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BIGDML—Towards accurate quantum machine
learning force fields for materials
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Machine-learning force fields (MLFF) should be accurate, computationally and data efficient,
and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often
introduce tradeoffs that restrict their practical applicability to small subsets of chemical space
or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-
Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct
reliable force fields using a training set with just 10-200 geometries for materials including
pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemi-
sorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model
employs the full relevant symmetry group for a given material, does not assume artificial
atom types or localization of atomic interactions and exhibits high data efficiency and state-
of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set
of materials. Extensive path-integral molecular dynamics carried out with BIGDML models
demonstrate the counterintuitive localization of benzene-graphene dynamics induced by
nuclear quantum effects and their strong contributions to the hydrogen diffusion coefficient
in a Pd crystal for a wide range of temperatures.
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ARTICLE

he development and implementation of accurate and effi-

cient machine learning force fields (MLFF) is transforming

atomistic simulations throughout the fields of physics!—,
chemistry®-14, biology!>1®, and materials science!’-?2. The
application of MLFFs have enabled a wealth of novel discoveries
and quantum-mechanical insights into atomic-scale mechanisms
in molecules®022-25 and materials?%26-28,

A major hurdle in the development of MLFFs is to optimize the
conflicting requirements of ab initio accuracy, computational
speed and data efficiency, as well as universal applicability to
increasingly larger chemical spaces?®. In practice, all existing
MLFFs introduce tradeoffs that restrict their accuracy, efficiency,
or applicability. In the domain of materials modeling, all MLFFs
known to the authors employ the so-called locality approxima-
tion, i.e. the global problem of predicting the total energy of a
many-body condensed-matter system is approximated by its
partitioning into localized atomic contributions. The locality
approximation has been rather successful for capturing local
chemical degrees of freedom, as demonstrated in a wide number
of applications30-34, However, we emphasize that the locality
assumption disregards non-local interactions and its validity can
only be truly assessed by comparison to experimental observables
or explicit ab initio dynamics. This fact restricts truly predictive
MLEFF simulations of realistic materials, whose properties are
often determined by a complex interplay between local chemical
bonds and a multitude of non-local interactions.

The chemical space of materials is exceedingly diverse if we
count all possible compositions and configurations of a given
number of chemical elements. For example, an accurate MLFF
reconstruction of the potential-energy surface (PES) of elemental
bulk materials to meV/atom accuracy often requires many
thousands of configurations for training?!3%:35-38, The MLFF
errors also increase at least by an order of magnitude when
including defects or surfaces33>,

Heteroatomic materials and interfaces between molecules and
materials would require substantially more training data for
creating predictive MLFFs and accuracies much better than 1
meV/atom, eventually making the modeling of such materials
intractable. In addition, there is a strong desire to go beyond
traditional density-functional theory (DFT) reference data in the
field of atomistic materials modeling3®-4!. Beyond-DFT methods
can only be realistically applied to compute dozens or hundreds
of geometries, making the construction of beyond-DFT MLFFs
impractical.

To address these challenges, in this work we introduce a
Bravais-Inspired Gradient Domain Machine Learning (BIGDML)
model for periodic materials that is accurate, data efficient, and
computationally inexpensive at the same time. The BIGDML
model extends the applicability domain of the Symmetric
Gradient-Domain Machine Learning (sGDML) framework?23:42:43
to include periodic systems with supercells containing up to
roughly 200 atoms. The BIGDML model employs a global
representation of the full system, i.e. treating the supercell as a
whole instead of a collection of atoms. This avoids the
uncontrollable locality approximation, but also restricts the
maximum number of atoms in the unit cell. To extend the
applicability of BIGDML to much larger unit cells will require the
development of a global multiscale representation. An additional
advantage of a global representation is that cross-correlations
between forces on different atomic species are dealt with rigor-
ously. Specifically, MLFFs based on the locality approximation
construct separate models for each atom type. In contrast, the
BIGDML model employs a global force covariance, allowing
many-body correlations between atomic forces in a given
supercell structure and capturing relevant interatomic interac-
tions at different spatial scales. Similarly to the sGDML model,

another key advantage of the BIGDML model is the usage of
physical constraints (energy conservation) and all relevant phy-
sical symmetries of periodic systems, including the full translation
and Bravais symmetry groups. As a consequence, BIGDML
models achieve meV/atom accuracy already for 10-200 training
points, surpassing state-of-the-art atom-based models by 1-2
orders of magnitude. This result underlines once again the
importance of including prior knowledge, including physical laws
and symmetries, into ML models. Clearly, what is known does
not need to be learned from data—in effect the data manifold has
been reduced in its complexity (see e.g.23243444-47) Tt is
important to mention that describing materials with several
hundreds of atoms, having an exceedingly large number of
symmetries, or transferring models between different systems still
remain challenging tasks for the BIGDML model. Nevertheless,
these technical issues could be addressed by utilising multiscale
and composite approaches as well as iterative numerical kernel
solvers (see the Discussion section for an extended discussion).

Altogether, the BIGDML framework opens the possibility to
accurately reconstruct the PES of complex periodic materials with
unprecedented accuracy at very low computational cost. In
addition, the BIGDML model can be straightforwardly imple-
mented as an ML engine in any periodic DFT code, and used as a
molecular dynamics driver after being trained on just a handful of
geometries.

Results

The BIGDML framework relies on two advances: (i) a global
atomistic representation with periodic boundary conditions
(PBC), (ii) the use of the full translation and Bravais symmetry
group for a given material.

PBC-preserving representation. To avoid localization of intera-
tomic interactions and artificial (from the electronic perspective)
atom-type assignment, we use an efficient global representation
with PBC. Following the sGDML approach for molecules?42, we
take the atomistic Coulomb matrix (CM)*® as a starting repre-
sentation. When used with sGDML, the CM has been proven to
be a robust, accurate, and efficient representation2342:47,

Here, we introduce a generalization of the molecular CM
descriptor to represent periodic materials, D®®®). In order to
construct the Coulomb matrix for extended systems, we first
enforce the PBC using the minimal-image convention (MIC)>0->1:

1 . . .
,DE}’BC) _ {|r,.j—Amod(Alr,j)| if i )
0 ifi = j

where r;;=r; —1; is the difference between two atomic coordi-
nates i and j, and A is the matrix defined by the supercell
translation vectors as columns. Figure 1A left shows the Coulomb
matrix descriptor when considering only the supercell structure
with no PBC, which means that the ML model considers the
system as a finite “molecule”. The right side of Fig. 1A shows the
descriptor with the PBC enforced (Eq. (1)), having now the
correct periodic structure.

