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Abstract
Sofosbuvir and daclatasvir have been used successfully since 2013 for hepatitis C treatment. It has been shown by different studies that

sofosbuvir can inhibit RNA polymerase of other positive-strand RNA viruses including Flaviviridae and Togaviridae. Homology between

hepatitis C virus RNA polymerase and severe acute respiratory syndrome coronavirus 2 has also been established. The efficacy of

sofosbuvir and daclatasvir as potential choices in treating patients with coronavirus disease 2019 and their recovery can be hypothesized.
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Introduction
Public health is affected by a number of single-stranded positive-
sense RNA viruses; among these are hepatitis C virus (HCV),
dengue virus, Zika virus, yellow fever virus, chikungunya virus,

severe acute respiratory syndrome virus, and Middle East res-
piratory syndrome virus [1]. Chronic hepatitis C has affected

approximately 70 million people worldwide [2]. Hepatitis C is a
major cause of cirrhosis and hepatocellular carcinoma and is

the leading indication for liver transplantation [3]. Globally, the
third leading cause of cancer-induced death is hepatocellular

carcinoma, which is the leading cause of mortality in patients
with cirrhosis, and hepatitis C is the major risk factor [4].

HCV is classified into seven genotypes [5]. Noteworthy is

the fact that genotypes 1, 2, and 3 have worldwide distribution,
with the predominance of subgroups 1a in the United

States and 1b in Europe, Japan, and China [6,7]. Genotype 1 was
the most frequent one in Iran [8]. With the advent of diagnostic
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tests for hepatitis A and hepatitis B, hepatitis C was first
revealed to be a clearly recognizable form of liver disease in the

mid-1970s [9]. Hybridization and nuclease digestion experi-
ments indicated that the HCV genome consisted of a single-

stranded, positive-sense RNA of approximately 9600 nucleo-
tides in length encoding a polyprotein precursor of about 3000
amino acids [10]. Analyses of the cloned sequences revealed

that HCV is related to members of the family Flaviviridae, which
includes two other genera, i.e. Flavivirus and Pestivirus. All of

these viruses have small, enveloped virions and positive-sense
RNA genomes that are translated as single, long polyproteins.

Then, their polyproteins are cotranslationally and post-trans-
lationally processed by cellular and viral proteases to yield the

mature structural and nonstructural (NS) proteins, with the
structural proteins (core, E1, E2, and p7) grouped together in
the N-terminal heptad repeat terminal portion, followed by the

NS proteins [11].
The NS proteins include two viral proteases, i.e. a zinc-

stimulated NS2-3 protease and the NS3 serine protease,
which are responsible for cleavages in the NS region of the

HCV polyprotein, an RNA helicase located in the carboxy-
terminal region of NS3, the NS4A polypeptide, the NS4B and

NS5A proteins, and a RNA-dependent RNA polymerase
(RdRp) represented by NS5B [12].
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The standard treatment for hepatitis C was pegylated

interferon with ribavirin (RBV) for 48 weeks. However, this
was effective in only 30% of patients. The combination of a first-

generation protease inhibitor (telaprevir or boceprevir) with
peg-interferon and RBV subsequently improved sustained

virological response (SVR) rates to 50–65% in genotype 1
HCV-infected recipients [13]. However, the addition of boce-
previr or telaprevir is limited to HCV genotype 1 and is asso-

ciated with side effects, intricate dose regimens, and viral
resistance [14].

Sofosbuvir and daclatasvir, which are second-generation
direct-acting antiviral agents, were approved by the French

Agency for the safety of medicines and health care products,
being available through an early access program in 2013 [15].

Daclatasvir inhibits HCV replication by binding to the N-
terminus of NS5A. It also inhibits virion assembly, with
powerful potent pan-genotypic antiviral activity in vitro (HCV

genotypes 1-6), and sofosbuvir inhibits the HCV RNA poly-
merase NS5B [16,17].

