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Abstract

Cdk5 has been implicated in a multitude of processes in neuronal development, cell biology and 

physiology. These influence many neurological disorders, but the very breadth of Cdk5 effects has 

made it difficult to synthesize a coherent picture of the part played by this protein in health and 

disease. In this review, we focus on the roles of Cdk5 in neuronal function, particularly synaptic 

homeostasis, plasticity, neurotransmission, subcellular organization, and trafficking. We then 

discuss how disruption of these Cdk5 activities may initiate or exacerbate neural disorders. A 

recurring theme will be the sensitivity of Cdk5 sequelae to the precise biological context under 

consideration.
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Introduction

Cyclin-dependent kinase 5 (Cdk5) is a protein serine, threonine kinase that regulates 

neuronal migration, neurite extension and compartmentalization [1–3], both pre- and post-

synaptic aspects of neurotransmission [4,5] and synaptic plasticity [6]. Because of its roles 

in development and maintenance of neuronal structure and in synaptic plasticity, Cdk5 is 

essential for higher neural functions such as memory [7]. Dysfunction of Cdk5 is associated 

with a broad range of neurological disorders including neurodegenerative diseases such as 

Alzheimer’s Disease (AD) [8], Parkinson’s Disease (PD) [9], Amyotrophic Lateral Sclerosis 

(ALS) [10] and Huntington’s Disease (HD) [11], and brain disorders such as ischemia and 

stroke [12], epilepsy [13] and attention deficit disorders [14], among others.

In this review, we summarize the roles that Cdk5 plays in synaptic homeostasis, plasticity, 

neurotransmission, synaptic position, and intracellular trafficking, with an eye to gaining 
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insight into how disruption of these activities of Cdk5 contributes to neural disease. A 

common theme throughout this review will be the seemingly contradictory effects of Cdk5 

on various aspects of neuronal activity and structure in different experimental systems, 

reflecting the remarkable dependence of Cdk5 action upon the cell type, age, homeostatic set 

point and other aspects of the biological context of the neuron under study.

Properties of Cdk5

Cdk5 is a member of the cyclin-dependent kinase family of protein kinases, closely related 

to the Cdk regulators of the cell division cycle. Unlike other members of the Cdk family, 

however, Cdk5 is not activated by canonical cyclins [15], and does not play a significant 

role in the cell cycle [16]. Instead, Cdk5 activity is largely limited to post mitotic neurons 

due to the absolute requirement that it bind one of two paralogous neuron-specific regulatory 

subunits, p35 or p39 [17,18] (Figure 1). While p35 and p39 have little or no sequence 

homology to traditional cyclins, they assume the three-dimensional “cyclin fold” [19]. 

Consequently, upon association with Cdk5, they induce a conformational change in the 

catalytic subunit similar to that observed in classical cyclin-Cdk complexes, with 

concomitant induction of kinase activity [19]. p35 and p39 each also has a conserved N-

terminal glycine residue that becomes myristoylated, targeting the Cdk5 holoenzyme to 

membranes. In some contexts, p35 and p39 are cleaved proteolytically by calpain to produce 

the truncated derivatives p25 and p29, respectively. When these cleaved forms are bound to 

Cdk5, the kinase is hyperactivated due to reduced protein turnover. As the cleaved forms 

also lack the myristoylation site, Cdk5/p25 and Cdk5/p29 are cytoplasmic rather than 

membrane-associated, and therefore phosphorylate a different spectrum of cellular proteins 

[16]. p35 and p39 have different but overlapping distributions in the brain, suggesting that 

they are required for distinct functions in vivo, though they appear to be interchangeable in 

most experimental paradigms [20]. Cdk5 is also regulated by phosphorylation of the 

catalytic subunit, most notably at tyrosine 19 [21]. This phosphorylation further stimulates 

the kinase activity of Cdk5/p35. That is in contrast to traditional cyclin-Cdk complexes, 

whose kinase activity is reduced by phosphorylation at the homologous N-terminal tyrosine 

[21]. The stability of p35 and p39 themselves depend on the activation state of Cdk5. Upon 

activation by p35, Cdk5 phosphorylates p35 causing its degradation through the ubiquitin 

proteasome system (UPS), thus providing a negative feedback loop that acts as a critical 

control point for Cdk5 activity [22].