Many widely used periodic global representations already exist,
for example CM-inspired global descriptors such as the Ewald-
sum, or extended Coulomb-like and sine matrices>2. In the cases
of the extended Coulomb-like and Ewald matrices, these
representations account the contribution of the same atom
iteratively by considering its multiple periodic images, which is
computationally demanding and algebraically involved. From
these global periodic representations®2, only the sine matrix
avoids using redundant information, since it just depends on the
atomic positions in a single unit cell. Nevertheless, this is only a
good representation for studying the crystal structure of materials
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Fig. 1 The BIGDML model. A Coulomb Matrix representation for non-periodic (left) and periodic (right) supercell (2 x 2 x 3L) of Pd;/MgO(100).

B Description of the local symmetries (i.e. Bravais group G or point group of the unit cell) and the translation symmetries of the unit cell 7. C Analytical
form of the sGDML predictor, where the explicit usage of the full symmetry group of the supercell F (in blue) and the Coulomb matrix PBC descriptor (in
red). D Systematic symmetrization of the PES. The axis in the PES are the x and y coordinates of the Pd atom (purple squares) in units of the lattice
constant of MgO. Models: (i) Pure GDML, (ii) GDML +D"9, (jii) sGDML +DP (s =G), (iv) sGDML+DPE (s =T, and (v) BIGDML. The gray arrows
indicate the order in which each symmetry was applied, and the panel shows its effect on the PES. (vi) displays the incremental accuracy upon addition of
each symmetry for the Pd;/MgO (100) system. All models used for this comparison were trained on 50 data samples.

at equilibrium, given that its main feature (i.e. projection of the
full supercell to a single unit cell) cannot provide an accurate
measure of two atoms in different cells. Additionally, in the case
where the supercell of the system is taken as a “unit cell” in the
sine matrix, the obtained descriptor is essentially local and unable
to capture long-range interatomic correlations within the super-
cell. Our choice of CM with PBC enforced using MIC is one of

the simplest and efficient choices, which also turns out to be
exceptionally accurate and data-efficient, as will be shown below.

As an alternative to the global approach, many local materials’
representations have been developed. Among those representa-
tions, there are numerous descriptors based on atomic local
environments, for example atom-density representations®3-2,
partial radial-distribution functions®’”, FCHL descriptor?s,
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rotationally-invariant internal representation®, many-body vec-
tor interaction® and moment tensor potentials!$. In all these
cases, the PBC can be naturally incorporated by using the MIC, as
it has been done for mechanistic force fields. These local
representations in principle aim at the construction of transfer-
able interatomic MLFFs, as done by GAP/SOAP framework>
which is the basis of a series of high-quality chemical bonding
potentials for phosphorus32, carbon3®, and silicon?!. However,
the intrinsic cutoff radius in these descriptors limits the extent of
atomic environments, neglecting the ubiquitous long-range
interactions and correlations between different atomic species.
Here, by using a D" global descriptor, we avoid the need of
fine-tuning representation hyperparameters while preserving high
accuracy in the description of the many possible configuration
states of a material.

Translation symmetries and the Bravais’ group. The full sym-
metry group F of a crystal is given by the semidirect product of
translation symmetries 7 and the rotation and reflection sym-
metries of the Bravais lattice G (Bravais’ group): F =7 ® G°!
(See Fig. 1B). This is a general result, meaning that it applies to
any periodic system of dimension d, F@ =7@ @ 9. In
practice, the translation group 7 is constructed by the set of
translations of the Bravais cell that span the supercell using the
primitive translation vectors as a basis, while the Bravais’ group G
is the symmetry point group of the unit cell. In order to illustrate
these concepts, as an example, let us consider a graphene (d =2)

supercell of size 5 x 5. Its full symmetry group is T(;X) ;6% =

T(SZX) 5 ® Dg;, and contains 300 symmetry elements. Further
important materials with ample symmetries are surfaces and
interfaces. Analogous to molecules possessing internal rotors,
molecules interacting with a surface are another case of a flux-
ional system. For example, benzene adsorbed on graphene has a
full fluxional symmetry group defined by the direct product of
graphene’s full symmetry group and benzene’s molecular point
group, [T); ® Dgp]graphene @ [Denlpenzenes ~ Which
3600 symmetry elements. Such a large number of symmetries
reduces considerably the region of configuration space needed to
be sampled to reconstruct the full PES and consequently generate
MLFF models with high data efficiency. The presented arguments
generalize to other materials, such as molecular crystals, rigid
bulk materials, porous materials, and hybrid organic-inorganic
materials, e.g. perovskites.

contains

The BIGDML model. The construction of a BIGDML model
consists in combining a global PBC-descriptor and the full
symmetry group of the system in the gradient-domain machine
learning framework (See Fig. 1), which leads to a robust and
highly data efficient MLFF, capable of reaching state-of-the-art
accuracy using only a few dozens of training points. We would
like to stress here that such unprecedented data efficiency opens
up many opportunities to study advanced materials using high
levels of electronic-structure theory, such as sophisticated DFT
approximations or even coupled-cluster theory®?.

In a nutshell, the periodic global supercell descriptor and
symmetries presented in the previous sections are combined with
the sGDML framework to create the BIGDML predictor
displayed in Fig. 1C. To illustrate the effects of the symmetries
in the PES reconstruction process for the atom-surface Pd;/MgO
system, Fig. 1D presents a diagram where the different core
elements of the BIGDML model are systematically included and
the resulting (learned) PES is displayed. In this figure, the shown
PES corresponds to the energy surface experienced by a Pd atom.
The panel (i) displays the reconstructed energy surface with no

symmetries, where the training samples are the purple squares
and represent the position of the Pd atom. In panel (ii) the PBC
are enforced by the periodic descriptor (Eq. (1)), and then this is
combined with the use of the point group of the unit cell in panel
(iil) and with translation symmetries in panel (iv). From the last
two panels, we can see the characteristic contribution of each
symmetry group, G symmetrizes the local PES by adding effective
training samples (shown as grey circles) while 7" delocalises the
effective sampling over the whole supercell. Then, by considering
the full symmetry group F, in panel (v) we arrive to the PES
reconstructed by the BIGDML model where the effective training
data symmetrically span the whole supercell. The panels (i) to (v)
show the increasing symmetrization of the PES, but also illustrate
the accuracy gain at each stage. The prediction accuracy plot
shown in panel (vi) clearly shows the important impact of each
symmetry group in generating accurate and robust BIGDML
models. It is important to highlight that the achieved accuracy is a
combination of several complementary contributions. The
Coulomb matrix analytical form provides the correct description
of long-range interactions, the Matern kernel provides a basis
function that correctly describes the tails of the contributions of
each training point (See Methods section), and the full crystal
symmetry group correctly enforces the symmetries in the
predictor function. This can be seen in (Fig. 1-D-vi), where the
accuracy of the BIGDML model increases consistently as each
element is added.

