein orthologs and
paralogs, the Clusters of Orthologous Groups database was
used (more specifically, the euKaryotic Orthologous Groups
(KOGs) database; ncbi.nlm.nih.gov/COG/). Lastly, a DEP
interaction network was constructed using Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING), as de-
scribed previously (http://string-db.org/).

2.8.Western Blot Analysis. Total protein was extracted from
placental tissues (n� 6 per group) using ice-cold RIPA lysis
buffer containing 1% phenylmethanesulfonyl fluoride
(PMSF) and a complete protease inhibitor cocktail (Beyo-
time Institute of Biotechnology, Haimen, China). +e
protein concentration was determined using a Bio-Rad
Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA).
Next, 30 µg total protein per group was separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to polyvinylidene difluoride (PVDF)
membranes. +e membranes were blocked with 5% nonfat
milk for 1 h at room temperature. +ey were then incubated
at 4°C overnight with rabbit anti-Tim-3 (1:1000; Cell Sig-
naling Technology, Danvers, MA, USA), anti-TLR4(1:1000;
Cell Signaling Technology, Danvers), anti-p-AKT(1:1000;
Cell Signaling Technology), anti-AKT (1:1000; Cell Signaling
Technology, Danvers), or rabbit anti-β-actin (1:1000; Santa
Cruz Biotechnology, Santa Cruz, CA, USA), followed by
adding peroxidase-labeled secondary antibody for 1 h at
room temperature. +e membranes were then rinsed three
times (for 10min each time) using Tris-buffered saline with
Tween 20. Next, the target proteins were detected using
enhanced chemiluminescence reagent (+ermo Fisher

Scientific) according to the manufacturer’s instructions. +e
relative optical density of the bands of interest was analyzed
using ImageJ v1.48 (National Institutes of Health, Bethesda,
MD, USA).

2.9. Statistical Analysis. Statistical analysis was performed
using SPSS v19.0 (IBM Corp., Armonk, NY, USA). One-way
ANOVA was used to analyze differences between multiple
groups, and Student’s t-test was used to analyze differences
between pairs of groups. Results are expressed as the
mean± standard deviation. p< 0.05 was considered to in-
dicate a statistically significant difference.

3. Results

3.1. AZHJ Reversed the Increased Embryo Loss Rate, the In-
creased ACA and TNF-α Levels, and the Decreased IL-6 Levels
in β2-GPI-TreatedMice. +e embryo loss rate of the mice in
the model group was significantly higher than in the normal
control group (Figure 2(a)). +e model group also showed
remarkable increases in the levels of ACA (Figure 2(b)) and
TNF-α (Figure 2(c)) and decrease in the levels of IL-6
(Figure 2(d)) in serum and placentas, suggesting that the
model had been established successfully. However, AZHJ
reversed the β2-GPI-induced increases in embryo loss rate
and ACA and TNF-α levels and the decreases in IL-6 levels.
+ese results suggest that AZHJ attenuates the β2-GPI-in-
duced responses in ACA-positive pregnant mice at risk of
spontaneous abortion.

3.2. Identification of DEPs in Placental Tissues.
Nano-HPLC-MS/MS was used to explore the protective
mechanisms of AZHJ. +ere were 87 DEPs (35

Thirty female BALB/c mice

Adaptive feeding for 1 week

Control group Model group AZHJ group

Normal saline β2-GPI (400μg/mL)

Cage with male mice (1 : 1)

Day 0 of gestation: vaginal plug appearance

Distilled water (0.01mL/g·d)

The mice were killed for the follow-up experiment

Day 1

Day 18

Day 0

Day 15

ACA-positive 
threatened abortion 
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Effect of AZHJ on 
ACA-positive 

threatened abortion 
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Figure 1: Figure of the animal experiment design and schedule.
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upregulated and 52 downregulated) in the model group
vs. the control group (Table 1). +ere were 49 DEPs (39
upregulated and 10 downregulated) in the AZHJ group vs.
the model group (Table 1).

3.3. Bioinformatic Analysis of DEPs. +e DEPs (AZHJ vs.
model group) were analyzed with regard to GO cellular
components (CC), molecular functions (MF), and bio-
logical processes (BP) using InterProScan. Regarding the
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Figure 2: Effects of Anzi Heji (AZHJ) on embryo loss rate and the levels of ACA, TNF-α, and IL-6. Embryo loss rate (a) and the levels of
ACA (b), TNF-α (c), and IL-6 (d) in serum and placentas of mice in the three groups determined by ELISAs. ∗∗p< 0.01 vs. control group and
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BP terms, the majority of the DEPs were associated with
cell cycle process and lipid biosynthetic process (Figure 3).
Regarding the CC terms, the DEPs were most commonly
associated with nuclear lumen (Figure 3). Lastly, re-
garding the MF terms, the DEPs were most commonly
associated with nucleic acid binding (Figure 3).