Cdk5 and Synapse Function: Effects on the Synaptic Vesicle Cycle

Cdk5 is a major regulator of synaptic function through its control of vesicle exocytosis and 

endocytosis (Figure 2). Indeed, increase in Cdk5 activity can silence the nerve terminal 

altogether [23]. Cdk5/p35 interacts with multiple targets to influence exocytosis via the 

SNARE (soluble NSF-attachment protein receptor) complex that is central to synaptic 

vesicle fusion and recycling. Cdk5 facilitates exocytosis through phosphorylation of 

Munc18, thus freeing syntaxin1A to form a SNARE complex and facilitate neurotransmitter 

release [24,25]. Cdk5/p25 phosphorylates another cyclin-dependent kinase, PCTAIRE1, 

enhancing its kinase activity [26] and thereby activating NSF (N-ethylmaleimide-sensitive 

fusion protein) [27]. Upon activation, NSF acts as a molecular chaperone that alters the 

McLinden et al. Page 2

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



conformation of, disables, and then recycles SNARE monomers for subsequent membrane 

fusion [27]. It is interesting that Cdk5 phosphorylation of PCTAIRE1 also impedes dendrite 

development, potentially linking a mechanism that regulates synaptic physiology with one 

that controls neuron structure directly [28].

Cdk5 uses multiple routes to modulate vesicle endocytosis, and although the targets are 

largely agreed upon, the outcomes of these interactions are often disputed. For example, 

Cdk5 phosphorylates synapsin-I, although whether this interaction increases or decreases 

synaptic transmission is unknown [29]. Further, Cdk5 constitutively phosphorylates 

amphiphysin I [30] and synaptojanin-I during resting states [31,32]. Cdk5 phosphorylates 

dynamin I, but there are conflicting reports on whether dynamin I phosphorylation by Cdk5 

is essential for endocytosis [31] or interferes with it [32]. Beyond the direct effects these 

interactions have on vesicle uptake, it should be noted that they also provide an indirect 

input back upon vesicle exocytosis by controlling the vesicle pool.

Cdk5, and more specifically its balance with calcineurin, also directly determines the rate of 

vesicle recycling, with acute inhibition of Cdk5 serving to free resting vesicles into the 

recyclable vesicle pool. The dynamic between Cdk5 and calcineurin is further influenced by 

pre-synaptic activity, since chronic silencing of neuronal activity by tetrodotoxin (TTX) 

suppresses presynaptic Cdk5 activity [23].

Cdk5 and Neurotransmitter Action

Cdk5 has profound effects on nervous system activity through altering the synthesis or 

receptor function of acetylcholinergic [33–35], catecholaminergic [36], and glutamatergic 

[9] systems of neurotransmission. Cdk5 is activated by acetylcholine (ACh) agonists and is 

required for ACh receptor clustering and signaling in motor axons and neuromuscular 

junctions, thus playing a necessary role in the formation and remodeling of neuromuscular 

synapses [33,37]. At the developing neuromuscular junction, transcription of the ACh 

receptor gene occurs at subsynaptic nuclei and is controlled by neuregulin-1 (NRG-1). Cdk5 

activity is required downstream of the ErbB neuregulin receptor for neuregulin-induced up-

regulation of ACh receptor gene expression [34]. Further, Cdk5 is required for Ach agonist-

mediated AChR disassembly in post-synaptic regions that fail to make appropriate 

connections with presynaptic terminals [37]. Dispersal of such aberrant receptor clusters 

may occur through nestin/Cdk5 interaction [35].

Cdk5 regulates dopamine (DA) synthesis via the rate-limiting enzyme in catecholamine 

synthesis, Tyrosine Hydroxylase (TH). Through phosphorylation of serine 31 of TH, Cdk5 

increases the stability and activity of the protein in the substantia nigra of the midbrain 

[36,38]. The physiological necessity for this interaction is demonstrated by diminution in the 

level of TH protein in Cdk5 knock-out mice [36]. Cdk5 further decreases DA signaling 

through phosphorylation of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 

Mr 32 kDa), a signal transduction molecule that regulates the amount of dopamine signaling 

in neostriatal neurons [4,39]. The relationship between dopamine and Cdk5 is bi-directional, 

as dopamine receptors can also indirectly influence the localization and kinase activity of 

Cdk5. Thus, stimulation of the D1 dopamine receptor leads to increased intracellular Ca2+, 
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inducing calpain proteolysis of p35 to p25, and leading to increased Cdk5 activation. This in 

turn induces hyperphosphorylation of tau producing signs of neurodegeneration, including 

cell death [40].