Prediction performance of BIGDML for different materials.
The BIGDML model can be applied to accurately reproduce
atomic forces and total energy of bulk materials, surfaces, and
interfaces. To illustrate the applicability of BIGDML, in this
section we have selected representative systems that cover the
broad spectrum of materials, and study the prediction accuracy of
our MLFFs as judged by the learning curves (test error as a
function of the number of data points used for training). The
considered systems include bulk materials (graphene as a repre-
sentative 2D material, 3D metallic and semiconducting solids),
surfaces (Pd absorbed on MgO surface), and van der Waals
bonded molecules on surfaces (benzene adsorbed on graphene),
as well as a bulk material with interstitial defects (hydrogen in
palladium). Additionally, we analyse the case of the CsPbBr;
perovskite to test the performance of the model for larger
supercells. For a detailed description of the database generation
and the levels of theory, as well as the parameters of the simu-
lations and software packages employed, we refer the reader to
the Methods section.

Bulk materials: graphene as a representative 2D material.
Graphene is a well-characterized layered material that continues
to exhibit many remarkable properties despite being thoroughly
studied30-63-64, Hence, developing accurate and widely applicable
force fields for graphene and its derivatives is an active research
area. Recently, Rowe et al.3¢ presented a comprehensive com-
parison of existing hand-crafted force fields and a Gaussian-
process approximated potential (GAP) using the Smooth Overlap
of Atomic Positions (SOAP) local descriptor. The GAP/SOAP
approach was shown to generalize much better than mechanistic
carbon FFs. In Fig. 2 we show the learning curves of the BIGDML
model for 5x5 supercell of graphene, showing that only 10
geometries (data samples) are needed to match the best-
performing method to date (=25 meV A-1 in force RMSE)36.
The performance and data efficiency of BIGDML is remarkable,
given that it uses less than 1% of the amount of data employed by
atom-based local descriptors. More importantly, by increasing the
number of data samples used for training to 100, we reach a
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Fig. 2 Learning curves for different materials. A Energy and (B) Forces. 3D
bulk materials: Pd(FCC), Na(BCC), and Au(FCC). 2D material: Graphene.
Interstitial in materials: H in a supercell of Pd. Chemisorption of atom at a
surface: Single Pd atom adsorbed on a MgO (100) surface. Van der Waals
interactions: Benzene molecule adsorbed on graphene. Their respective full
(fluxional) symmetry group, supercell dimensions and reference levels of
theory used in each case are presented in Methods section. The reported
values are the mean absolute errors (MAE). See Supplementary Fig. 1 for
additional information on the learning curves.

generalization error of =1 meV (0.02 meV/atom) in energies and
~6 meV A~! for forces. To our knowledge, such accuracies have
not been obtained in the field of MLFFs for extended materials. In
order to put our results into context of state-of-the-art MLFFs, in
Fig. 3 we show the learning curves comparing GAP/SOAP and
BIGDML for graphene (See Supplementary Fig. 2 for an extended
comparison using different materials). Given the same data for
training, BIGDML achieves an improvement of a factor of 10 in
accuracy, both for the total energy and atomic forces. The same
conclusions hold for other systems studied in this work, as shown
in the Supplementary Figs. 1 and 2.

Bulk materials: the case of cubic crystals. In the case of 3D
materials, we apply our model to monoatomic metallic materials
covering common cubic crystal structures: PA[FCC], Au[FCC]
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10?2 103
= <
2 > 107
£ E
§101— <
[ )
5 S
g 510
a
1004 ——— —— 1004 —— ———
2 5 10 20 50 100200 2 5 10 20 50 100200

Training dataset size
—— BIGDML (MAE) —@— BIGDML (RMSE)

Training dataset size

GAP (MAE) —®— GAP (RMSE)

Fig. 3 BIGDML and GAP performance comparison for graphene.
Comparison of the (A) energy and (B) forces learning curves, both trained
using the same datasets.

and Na[BCC]. Figure 2 shows the learning curve for these three
structures with a supercell of 3x3x3 and symmetry groups

T(33X)3X3>< 0,,. An accuracy of ~ 10meV A~! for a monoatomic
metal material can be achieved using approximately 70 samples in
the case of Pd (only 10,000 atomic forces), which is only a frac-
tion of the data (less than 1%) required by other models to obtain
the same accuracy3s.

Bulk materials: large perovskite supercell. In order to test the
usability of the model for larger supercells, now we consider the
case of the CsPbBr; perovskite, which contains 160 atoms per
supercell. This all-inorganic perovskite is a system of great
interest in photovoltaics given its stability under highly humid
environments, hence it is a potential candidate for reliable solar
cells. These materials are known to have high fluxionality which
drive the system to visit multiple local minima at finite tem-
perature. Therefore, allowing long molecular dynamic trajectories
via ML models helps to collect better sampling statistics, and
hence more robust physical observables. In Fig. 4, energy and
forces learning curves are shown. Despite the larger supecell,
already at 100 training samples we reach the=1meV/atom
energy accuracy and a force error of 50.7 meV/A. Furthermore,
we found that when training on 1000 samples, BIGDML manages
to achieve energy and force accuracy of =0.1 meV/atom and =
2.6 meV/A, respectively.

The obtained accuracy demonstrates that the BIGDML model
can also achieve high fidelity in the reconstruction of the PES for
large multi-element supercells with rich fluxional dynamics, as it
is the case of perovskite materials.

Surfaces: atom chemisorbed at a surface -Pd;/MgO. One of the
main challenges of constructing MLFFs on local atomic envir-
onments is that such representations can fail to capture subtle
local changes with global implications. For example, when
describing a surface or an interface, atoms of the same element
are described by the same atomic embedding function which in
order to encode the many possible neighbourhoods (atoms in
deeper layers, atoms close to the surface of the material) requires
large amounts of training data. This eventually leads to degra-
dation of MLFF performance, a problem that could become
practically intractable for local MLFFs when dealing with
molecule-surface interactions. These limitations can be addressed
in local models but at the cost of higher complexity models and
manual tuning of hyperparameters, hence losing the key advan-
tages of MLFFs. In this section, we show that the BIGDML
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displays the supercell structure containing 160 atoms.

method does not have such limitations by studying two repre-
sentative systems: chemisorbed Pd/MgO-surface and physisorbed
benzene/graphene.

In recent years, it has been shown that single-atom catalysts
(SACs) can offer superior catalytic performance compared to
clusters and nanoparticles®~%7. These heterogeneous catalysts
consist of isolated metal atoms supported on a range of
substrates, such as metal oxides, metal surfaces or carbon-based
materials. As a showcase, here we use a single Pd atom supported
on a pristine MgO (100) surface. The considered supercell
consists of a 2x2 slab of MgO(100) with 3 layers, where the
lowest layer is kept fixed, and a single Pd atom is deposited on the
surface.