+e KEGG pathway analysis showed that the DEPs
implicated in the protective effects of AZHJ were mainly
involved in signaling pathways related to spliceosomes,
human papillomavirus infection, the phosphoinositide 3-
kinase (PI3K)-AKT signaling pathway, and protein pro-
cessing in the endoplasmic reticulum (Figure 4).

+e COG analysis showed that the DEPs were associated
with posttranslational modification, protein turnover,
chaperones, translation, ribosomal structure, and biogenesis
(Figure 5).

To better understand the protective mechanisms of
AZHJ, DEP interaction networks were constructed using
STRING. As shown in Figure 6, most of the DEPs in the
interaction network exhibited direct or indirect links.

3.4. Validation of DEPs by Western Blotting. +e levels of
Tim-3 and Toll-like receptor 4 (TLR4) expression and AKT
phosphorylation were significantly increased in the model
group compared to the control group (p< 0.05, Figure 7(a)).
However, the levels were significantly reduced by AZHJ.
+ese findings were consistent with those derived from the
proteomic analysis. In addition, serum IL-2 and IFN-c were
increased and serum IL-10 was decreased in the model
group compared to the control group (p< 0.05,
Figures 7(b)–7(d)), and these changes were reversed in the
AZHJ group (p< 0.05, Figures 7(b)–7(d)).

4. Discussion

+is study is the first to use a quantitative proteomic analysis
to identify the DEPs in placental tissues from ACA-positive
pregnant mice after AZHJ treatment. After AZHJ treatment,
the serum and placental levels of ACA and TNF-α were
decreased, while the serum and placenta levels of IL-6 were
increased. +ese findings suggest that AZHJ exhibited a

Table 1: Number of differentially expressed proteins (DEPs) in placenta from control, model, and AZHJ groups.

Groups Number of DEPs Number of upregulated proteins Number of downregulated proteins
Control group vs. model group 87 35 52
Model group vs. AZHJ group 49 39 10
Control group vs. AZHJ group 103 72 31
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significant therapeutic effect in ACA-positive pregnant mice.
ACA induces abortion via promoting thrombosis, damaging
trophoblasts, and activating inflammation and the com-
plement response by targeting β2-GPI [14, 15]. TNF-α plays
a critical role in the physiology and pathology of pregnancies
by regulating the immune balance at the maternal-fetal
interface [16, 17]. Excessive TNF-α causes thrombosis and
TNF-α can activate immunocompetent cells in the decidual
stroma, induce immune-mediated destruction and immune
rejection, hinder the maintenance of pregnancy and embryo
implantation, disrupt the homeostasis of the maternal
uterine environment, and cause spontaneous abortion
[16, 18, 19]. IL-6, which is produced by extravillous tro-
phoblasts and cytotrophoblasts, plays an important role in
the normal placental development and pregnancy success by
regulating placental cell migration and invasion and tro-
phoblast differentiation and proliferation [20, 21]. However,
the role of IL-6 in ACA-positive spontaneous abortion is
controversial, as Krause et al. [22] showed that the serum IL-
6 was increased in ACA-positive pregnant mice, while
Karakantza et al. [23] reported the opposite result. Our
previous studies showed that serum IL-6 in ACA-positive

pregnant mice at risk of spontaneous abortion was signif-
icantly increased, but there were no changes in the placental
or decidual IL-6 levels [11–13]. +us, we speculate that IL-6,
as a proinflammatory factor, plays a key role in the in-
flammatory reaction, which may be related to ACA pro-
duction and ACA-induced intravascular lesions,
inflammatory responses, and thrombosis.

Our label-free quantitative proteomic analysis identified
49 DEPs in the placentas of ACA-positive pregnant mice
after AZHJ treatment. GO and KEGG analyses further
revealed that the significantly enriched biological functions
and signaling pathways included nucleic acid binding, the
PI3K-AKT signaling pathway, and protein processing in the
endoplasmic reticulum. +ese GO terms and KEGG path-
ways may shed light on the mechanisms underlying the
therapeutic effect of AZHJ. According to the COG analysis,
the DEPs were predominantly enriched in posttranslational
modification, protein turnover, chaperones, and translation,
ribosomal structure, and biogenesis.

+1 and+2 cell-mediated immune regulation is a major
mechanism of maternal peripheral immune tolerance
[16, 24]. +ere is a significant+2 bias in normal pregnancy,
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while spontaneous abortion is often associated with a +1
bias [24]. +1 cytokines (including IL-2, IFN-c, and TNF-β)
are involved in inflammatory response and immune re-
sponse [16, 24]. +2 cells produce anti-inflammatory IL-4,
IL-5, IL-6, and IL-10, which contribute to the success of
pregnancy [16, 24]. IL-6 contributes to normal embryo
implantation in early pregnancy [16, 24]. As an immuno-
suppressive factor, IL-10 plays an important role in

maintaining immune tolerance [16, 24]. In addition, IL-10
can downregulate+1 cytokines in macrophages and inhibit
NF-κB, thus playing an immunomodulatory role [16, 24].