Regulation of glutamatergic transmission by Cdk5 is largely postsynaptic, and again 

involves a variety of molecular pathways. NMDA-type glutamate receptors are direct targets 

of Cdk5, with the kinase phosphorylating the NR2A subunit of NMDA receptors on Ser- 

1232 to increase channel activity [5,12]. This was observed in CA1 of the rodent 

hippocampus, both in the context of induction of Long Term Potentiation (LTP) and also in 

the response to transient ischemia, as well as in cell culture (transfected human embryonic 

kidney 293 cells). In contrast, in the striatum, inhibition of Cdk5, rather than activation, 

enhances NMDA-mediated glutamatergic transmission [9]. In this context, however, the 

effect on NMDA currents arises from Cdk5- regulated dopaminergic signaling that 

indirectly modulates NMDA signaling, not directly from phosphorylation of the NMDA 

receptor itself. This further highlights the need to consider the complexities of the complete 

biological context when interpreting the sometimes paradoxical effects of Cdk5.

Beyond modification of the receptor itself, Cdk5 also regulates glutamatergic transmission 

at the level of structural proteins of the postsynaptic density. The post-synaptic scaffolding 

protein PSD-95 regulates clustering and density of ionotropic glutamate receptors, and is a 

substrate of Cdk5 [41,42]. PSD-95, in complex with PSD-93, contributes to the organization 

and maturation of the synapse [43,44]. Inhibition of Cdk5 increases the binding of Src to 

PSD-95, which decreases NMDA receptor endocytosis [45]. Ubiquitylation of PSD-95 by a 

ubiquitin E3 ligase is induced by Cdk5 and is another mechanism by which Cdk5 is 

involved in NMDA/AMPA receptor endocytosis at the post-synaptic density [46]. The up/

down regulation of NMDA receptor trafficking accumulation on the plasma membrane is an 

important component of the dynamic synaptic changes that underpin plasticity.

Cdk5 and Synaptic Homeostasis

Many of the synaptic effects of Cdk5 modulate neural plasticity and synaptic homeostasis. 

To protect against excessive excitation, pre-and post-synaptic neurons engage in a 

homeostatic process known as synaptic scaling, which is a form of plasticity that allows 

individual neurons to regulate their overall rate of firing action potentials [47]. During 

normal function, this scaling is thought to stabilize neuronal circuits and prevent run-away 

excitotoxicity. In an elegant series of experiments, Seeburg et al. [48] demonstrated that 

Cdk5 is required for scaling through its interaction with Polo-like kinase-2 (Plk-2). Plk-2 is 

an activity-regulated gene that contains a C-terminal Polo-box domain (PBD) known to 

modulate kinase activity, and they hypothesized it might play a role in synaptic homeostasis. 

Indeed, stimulation of hippocampal neurons transfected with a dominant interfering 

construct that prevents Plk-2 phosphorylation exhibited no evidence of scaling of synaptic 

potentials compared with un-transfected cells, indicating Plk-2 is required for downward 

scaling during chronic excitatory stimulation. Further, Plk-2 binds to spine-associated 

RapGAP (SPAR), a post-synaptic protein that interacts with PSD-95 and promotes dendritic 

spine formation, and this phosphorylation is necessary for SPAR degradation. Cdk5 further 

modulates this signaling complex through its action as a SPAR “priming” kinase. This 
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precursor phosphorylation is necessary before SPAR can be degraded. By this mechanism, 

Cdk5 dampens synaptic strength during stimulation to avoid excessive excitation.

Another mechanism of PSD-linked, Cdk5-dependent synapse loss, in frontal cortical 

neurons, stems from the interaction of Cdk5 with the postsynaptic density scaffolding 

protein GKAP from the MAGUK family of proteins [49]. Soluble Aβ peptide caused 

increased phosphorylation of GKAP by Cdk5 that triggered ubiquitination and proteasomal 

degradation of GKAP, resulting in the disconnection of postsynaptic density proteins from 

the actin cytoskeleton. It is interesting that many studies of the stability and strength of the 

postsynaptic site converge on ubiquitin-dependent protein degradation as a common 

regulatory mechanism. Cdk5-dependent phosphorylation targets numerous proteins for 

degradation by the as well as regulating its activity [50–52].