The full symmetry group for this system is T(ZZX) , ® Cy, with 64
elements. The learning curve (see Fig. 2) shows that only
200 samples are needed to reach energy and force accuracy values
of =~ 34 meV (= 0.7 meV/atom) and = 30 meV A1, respectively.
Similarly as in the case of learning force fields for molecules in the
gas phase, the target error is always relative to the relevant
dynamics of the system and its energetics?34243, In this context,
the Pd atom is chemisorbed at an oxygen site and the lowest
energetic barrier that the Pd atom experiences is of 450 meV, thus
our error is = 6% of this value. In Fig. 5 we show the minimum-
energy barrier (MEB) of Pd atom displacing from one minimum
to another on the MgO surface computed by the nudged elastic
band (NEB) method (See Methods section for details). It must be
noted that the Pd atom never crossed this barrier during the MD
simulation used to generate the reference dataset, as displayed by
the purple lines in Fig. 5 indicating the distribution of the Pd
atom location in the training dataset. Hence, even though the
model did not have information regarding the saddle point, the
energetic barrier was nevertheless correctly modeled by BIGDML
by incorporating translational and Bravais symmetries.

Surfaces: molecule physisorbed at a surface -Benzene/gra-
phene. A highly active field of research in materials science
concerns the interaction between molecules and surfaces, due to
its fundamental and technological relevance. From the modeling
point of view, describing non-covalent interactions within the
framework of DFT remains a competitive research area given its
intricacies, which has led to very accurate dispersion interaction
methods®8-72. Nevertheless, most of the studies about these sys-
tems focus on global optimizations or short MD simulations.
Here, we demonstrate the applicability of BIGDML by learning

the molecular force field of the benzene molecule interacting with
graphene.
The full symmetry group of the benzene/graphene system is

TO @ Clrherd) g clBenzene) | \which has a total of 3600 elements.
This large number of symmetries greatly reduces the configura-
tional space sampling requirements to reconstruct its PES, as can
be seen from the learning curve shown in Fig. 2 where the energy
error quickly drops below = 43 meV (1 kcal mol~!) training only
on 10 datapoints and =~ 21 meV with 30 training datapoints. For
this system, the energy generalisation accuracy starts to saturate
at 0.18 meV/atom when training on 100 configurations. Achiev-
ing such high generalization accuracy using only a handful of
training data points for such a complex system convincingly
illustrates the high potential of the BIGDML model, since it
suddenly opens the possibility of performing predictive simula-
tions for a wide variety of systems where only static DFT
calculations are available so far.

The systems discussed in this section offer a general picture of
the broad diversity of extended materials that the BIGDML model
can describe with high data efficiency and unprecedented
accuracy. In particular, the applications here introduced provide
a range of families of systems and materials that can be described
by the model. For example, it is to be expected that, in general,
given the performance of the trained models for Na, Au, and Pd,
mono-atomic materials with cubic unit cells will be accurately
described by the BIGDML. On the other hand, the accurate
description of the CsPbBr; perovskite material shows that the
model can handle and accurately learn large multi-element and
fluxional materials. Then, a similar performance is expected when
applied to a family of materials with similar structural
characteristics. In the same order of ideas, the performance and
applicability of the BIGDML model to molecules interacting with
2D materials is demonstrated with the benzene/graphene system,
given that similarly complex dispersion interactions are to be
expected.

Validation of BIGDML models for materials properties. In the
previous section, we demonstrated the prediction capabilities of
the BIGDML method using statistical accuracy measures. Now,
we assess the predictive power of BIGDML models in terms of
predicting physical properties of materials. In this section, we first
perform a thorough test for ML models by assessing the phonon
spectra of 2D graphene and 3D bulk materials. Then, we proceed
to test the performance beyond the harmonic approximation by
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location of the Pd atom in the training dataset.

carrying out molecular dynamics simulations and comparing
observables against explicit DFT calculations. All simulations
performed in this section were done using the best trained models
displayed in the learning curves (See Fig. 2 and “Methods”
section).

Phonon spectra. A common challenging test to assess force fields
(machine learned20-35:36 as well as conventional FFs73-75) is the
phonon dispersion curves and phonon density of states, since
they give a clear view of (i) the proper symmetrization of the FF
and (ii) the correct description of the elastic properties of the
material in the harmonic approximation. The main challenge for
FFs is describing both collective low-frequency phonon modes
and the local high-frequency ones with equal accuracy. In Fig. 6
we show the comparison of the BIGDML and DFT generated
phonon bands displaying a perfect match, showing a RMSE
phonon errors across the Brillouin zone of 0.85meV for Gra-
phene, 0.35 meV for Na, and 0.38 meV for Pd. These values are
comparable to those reported in literature using MLFFs trained
on thousands of configurations and hand-crafted datasets’®, while
in our case we only require less than 100 randomly selected
training points. Such accuracy originates from the use of a global
representation for the supercell which captures local and non-
local interactions with high fidelity, a feature that is crucial in
describing vibrational properties.

Now, we proceed to a more challenging physical test, which is
the prediction of properties at finite temperature, where also the
anharmonic parts of the PES are important.

Molecular dynamics simulations: graphene. Simulations of
graphene at finite temperature using an accurate description of
the interatomic forces is a highly relevant topic given the plethora
of applications of this material. In particular, a necessary con-
tribution to its realistic description is the inclusion of nuclear
quantum effects (NQE). For example, the experimental free
energy barrier for the permeability of graphene-based membranes
to thermal protons can only be correctly described by including
the NQE of the carbon atoms’’>’8, In order to corroborate that
our graphene BIGDML model is giving the correct physical
delocalization of the nuclei, we performed path-integral mole-
cular dynamics (PIMD) simulations at 300 K for a 5 x 5 supercell.
In Fig. 7 we compare the distribution of first neighbor interatomic
distance rcc between classical MD (blue) and PIMD (orange),
results showing that the fluctuations in rcc double its value when

considering NQE. These findings are in excellent agreement with
explicit first-principles PIMD simulations in the literature”®.

As an additional robustness test, we have performed extended
classical MD simulations at various temperatures using the EAM
force field’® and a BIGDML model trained on this level of theory,
obtaining a perfect match between these two different methods.
This further validates the predictive power of our methodology
even at long time scales. These results are shown in the
Supplementary Fig. 5.

Up to this point, we have performed simulations to validate our
models under different conditions. In the next section, we
perform predictive simulations, which highlight the potential of
BIGDML for novel applications, including unexpected NQE-
driven localization of benzene/graphene dynamics and the
diffusion of interstitial hydrogen in bulk palladium.