The 12-week administration, i.e. once-daily oral daclatasvir
plus sofosbuvir, with or without RBV (DCV+SOF±RBV), was

satisfactorily tolerated, and SVR12 rates were achieved,
exceeding 90% in patients in whom it has been challenging to

treat effectively, including those with advanced cirrhosis, HCV
genotype 3 infection, HIV/HCV coinfection, and HCV recur-

rence after liver transplantation and patients with no response
to prior therapy with telaprevir or boceprevir [18,19].

The other life-threatening public health challenge that be-

longs to the single-stranded positive-sense RNA virus is severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

formerly designated as 2019 novel coronavirus, which emerged
in December 2019 in Wuhan, China, and then rapidly spread

across China to many other countries [1].
Four crucial structural proteins are encoded by four Open

Reading Frames (ORFs) of the SARS-CoV-2 genome: (a) spike
(S) glycoprotein (S1 and S2 subunits), attaching to the host
receptor through the receptor-binding domain of S1 subunit,

determining the virus host range (S1 subunit), and mediating
virus-cell membrane fusion (S2 subunit); (b) matrix (M) protein,

mediating transport of nutrients across the transmembrane,
bud release, and envelope formation; (c) small envelope (E)

protein; and (d) nucleocapsid (N) protein, which interfere with
the host’s innate immune response [20]. The spike glycoprotein

from coronaviruses forms homotrimers, protruding from the
viral surface and mediating entry of the virus genome into the

host cells [21]. SARS-CoV-2 uses the same host receptor,
angiotensin-converting enzyme 2 (ACE2), used by SARS-CoV
to infect humans [22]. ACE2 is a metalloprotease expressed

in the cells of the lung, intestine, liver, heart, vascular endo-
thelium, testis, and kidney. In addition, SARS-CoV-2 seems to
© 2021 The Authors. Published by Elsevier Ltd, NMNI, 42, 100895
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have a receptor-binding domain that binds with high affinity to

ACE2 of humans and other species with high receptor ho-
mology [23].

Although special measures such as quarantine and social
distancing have so far been able to decrease the rates of

transmission, antiviral drugs and effective vaccines obviously
seem to be the only solution to long-term control and pre-
vention of coronavirus disease 2019 (COVID-19) [24].

While the prevalence of COVID-19 continues to spread
worldwide, the lack of a clinically proven antiviral treatment is a

serious challenge of the disease [25]. The search for drugs by
scientists, which would procure effective treatment for the

disease, continues. Among more than thirty agents which have
seemed promising in treatment of COVID-19, inculding

Western medicine, natural products and Chinese medicine,
only remdesivir has so far been approved for treatment of
SARS-CoV-2 infection [26].

As previously mentioned, some of the most reliable antiviral
agents against HCV are direct-acting antiviral agents, which have

an acceptable safety profile and have been used since 2011 [27].
With its binding to the N-terminus of NS5A, daclatasvir presents

itself as a powerful HCVNS5A replication complex inhibitor that
affects both viral RNA replication and virion assembly [16,17]. In

the HCV replicative cycle, NS5A has multiple functions including
recruitment of cellular lipid bodies, RNA binding and replication,

protein phosphorylation, cell signalling, antagonism of interferon
pathways, and virion assembly [28]. In large-genome viruses, such
as SARS-CoV-2, these activities are performed by different viral

proteins, especially nsp1 to 14, but there is not an exact orthol-
ogous of NS5A in the SARS-CoV-2 genome and their activities

may be exerted by other multiple proteins [29].
The docking score suggested possible eligibilities of sofos-

buvir and daclatasvir as a potent drug against SARS-CoV-2 [30].
Sofosbuvir is a 20Me-F uridine monophosphate nucleotide

that undergoes intracellular metabolism in human hepatocytes
to a pharmacologically active uridine triphosphate form (GS-
461203) [31]. Indeed, hydrophobic protections in its phosphate

allow sofosbuvir to enter a pathway to yield sofosbuvir
triphosphate, the pharmacologically active antiviral compound.

Then, sofosbuvir is incorporated into HCV RNA by NS5B
polymerase, where it acts as a chain terminator [32].