Behavioral Consequences of the Synaptic Functions of Cdk5

The net effect of Cdk5 phosphorylation of a multitude of synaptic targets is regulation of 

global organismal processes such as cognition and behavior. Hebbian Long-Term 

Potentiation (LTP) strengthens synapses and is presumed to be a central mechanism of 

learning and memory. Cdk5 activity clearly modulates LTP, but in just what way remains 

controversial. For example, inhibition of Cdk5 with roscovitine has been reported to block 

induction of LTP [5], while others claim there is no direct effect on LTP, and rather that 

roscovitine prevents the inhibition of LTP by amyloid-β peptide [53]. Moreover, mice with a 

null mutation of p35 exhibit a lower, not higher, threshold for LTP induction [54] but 

impaired LTD [55]. These different outcomes may in part reflect differences in the 

experimental protocols that were used, in terms of cell type, developmental stage, and even 

the time course of the experiment. For example, although transient expression of p25 

enhances hippocampal LTP, prolonged expression led to impairment [56]. This likely arises 

from Cdk5 having unrelated effects on different processes with different time courses, such 

as acute effects on synaptic vesicle cycling and long-term effects on axon and dendrite 

structure (see below). As far as the molecular mechanism of Cdk5 effects on LTP are 

concerned, one proposed mechanism is through calcium-mediated association of p35 and 

p39 with the alpha subunit of CaMK II, a key mediator of LTP [57]. This association is 

stimulated in response to activation of NMDA receptors, though its functional significance 

remains uncertain.

Cdk5 function has profound effects on various forms of hippocampal learning and memory 

[6,7,58,59]. Much like the effects on LTP, however, despite general agreement on the 

necessity of Cdk5 for wild type memory, whether Cdk5 loss of function results in memory 

deficit or improvement is currently controversial. For example, a conditional Cdk5 loss-of-

function mutation resulted in impairments in the formation and retrieval of hippocampus-

dependent memories via cAMP signaling [59]. In contrast, however, Hawasli et al. [6] report 

that Cdk5 conditional knockout mice showed enhanced associative and spatial memory for 

hippocampus-dependent tasks, though no differences were observed in hippocampus-

independent tasks. Indeed, Ris et al. [60] hypothesize that production of p25 in Alzheimer’s 

disease may act as a compensatory mechanism for early learning and memory deficits in the 

progression of the disease. It is conceivable that some of the complexity in interpreting 
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effects of Cdk5 on memory formation arise from interference by prior memories. Work done 

by Sananbenesi and others [58] demonstrates that genetic and pharmacological inhibition of 

Cdk5 is necessary to extinguish preexisting associative memories, and, conversely, that 

increasing Cdk5 activity impairs extinction. Perhaps failure to extinguish old memories can 

interfere with formation of new ones. One way Cdk5/p25 may modify memory formation 

and extinction is through dysregulation of the histone deacetylase HDAC1 [61]. Inactivation 

of HDAC1 results in aberrant cell-cycle activation, DNA damage, and neurotoxicity [62], 

but is also important in the regulation of fear extinction [62]. Overall, although the 

relationship of Cdk5 to learning remains murky, Cdk5 undoubtedly affects hippocampal 

plasticity. Furthermore, the ability of this kinase to affect the formation and extinction of 

fear memories makes Cdk5 an intriguing target for cognitive and emotional disorders.

Structural Roles of Cdk5

Beyond regulating the composition and transmission properties of individual synapses, Cdk5 

also modulates the overall structure and sub cellular organization of neurons. This includes 

the polarization of the neuron, compartmentalization of the axon and trafficking of its 

components, the structure of dendrites and synapse density (Figure 3). A growing body of 

evidence demonstrates the action of Cdk5 in neuronal maturation and structural plasticity, 

with implications for disorders of neural activity and neurodegenerative disease.

Cdk5 and Initial Neuronal Polarization

An early step in organizing a mammalian neuron is the selection of one of its neurites to be 

the nascent axon while the others differentiate into dendrites. Axon formation is based on 

tightly regulated events of cytoskeletal reorganization [63] in response to extracellular cues 

and intracellular signaling [64,65]. Axon selection in hippocampal neurons and developing 

cortical neurons is regulated by Cdk5 through modulation of the interaction between Axin 

and GSK-3β, two major regulators of axon specification [66]. Axin (Axis inhibitor) is a 

scaffold protein of the Wnt signaling pathway that mediates axon initiation by stabilizing 

microtubules (MTs) through the control of GSK-3β localization. Cdk5-mediated 

phosphorylation of Axin inhibits its interaction with GSK-3β, stabilizing the microtubule 

network and promoting axon formation.