Validation of BIGDML in dynamical simulations of materials.
Benzene/graphene. The interaction between different molecules
and graphene has been extensively studied, given the potential
applications of molecule/graphene systems as electrical and
optical materials and even as candidates for drug delivery
systems89-90, Of particular interest is the understanding of the
effective binding strength and structural fluctuations of adsorbed
molecules at finite temperature, which requires long time-scale
molecular dynamics simulations, unaffordable when using
explicit ab initio calculations. Here we will demonstrate that
BIGDML models can be used for studying explicit long-time
dynamics of realistic systems such as benzene (Bz) adsorbed on
graphene with accurate and converged quantum treatment of
both electrons and nuclei (See Fig. 8A). The Bz/graphene system
has three minima that resemble those of the benzene dimer: the
n — 7 stacking (parallel-displaced) structure as global minimum
and two local minima corresponding to parallel and T-shaped
configurations, as displayed in Fig. 8-B3 along with the corre-
sponding structural parameters and adsorption energies com-
puted at the PBE+MBD level of theory®®/%91. The calculated
adsorption energy for the global minimum is in a very good
agreement with experimental measurements of 500 + 80 meV?2.
An extensive amount of studies exist on the implications of
NQE on properties of molecules and materials at finite
temperature®>?4, however much less is known about the
implications of NQE for non-covalent van der Waals (vdW)
interactions>%°. In the particular case of Bz/graphene, considering
the translational symmetries of the PES experienced by the Bz
molecule as well as thermal fluctuations and its many degrees of
freedom, it is to be expected that the Bz dynamics will be highly
delocalized. Nonetheless, it was recently reported that the
inclusion of NQE in a molecular dimer can considerably enhance
intermolecular vdW interactions’. However, the adsorption/
binding energy ratio between Bz/graphene and Bz/Bz system is

EPe/araphene  EB/B2 o4 therefore it is not clear how NQEs will
affect such strongly interacting vdW systems.

In order to assess the role of temperature and NQE for Bz/
graphene, in Fig. 8C we present the results obtained from classical
MD and PIMD simulations at 300K using a BIGDML FF trained
at the PBE+MBD level of theory. At this temperature, the
benzene molecule tends to mostly populate configurations at an
angle of = 10° relative to the graphene normal vector in both cases
(see Fig. 8A). Nevertheless, classical MD simulations explore
substantially wider regions of the PES, reaching angles of up to
80°, close to the T-shaped minimum. In contrast, PIMD
simulations yield a localized sampling of 6 with a maximum
angle of = 30°. To understand the origin of this localization, we
have systematically increased the “quantumness” of the system by
raising the number of beads in the PIMD simulations to converge
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the graphene system at room temperature generated by the BIGDML
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0.046 A for classical MD and PIMD, respectively (table in top panel).

towards the exact treatment of NQE. This approach provides
concrete evidence of the progressive localization of the benzene
normal orientation as the NQE increase (see Supplementary
Fig. 3). The physical origin of this phenomenon is the NQE-
induced interatomic bond dilation, where the zero-point energy
generated by NQE drive the system beyond the harmonic
oscillation regime. The intramolecular delocalization produces
effective molecular volume dilation and increases the
average polarizability of benzene and graphene rings, akin to a
recent analysis of non-covalent interactions between molecular
dimers upon constraining their center of mass®. In contrast, in
this work no constraints were imposed on the Bz/graphene
system, suggesting that the Bz molecule localization on graphene
should be observable in experiments. In order to
further rationalize the NQE-induced stabilization of vdW
interactions, we have computed the vdW interaction energy as
a function of compression/dilation of the Bz molecule on
graphene and found a linear dependence between dilation and
vdW interaction (see Supplementary Fig. 4). This analysis fully
supports our hypothesis of NQE-induced stabilization and
dynamical localization.

The rather fundamental nature of the underlying physical
phenomenon of NQE-induced stabilization suggests that many
polarizable molecules interacting with surfaces will exhibit a
similar dynamical localization effect. It is worth mentioning that a
thorough analysis of the Bz/graphene system demands extensive
simulations, which are now made accessible due to the
computational efficiency and accuracy of the BIGDML model.
Our modeling could also be applied to larger molecules with
peculiar behavior under applied external forces®®.

Hydrogen interstitial in bulk palladium. Hydrogen has become
a promising alternative to fossil fuels as a cleaner energy source.
Nevertheless, finding a safe, economical and high-energy-density
hydrogen storage medium remains a challenge®”. One of the
proposed methods is to store hydrogen in interstitial sites of the
crystal lattices of bulk metals?’-%. Among these metals,
palladium has been widely researched as a candidate, since it
can absorb large quantities of hydrogen in a reversible manner®.

Characterizing the diffusion of hydrogen in the crystal lattices
at different temperatures is crucial to assess their performance as
storage materials. Hence, in this section we study a system
consisting of a hydrogen atom interstitial in bulk palladium with
a cubic supercell containing 32 Pd atoms with full symmetry
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Fig. 8 Dynamical strengthening of non-covalent interactions. Benzene/
graphene. A Depiction of the system with its two main degrees of freedom:
(1) The angle between the normal vector defined by the benzene ring n and
the normal to the graphene plane (2). (2) The relative distance between the
benzene center of mass and the graphene, h. B The three minima of the
systems and its defining characteristic parameters: h, 8, and its adsorption
energy in Eugs. The E,gs energies were computed using E,gs = Epenzene/
graphene — (Ebenzene + Egraphene). € Classical molecular dynamics (MD) and
path integral molecular dynamics (PIMD) simulations describing the
dynamics of benzene molecule interacting with graphene at room
temperature described by the BIGDML molecular force field. Plots
displaying projections of the dynamics (classical MD and PIMD) to the two
main degrees of freedom of the system: h, = arccos(z - n).

group T(23X) 2x2 ® Oy, and described at the DFT-PBE level of
theory (See Methods section for more details). The BIGDML
learning curve for this system in presented in Fig. 2. Within the
FCC lattice there are two possible cavities for hydrogen atoms
storage: the octahedral (O-sites) and the tetrahedral (T-sites)
cavities (See Fig. 9A-top), where the O-site is the global
minimum®® and it is separated from the T-site by an energetic
barrier of =~ 160 meV as shown in Fig. 9A-bottom. Additionally,
from this figure, we can see the excellent agreement between
BIGDML model and the reference DFT calculations.