Under normal circumstances, the liver harbours cellular en-
zymes such as cathepsin A, carboxylesterase 1, and histidine triad

nucleotide-binding protein 1 that have a role in removing
monophosphate protections [33]. These enzymes are also pre-

sent in other tissues, such as the respiratory tract. The features of
sofosbuvir include a significant rate of recovery, few side effects,
high efficacy, and potent resistance defence [34], e.g. FISSION

[35], POSITRON [36], FUSION [36], and PHOTON-1 [37].
Noteworthy is the fact that sofosbuvir, which is an antiviral drug,
nses/by-nc-nd/4.0/).
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does not interrupt the activity of the main drug-metabolizing

enzymes, for example, the cytochrome P450 system [38].
Furthermore, it is reported that sofosbuvir revealed no bone

marrow or mitochondrial toxicity, when dosed at multiples over
the effective dose, and that it does not inhibit human DNA or

RNA polymerases or mitochondrial RNA polymerase [39]. This
is a safe drug that has been shown to be capable of inhibiting RNA
polymerase of other positive-strand RNA viruses, e.g. Zika virus,

yellow fever virus, and chikungunya virus. It is highly probable,
therefore, that sofosbuvir would satisfactorily inhibit SARS-CoV-

2 RdRp. It is indeed the case that the replication mechanisms of
severe acute respiratory syndrome virus, Middle East respiratory

syndrome virus, SARS-CoV-2, HCV, and other single-stranded
positive-sense RNA viruses are alike and need an RdRp; in addi-

tion, the chances of sofosbuvir binding strongly to SARS-CoV-2
RdRp are high [40–42].

As shown by Sacramento et al. [43], daclatasvir frequently

inhibited the production of infectious SARS-CoV-2 in various cells
such as Vero cells, hepatoma cell lines (HuH-7), and type II

pneumocytes (Calu-3), with potencies of 0.8, 0.6, and 1.1 μM,
respectively, targeting early events during the viral replication cycle

and preventing the induction of interleukin-6 and tumor necrosis
factor α (TNF-α), inflammatory mediators associated with the

cytokine storm characteristic of SARS-CoV-2 infection. However,
no efficiency was shown, when the virus was quantified by copies

per millilitre [43].
But they showed that sofosbuvir is inactive in Vero cells and

displayed EC50 values of 6.2 and 9.5 μM in HuH-7 and Calu-

3 cells, respectively. Thus, it inhibits SARS-CoV-2 replication
more effectively in liver cells than in respiratory cells. The ef-

ficiency of daclatasvir compared with sofosbuvir with regard to
the inhibition of viral RNA synthesis was twofold more [24].

This research showed that sofosbuvir inhibits SARS-CoV-2
replication 35% more in liver cells than in lung cells [24].

There is no precise and specific information nowadays about
50% of maximum inhibitory concentration of sofosbuvir against
coronavirus, but there is information for hepatitis C virus,

hepatitis E virus, hepatitis A virus, Zika virus, dengue virus, and
West Nile virus [44]. Dragoni et al. [45] studied the effects of

sofosbuvir against West Nile virus using different cell lines. The
maximum inhibitory concentration values of sofosbuvir were

1.2 μM and 63.4 μM for West Nile virus in hepatic and lung
cells, respectively. In lung cells, sofosbuvir was less active,

indicating significant concern [45].
Conclusion
To sum up, it can be hypothesized that as far as the treatment

and recovery of patients with COVID-19 is concerned,
This is an open access artic
sofosbuvir and daclatasvir can be considered as potential

candidates. A number of studies are being carried out to test
the potential effect of antiviral treatments on suppression of

SARS-CoV-2. In the treatment of COVID-19, daclatasvir and
sofosbuvir have been presented as potential candidates.

Docking studies showed remarkable binding interactions of
daclatasvir and sofosbuvir with COVID-19 enzymes. Dacla-
tasvir inhibited the production of infectious SARS-CoV-2 in

different cells; this was especially significant during the initial
stages of the disease and before the invasion of the virus into

parenchymal cells of the lung. The replication of SARS-CoV-2
in HuH-7 and Calu-3 cells is also inhibited by sofosbuvir; its

efficiency in the liver, however, is higher than in the lung. In
future clinical trials, the two issues of effectiveness and safety

should be considered in the treatment of COVID-19 with
sofosbuvir and daclatasvir.
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