The possibility of a very different and indeed opposite, effect on axon formation for Cdk5 is 

suggested by its interaction with the repulsive guidance molecule Semaphorin3A (Sema3A) 

[67]. Sema3A signaling decreases protein kinase A (PKA) activity and down regulates 

PKA-dependent phosphorylation of the axonal determinants LKB1 and GSK-3β, thereby 

suppressing axon formation and enhancing dendrite specification in cultured hippocampal 

neurons and cortical neurons in vivo. Separate studies, however, showed that Sema3A 

function is mediated by Cdk5 [68]. Cdk5 phosphorylates Collapsin Response Mediating 

Protein-2 (CRMP2) that is a part of the Sema3A intracellular signaling pathway. CRMP2 

phosphorylation, first by Cdk5 and then by GSK3β reduces its affinity to tubulin in dorsal 

root ganglion neurons and promotes Sema3A-induced growth cone collapse in cerebral 

cortex [68,69]. This raises the possibility that Cdk5 can either promote axon formation or 
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inhibit it, depending on the balance of extracellular signaling. Additional experiments will 

be necessary to test this conjecture.

Intra-axonal Compartmentalization

Axons are not just featureless shafts. They have a complex internal organization that is 

fundamental to neuronal function and maintenance. The Axon Initial Segment (AIS) is the 

site of action potential initiation, and it acts as a gatekeeper in intra-axonal traffic, 

segregating the somatodendritic vs axonal compartments [70]. Moreover, the AIS is a 

central player in the plasticity of neuronal function. Thus, chronically increased neuronal 

activity caused the AIS to shift in a distal direction in cultured hippocampal neurons [71]. 

Recent experiments in central brain neurons of Drosophila show that Cdk5 is a dose-

dependent regulator of AIS size [1]. Reduction or elimination of Cdk5 activity caused severe 

reduction in AIS length, and hyperactivation of Cdk5 (by over-expression of p35) led to 

extension of the AIS. In this system, the length of the AIS was controlled via positioning of 

its distal boundary while the position of the proximal boundary was unchanged.

The unique electrophysiological properties of the AIS, particularly initiation of action 

potentials, rely on selective enrichment of specific subtypes of sodium, potassium and 

calcium channels, and exclusion of others [70]. In mature hippocampal neurons, Cdk5 

regulates the phosphorylation dependent targeting of voltage-gated Kv1 potassium channels 

to the AIS [72–74]. Cdk5-mediated phosphorylation of the auxiliary subunit Kvβ2 disrupts 

the interaction of Kv1 complexes with the microtubule plus end-tracking protein EB1, thus 

allowing Kv1 localization to the plasma membrane. Conversely, acute inhibition of Cdk5 

increased the intra-axonal concentration of EB1 protein, and of Kv1-Kvβ2 complexes in 

association with MTs at the AIS, locally limiting channel insertion into the plasma 

membrane. Additionally, Cdk5 regulates the balance between associations of EB1 with the 

AIS vs other regions of the cell. For another potassium channel Kv2.1, Cdk5-mediated 

phosphorylation regulates the steady state level of channel clustering in somatic and axonal 

compartments [75]. This phosphorylation was activity-induced and reversible, and showed a 

potential regulatory role of Cdk5 in determining the intrinsic excitability of the neuron 

[74,75].

Propagation of action potentials in myelinated neurons depends on the function of ion 

channels clustered at nodes of Ranvier [76,77]. Clusters of Kvβ2 at the node of Ranvier 

colocalize with Cdk5 in the mouse sciatic nerve [74]. Moreover, Cdk5 immunostaining is 

present at the node and the paranode, and is enriched at the juxtaparanode. Given the many 

molecular similarities between nodes and the AIS, it seems worthwhile to ask whether the 

localization of Cdk5 at the nodes has a function in supporting or modulating action potential 

propagation, though this has not been tested.

Dendritic Development: Arborization and Spine Morphogenesis and 

Maintenance

Dendrites are dynamic structures. Their morphology and organization control how neurons 

process information [78], and structural changes in dendritic arborization and dendritic spine 
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morphology underlie learning and memory formation [79,80]. In mammalian neurons, Cdk5 

regulates dendrite development by promoting signaling from many extracellular cues as well 

as by modulating cytoskeletal dynamics [81]. Some of the effects of external cues may be 

mediated by S-nitrosylation of Cdk5 itself, with consequent reduction of Cdk5 kinase 

activity [82]. Lack of Cdk5 function causes defects in dendrite development during 

embryogenesis and in the adult. In cortical neurons of Cdk5-deficient mice, these were 

correlated with reduced expression of the microtubule-associated protein MAP2 [83]. In 

addition to modulating the pattern of dendritic arborization, Cdk5 also has a specific role at 

a later step in dendrite morphogenesis, maturation of dendritic spines. Cdk5 inhibition 

impaired the development of immature, spiky dendritic spines into large “mushroom-

shaped” spines and reduced the number of such mature “mushroom” spines even in correctly 

targeted dendrites in rodent hippocampal granule cells [84]. Since establishment of stable 

excitatory synapses is physically supported by these mushroom-shaped spines [85,86], this 

identifies another mechanism by which Cdk5 promotes synaptic transmission and LTP.