Kimizuka et al.”8 reported a study based on transition state
theory (TST) suggesting that not only the inclusion of the NQE
has indeed a strong effect on the H-atom diffusion, but also they
reported that NQE hinder the migration from O-site to T-site. In
order to elucidate realistic dynamics of the H atom in the metal
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plots of the probability distribution of the H atom in the O-site at different temperatures. € Diffusivity of H in bulk Pd as a function of the temperature. The
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lattice and the impact of the NQE without relying on
approximations such as TST, we performed direct classical MD
and PIMD simulations at different temperatures (from 100 K to
1000 K) (see “Methods” for more details). We first studied the
NQE-induced statistical sampling of the hydrogen atom in each
cavity as shown in Fig. 9B. In Supplementary Videos 1-4, we can
see an animated version of this figure, where the shape of the
sampled volume and how it changes as a function of the
temperature and by the inclusion of the nuclear quantum effects
is displayed. This helps us to visualize hydrogen dynamics in the
temperature range from 100 to 300 K and to determine the shape
of the cavity, which transforms from a cube to a much larger
truncated octahedron as the temperature increases.

Then, from the generated (classical and quantum) trajectories we
have estimated the diffusivity of the hydrogen atom as a function of
the temperature, which are shown in Fig. 9C along with TST results
and experimental data. Usually, this quantity is estimated by using
transition rate theory, which only considers the energetics of the
system (energy barrier and relative energy between adjacent states)’S.
A more robust methodology is to directly compute the diffusivity
from the molecular dynamics results using the mean-square
displacement analysis!%, an option which MLFFs make feasible
due to the long-time simulations required while keeping ab initio
accuracy. From these results, we observe an Arrhenius temperature
dependence for the diffusivity (D(T) = Dye~QKTY in both the classical
MD and the PIMD cases, which is expected in the range of
temperatures considered. While the TST-PIMD results by Kimizuka
et al?® (Dy=9.90 x 1077 m?/s, Q=0.23eV) accurately reproduce
the experimental activation barrier Q for H in Pd, they considerably
overestimate the value of the pre-exponential factor D,. In our case,
the diffusivity of H in Pd at lower temperatures is overestimated by
classical MD (D, = 0.95 x 10~7 m?%/s, Q = 0.151 eV), but it is close to
the reported values at high temperatures. Meanwhile, both the
activation barrier (Q=0.231eV) and the pre-exponential factor
(Dy=2.70x 1077 m?/s) calculated using BIGDML@PIMD are in
excellent agreement with the experimental data at all temperatures.

The results presented in this section demonstrate how
BIGDML enables long PIMD simulations to obtain novel insights
into dynamical behaviour of intricate materials containing
vacancies or interstitial atoms.

Discussion

In this work, we introduced the BIGDML approach—a MLFF for
materials that is accurate, straightforward to construct, efficient in
terms of learning on reference ab initio data, and computationally
inexpensive to evaluate. The accuracy and efficiency of the
BIGDML method stems from extending the sGDML framework
for finite systems2342 by employing a global periodic descriptor
and making usage of translational and Bravais symmetry groups
for materials. The BIGDML approach enables carrying out
extended dynamical simulations of materials, while correctly
describing all relevant chemical and physical (long-range) inter-
actions in periodic systems contained within the reference data.
In principle, once high-level electronic structure force calcula-
tions for periodic systems (with CCSD(T) or Quantum Monte
Carlo methods) become a reality>®*-4!, the BIGDML method
would be an ideal tool to execute highly accurate dynamics of
materials. We remark that the molecular sGDML approach has
already fulfilled this long-standing goal for molecules with up to a
few dozen atoms>23.

We have demonstrated the applicability and robustness of the
BIGDML method by studying a wide variety of relevant materials
and their static and dynamical properties, for example success-
fully assessing the performance of BIGDML models for physical
observables in the harmonic and anharmonic regimes in the form

of phonon bands and molecular dynamics simulations. Further-
more, we carried out predictive simulations on interstitial
hydrogen diffusion in bulk Pd, as well as accurately capturing
intricate van der Waals forces and the dynamics of the interface
formed by molecular benzene and 2D graphene layer.

From the practical perspective, the BIGDML approach repre-
sents an advantageous framework beyond its accuracy and data
efficiency, given that the model generation is a straightforward
process starting from the simplicity of database generation and its
out-of-the-box training procedure#3. From the deployment point
of view, to illustrate the gain in computational speed, we remark
that for benzene/graphene we gain a factor of 50,000 for com-
puting atomic forces with BIGDML when compared to the
PBE + MBD level of electronic-structure theory. This gain would
further increase when using a higher level of quantum-
mechanical methods for generating reference data.

Many powerful MLFFs for materials have been proposed, and
some are already widely used for materials modelling®®101. In
order to embed the BIGDML model into the current context of
MLFFs for materials, it is convenient to address some of the
limitations that current methodologies face, as well as to discuss
goals to pursue with the next generation of MLFFs in materials
science.

All current MLFFs for materials known to the authors employ
the locality approximation, i.e. they build a model for an energy
of an atom in a certain chemical environment, which is defined
by a cutoff function. The typical employed cutoffs are of 3-8A,
being of a rather short range. Increasing the cutoff does not
necessarily lead to a better model, because electronic interactions
exhibit hard-to-learn multiscale structure®. From the practical
point of view, trying to embed more information in the atomic
representation by increasing the cutoff radius leads to other
problems such as learning capacity limitations and, in the case of
neural networks, their inherent difficulty to correctly represent
and propagate multiscale interactions. In addition, different
interaction scales are mutually coupled. An attractive feature of
the locality approximation is that in principle, the short-range
interactions are transferable to different systems. However, in
practice this is not a general finding. For example, it was shown
that a general-purpose GAP/SOAP MLFF for carbon’ yields
errors an order of magnitude higher in graphene compared to the
same methodology trained specifically on graphene data3¢. In
addition, local MLFFs typically decouple interaction potentials of
different atoms by assigning atom types. For example, carbon in
benzene and carbon in graphene could be treated as different
atom types. Obviously, such decoupling makes the learning
problem harder because more data is necessary to “restore the
coupling” between different atomic species.