Tim-3 is a Tim family receptor protein that is a type I
transmembrane protein [25]. It is expressed in a variety of
cells, including +1, +17, NK, and NKT cells, Tregs,
dendritic cells, monocytes, macrophages, and decidual
stromal cells [26]. It plays an important regulatory role in
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Figure 7: Continued.
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the occurrence and development of female reproductive
system diseases and is closely related to the occurrence of
spontaneous abortion [26]. Blocking Tim-3 in vitro de-
creases IL-4 and IL-10 production by CD8

+ T cells, in-
creases IFN-c production, disrupts the +1/+2 balance,
and affects the maternal-fetal tolerance [27]. Galectin-9
(Gal-9), which is related to the activation of T cells, is a
ligand of Tim-3 [26]. High Tim-3 expression in the pe-
ripheral blood and decidual tissues of patients with RSA has
been reported to be related to the occurrence and devel-
opment of RSA [28, 29]. Other studies reported that soluble
Tim-3 and Gal-9 are increased in the serum of patients with
unexplained RSA, which indicated that the soluble cos-
timulatory molecule Tim-3 may regulate the differentiation
of+1 and+2 cells in patients with unexplained RSA, with
the +1/+2 balance being biased toward +1 [30–32]. +e
combination of Tim-3 and Gal-9 may weaken the Tim-3/
Gal-9 signaling pathway and transmit inhibitory signals,
thus participating in the occurrence and development of
unexplained RSA. In the present study, the placental level
of Tim-3 protein was significantly increased in the ACA-
positive pregnant mice and significantly decreased after
AZHJ treatment.+e differences in the serum levels of+1/
+2-type cytokines (such as IL-2, IFN-c, and IL-10) be-
tween the model and AZHJ groups might be at least partly
attributable to the altered Tim-3 expression.

+e PI3K-AKT signaling pathway plays an important
role in the occurrence and development of RSA (including
unexplained RSA) [33, 34]. Inhibition of this pathway
promotes trophoblast apoptosis and suppresses tropho-
blast proliferation and migration [33, 34]. +is pathway
also controls the differentiation of Treg and +17 cells
[35]. We found that the phosphorylation level of AKT in

the placentas of ACA-positive pregnant mice was in-
creased significantly, while it was decreased by AZHJ.
PI3K-AKTsignaling is an important downstream target of
Tim-3 [36]. Furthermore, Tim-3/Gal-9 signaling in pe-
ripheral NK cells promotes maternal-fetal tolerance by
regulating the PI3K-AKTsignaling pathway [28]. +us, we
speculated that the reduced phosphorylation level of AKT
may be due to the downregulation of Tim-3 expression by
AZHJ treatment.

TLRs play important roles in reproductive processes
such as ovulation, spermatogenesis, sperm capacitation,
fertilization, and pregnancy [37]. A recent study showed that
decreased TLR4 expression in response to ligand treatment
of spermatozoa is associated with unexplained RSA [38].
However, a study by Li et al. [39] revealed that increased
TLR4 expression in decidual and chorionic tissues was
closely related to the occurrence of RSA. In the present
study, increased TLR4 expression was observed in the
placentas of ACA-positive pregnant mice. To the best of our
knowledge, the present study is the first to evaluate TLR4
expression in ACA-positive pregnant mice at risk of
spontaneous abortion. Our results revealed that TLR4 ex-
pression was significantly decreased by AZHJ, suggesting
that it may be a critical downstream target of AZHJ. Tim-3 is
involved in regulating TLR4 signaling, and whether TLR4
was regulated by Tim-3 after AZHJ treatment needs to be
investigated in the future.

5. Conclusion

+is study provides evidence that AZHJ exerts a protective
effect against spontaneous abortion in ACA-positive preg-
nant mice. Our data suggest that the mechanisms underlying
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Figure 7: Western blot analysis confirmed DEPs identified by the quantitative proteomic analysis. (a) Tim-3, TLR4, p-AKT, and AKT
expression in placentas of mice in the three groups analyzed by western blot analysis. IL-2 (b), IFN-c (c), and IL-10 (d) levels in serum of
mice in the three groups determined by ELISAs. ∗∗p< 0.01 vs. control group, #p< 0.05, and ##p< 0.01 vs. model group.
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these effects include inhibiting Tim-3/AKT signaling and
downregulating TLR4. Our data provide guidance and a
useful foundation for investigating new treatments for ACA-
positive spontaneous abortion.
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