BIGDML provides a robust solution for both problems of
localization by using a global descriptor with periodic boundary
conditions. This allows BIGDML to capture interactions at all
relevant length scales by virtue of coupling all atomic coordi-
nates. However, such a prominent feature comes with a lim-
itation, since transferablity between different systems is not
easy to achieve. The current approach to achieve transferable
MLFFs is the localization of interactions. Thereby, transfer-
ability remains as one of the main challenges to be addressed
for future generations of BIGDML. Nevertheless, the BIGDML
framework is envisioned as a base model to further develop
towards constructing more general and efficient force fields for
materials modelling. Two possible avenues to address trans-
ferability are: (1) to use a construction approach where smaller
models are combined to approximate larger supercells and (2)
Localize the global descriptor to simplify interactions. In the
first approach, models trained on small supercells, could be
combined to span larger supercells in an approximate way by
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means of a convolution approach: f’large ~ Plarge * fsmall’ where
Plarge 18 the atomic distribution in the larger supercell, this being
one approach towards larger and transferable composite
models. In the second option, the mathematical form of the
BIGDML predictor can be reformulated b}}f, for example,
reducing the many-body complexity of the D¢ descriptor to
keep interactions only up to a certain body order. This
approach has been proven to give good results in
molecules!0%103. Despite current limitations of BIGDML,
having access to a MLFF that can robustly represent global
interactions in extended materials is a substantial achievement,
as shown via extensive simulations in Section. In addition, we
should stress that BIGDML has a superior learning capacity
compared to local MLFFs, since it can reach generalization
accuracies of up to two orders of magnitude better than loca-
lized MLFFs (see Fig. 3).

Another crucial aspect of MLFFs is their data efficiency and
ability to correctly capture all relevant symmetries for a given
system. Symmetries play a crucial role when studying nuclear
displacements (phonons, thermal conductivities, etc). BIGDML
addresses both of these challenges at the same time. The sym-
metries are obtained from the periodic cell and the reference
geometries in a data-driven way. Symmetries are known to
effectively reduce the complexity of the learning problem (cf.
refs. 46:104) a5 we have shown by introducing energy conservation
(ie. time homogeneity)*? and molecular point groups for finite
molecular systems?3. Periodic systems have even more symme-
tries than molecules, making the force field reconstruction
effectively a lower-dimensional task. While this qualitative out-
come could have been expected prior to the formulation of
BIGDML, the enormous practical advantage of incorporating
crystalline symmetries is remarkable. Even a few dozen samples
(atomic forces for a few unit cell geometries) already yield
BIGDML models that can be used in practical applications of
molecular dynamics.

We would like to remark further that while BIGDML is a
kernel-based approach (see e.g. refs. 19°-108)  able to include
symmetries and prior physical information, it will be an inter-
esting and important challenge to transfer the learning machinery
established here also to deep learning approaches (such as con-
volution neural networks, graph neural networks or even gen-
erative adversarial models) ideally by incorporating symmetries,
prior physical knowledge and equivariance constructions into
their architecture (see refs. 2434109110 for some first steps in this
direction).

In this work, we have focused on materials with fixed supercell
size and shape, nevertheless, a large number of physical phe-
nomena in materials involve phase transitions and symmetry
breaking. These systems represent a challenge to be addressed
and requires developing further the ideas introduced in the
BIGDML model. In this regard, the mathematical structure of the
BIGDML framework has the foundations to allow the study of
systems with flexible supercell (i.e. changing supercell volume
and/or lattice vectors). This is because the defined metric
(Euclidean distance between two structures) by the global
representation does not depend on the particular selection of the
lattice vectors. Meaning that, if we have two structure config-
urations X; and X, with lattice vectors a; and a,, respectively,
their distance in descriptor space || D{iﬁgl X, — Dfiﬁfgz (X, is
well-defined. Hence, exploiting such invariance in the metric
could allow the description of materials with fluctuating lattice
vectors, as it would be the case, for example, in simulations of
materials described by the NpT ensemble.

Another challenge to be addressed is the need to describe even
larger systems. In Section -D, we have already shown that it is

possible to accurately describe highly fluxional structures with
supercells containing 160 atoms and trained on up to
1000 structures. Given this evidence, the only limitation when
moving to materials containing hundreds of atoms per supercell
is memory requirements, a problem that is solved by using
numerical solvers as it is done for training neural networks (see
e.g. ref. 1), Nevertheless, the BIGDML framework requires
multiple extensions to scale up to much larger systems (with
thousands of atoms per unit cell) or systems with a larger number
of symmetries.

With the advent of new advanced materials such as high per-
formance perovskite solar cells, topological insulators and van der
Woaals materials, it is crucial to construct reliable MLFFs capable
of dynamical simulations at the highest level of accuracy given by
electronic-structure theories while maintaining relatively low
computational cost. While local MLFFs and BIGDML are com-
plementary approaches, we would like to emphasize that global
representations and symmetries could also be readily incorpo-
rated in other MLFF models. The challenge of developing accu-
rate, efficient, scalable, and transferable MLFFs valid for
molecules, materials, and interfaces thereof suggests the need for
many further developments aiming towards universally applic-
able MLFF models.

Methods

Data generation and DFT calculations. Given the different types of calculations
and materials in this work, we present the details of the data generation, model
training and simulations organized per system. All the databases were generated
using molecular dynamics simulations using the NVT thermostat.

Graphene. Here we used a 5 x 5 supercell at the DFT level of theory at the
generalized gradient approximation (GGA) level of theory with the Perdew-Burke-
Ernzerhof (PBE)®! exchange-correlation functional, We performed the calculation
in the Quantum Espresso!!%113 software suite, using plane-waves with ultrasoft
pseudopotentials and scalar-relativistic corrections. We used an energy cutoff of 40
Ry. A uniform 3 x 3 x 1 Monkhorst-Pack grid of k-points was used to integrate
over the Brillouin zone. The ab initio MD (AIMD) used to generate the database
was ran at 500 K during 10,000 time steps using an integration step of 0.5 fs. The
results displayed in Fig. 7 were performed using PIMD simulations with 32 beads,
and we ran the simulation for 300 ps using an integration step of 0.5 fs.

Pd;/MgO. In this case, we used a 2 x 2 supercell with 3 atomic layers to model
the MgO (100) surface. The calculations were performed in Quantum Espresso,
using an energy cutoff of 50 Ry and integrating over the Brillouin zone at the I'-
point only. For this system, we ran an AIMD at 500 K with an integration step of
1.0 fs during 10,000 integration steps to generate the material’s database.

Benzene/graphene. For this particular example, we have used the same
graphene supercell mentioned above and placed a benzene molecule on top. In
order to include the correct non-covalent interactions between the benzene
molecule and the graphene layer, we have used an all-electrons DFT/PBE level of
theory with the many body dispersion (MBD)%%70 treatment of the van der Waals
interaction using the FHI-aims!!4 code. The AIMD simulation for the system’s
database constructions was performed at 500 K using an integration step of 1.0 fs
during 15,000 steps. The results displayed in Fig. 8 were performed using PIMD
simulations using 1, 8, 16 and 32 beads (in order to guarantee that we have
achieved converged NQE) and we ran the simulation for 200 ps using an
integration step of 0.5 fs.

Bulk metals. In this case, we were interested in a variety of materials and their
different interactions. Then, we have considered Pd[FCC] and Na[BCC] described
at the DFT/PBE level of theory using the Quantum Espresso software. The
databases were created by running AIMD simulations at 500 K and 1000 K for Pd,
and 300 K for Na using a time steps of 1.0 fs for all the simulations. Monkhorst-
Pack grids of 3 x 3 x 3 k-points were used to integrate over the Brillouin zone for all
materials. All calculations for the bulk metals were spin-polarized.

H in PA[FCC]. In this case we used a supercell of 3 x 3 x 3 with 32 Pd atoms and
a single hydrogen atom described by DFT/PBE level of theory using the Quantum
Espresso software. The database was generated by running AIMD at 1000 K. We
used time steps of 1.0 fs and a total dynamics of 6 ps. Monkhorst-Pack grids of
3 x 3 x 3 k-points were used to integrate over the Brillouin zone for all materials.
The results shown in Fig. 9 we obtained by running classical MD and PIMD
simulations using an interface of the BIGDML FF with the i-PI simulation
package!1°. We ran the simulations at various temperatures from 300 K to 1000 K.
In each case, we employed a time step of 2.0 fs during 2,000,000 steps, for a total
simulation time of 4 ns. For the PIMD simulations we used a different number of
beads for each temperature: 32 for 100, 300, and 600 K; 24 for 400 K; 2 for 700 K;
and 4 for 800 K. Using this data we were able to compute the H diffusivity as a
function of the temperature.
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The sGDML framework. A data efficient reconstruction of accurate FFs with ML
hinges on including the right inductive biases in the model to compensate for finite
reference dataset sizes. The Symmetric Gradient-Domain Machine Learning
(sGDML) framework achieves this through constraints derived from exact physical
laws234243_ In additional to the basic roto-translational invariance of energy,
sGDML implements energy conservation, a fundamental property of closed clas-
sical and quantum mechanical systems. The key idea behind sGDML is to define a
Gaussian Process (GP) using a kernel k(x,x') = V, k(x,x)V] that models any
force field fg as a transformation of some unknown PES fz such that,

fp = —Vfy ~ GP[—Vup(x), V, kp(x, X))V ]. Q)

Here, py : R? - R and k; : RYx R - R are the prior mean and prior
covariance (kernel) functions of the latent energy GP-predictor, respectively.
Regarding the functional form of the kernel, the sGDML framework uses the
Matérn covariance function with restricted differentiability to second order:
ky(d) = c*(1+d+1id)e ™, d= @, where ¢ and p are the normalization and
scale parameters, respectively.

Each molecular geometry R represented in descriptor space by x = DPEO(R) is
encoded using the proposed descriptor (see Eq. (1)). A sGDML FF for a particular
system is then obtained by solving a linear system for &,

(K+A)d = —F, (3)

where the set of s are the trainable parameters, K;; = k(xi, xj> and F=—V Vo

are the gradients of the PES as specified by the corresponding reference
calculations. By construction of the kernel matrix, the resulting model is
guaranteed to be integrable, such that the corresponding PES is recovered by

/deR=—fE+c @

up to an integration constant c.

The sGDML model additionally incorporates all relevant rigid space group
symmetries, as well as dynamic non-rigid symmetries of the system at hand. This is
achieved via marginalization of the kernel over the permutation set 7 € S:

M
fp(x) = ; o, %k(x, P.x,). (5)

Here, M is the number of training datapoints and P, is the permutation operator in
descriptor space. In the original model, these symmetries are automatically
recovered as atom-permutations via multi-partite matching of all geometries in the
training dataset?>. BIGDML supplements this set by adding permutational
symmetries that are unique to periodic systems and were previously not
considered.

Now, some aspects on training and deploying sGDML FFs. Solving the linear
system Eq. (3) is the computationally most strenuous aspect of the training
procedure, as it incurs a cost of O((3NM)*). Moreover, BIGDML is trained in
closed-form (via matrix decomposition), which requires storing the kernel matrix
at O((3NM)?*) memory cost. The inclusion of symmetries only incurs extra linear
cost during kernel matrix construction in this scenario, while the training cost
remains the same. These economics are ideal for the application to periodic
systems, where we can impose a strong inductive prior through the inclusion of
large symmetry sets, which allows the number of training points M to remain
small. Now, in cases where memory limitations appear, the model can be trained by
a numerical solver as in the case of neural networks. This approach allows training
much larger models and bigger systems.

Coulomb matrix PBC implementation. The periodic boundary conditions were
implemented using the minimum image convention. Under this convention, we
take the distance between two atoms to be the shortest distance between their
periodic images. We start by expressing the distance vectors d;; = r; — r; in the basis
of the simulation supercell lattice vectors as

d; = Ac;, (6)

where A is a 3 X 3 matrix which contains the lattice (supercell) vectors as columns,
and c;; are the distance vectors in the new basis. We then confine the original
distance vectors to the simulation cell,

PBC .
df*® = d; — Anint(c), 77
where nint(x) is the nearest integer function. By replacing the ordinary distance
vectors d;; with d;-PBC) in the Coulomb matrix descriptor, it becomes
L if i
~ (PBC) 1 li]
ngpsc) _ ) ()
0 ifi=j
In practice, only the dPBO) upper triangular matrix is used.

Software: Interface with i-Pl. For this work, a highly optimised interface of
BIGDML has been implemented in the i-PI molecular dynamics package!!>. The

main features of this implementation are: (1) it allows the use of periodic boundary
conditions and stress tensor calculation, (2) parallel querying of all beads at once in
PIMD simulations and (3) it uses the highly optimized sGDML GPU imple-
mentation in PyTorch to parallelise beads calculations, dramatically increasing the
simulation efficiency.

Software: interface with phonopy for phonons. An ASE calculator is already
provided by the sGDML package, this allows to use all its simulation options. In
particular, the phonon analysis for materials is easily computed in this package
using Phonopy!1°. An example of the scripts used to compute the phonons in this
paper is provided in the Supplementary Software.

Training GAP/SOAP models. The GAP models for graphene were trained
employing the QUIP software package available at http://www.libatoms.org. All
potentials were constructed using the same training datasets prepared to train the
BIGDML models in this work. A combination of a two-body (2b), a three-body
(3b) and a many-body (SOAP) descriptor were used in the construction of each
GAP model. The parameters for the 2b, 3b and SOAP descriptors were the same
optimized values used in the work of Rowe et al. to fit their GAP model for
graphene0,

Data availability

All datasets used in this work are available at http://www.sgdml.org or http://quantum-
machine.org/datasets/. Additional data related to this paper may be requested from the
authors.

Code availability

The full documentation of the sGDML software can be found at, http://quantum-
machine.org/gdml/doc/ and the code can be downloaded from https://github.com/
stefanch/sGDML.
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