Cdk5 controls dendritic spine density using a variety of molecular mechanisms. Cdk5 

phosphorylation of the WAVE1 protein inhibits its interaction with the Arp2/3 actin 

polymerization complex, and consequently inhibits spine morphogenesis [84–87]. This 

process is activity-regulated, with NMDA-dependent depolarization of the cell leading to 

degradation of p35, thus releasing the inhibition [88]. Cdk5 also stimulates spine retraction 

in hippocampal neurons by regulating signaling downstream of Eph receptor A4 (EphA4) 

[89]. Upon stimulation by ephrin A1, EphA4 recruits Cdk5 and phosphorylates it on tyr15, 

thereby enhancing Cdk5 activity. Cdk5, in turn, phosphorylates the Eph effector Ephexin1, a 

guanine nucleotide exchange factor that regulates actin cytoskeletal dynamics by stimulating 

RhoGTPase [89]. Inhibiting Cdk5 activity thus prevents ephexin1 phosphorylation and 

blocks ephrin-A1–induced spine retraction. Cdk5 also phosphorylates another Rho GEF, 

kalirin-7, increasing its activity to stabilize the spine. Mutation of the necessary Cdk5 

phosphorylation site on kalirin-7 results in aberrant spine morphology [90].

Traffic Control

Neuronal excitability and neurotransmission are profoundly sensitive to long-range 

intracellular trafficking. Cdk5 regulates this process by modifying motors, their cargo, the 

scaffolding proteins that connect them, and the cytoskeletal proteins themselves, as we now 

discuss.

Cdk5 and Motor Proteins

Outward transport from the soma to the distal tips of the axon and dendrites is largely 

powered by the diverse family of kinesins (KIFs) [91,92]. Kinesins have a conserved motor 

domain and typically move toward the “plus” ends of microtubules. Cdk5 was shown to 

stimulate kinesin-based anterograde motility in axoplasm of squid giant axons by regulating 

the activity of GSK3 [93]. Cdk5 inhibits protein phosphatase 1 (PP1), thereby activating 

GSK3. This, in turn, phosphorylates kinesin light chains, causing dissociation of transported 

cargo from kinesin in the axonal compartment. The authors suggested that the regulated 

release of cargo allows neurons to target organelle delivery to specific subcellular 
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compartments [93]. In this system Cdk5 affected only anterograde but not retrograde 

transport [93,94].

Cdk5 has a well-established role in regulating retrograde trafficking in the axon by 

controlling the activity of dynein as well as its interaction with different cargos. Cdk5 

phosphorylates NUDEL (Ndel1), a protein that binds both dynein and the dynein interacting 

protein, LIS1 [95,96]. Phosphorylation by Cdk5 both releases an inhibitory effect of Ndel1 

on the LIS1/dynein complex, and also stimulates the ability of LIS1 to enhance the transport 

capacity of dynein, perhaps by increasing the force produced by the motor to facilitate cargo 

transport through the viscous cytoplasm. Consequently, movement of acidic organelles in 

axons of adult rat sensory neurons is impaired upon inhibition of Cdk5 activity [97,98]. 

Cdk5, Ndel1 and LIS1 also interact to promote dynein-dependent radial migration of cortical 

neurons, and inhibition of this interaction underlies the developmental brain abnormality, 

type I lissencephaly, as well as modifying intracellular NUDEL distribution and causing 

swellings along neuritic processes in embryonic cortical cultures [95,96].

Studies of Cdk5 function in C. elegans have offered particularly rich opportunities for 

dissecting some of the many ways that this kinase regulates axonal trafficking. For example, 

in cholinergic DA9 motoneurons Cdk5 cooperates with the PCTAIRE kinase (PCT-1) to 

suppress retrograde transport by negatively regulating dynein function [99]. In this way, the 

dominance of kinesin-3-dependent anterograde transport is reinforced in these neurons. 

Thus, presynaptic vesicles were mislocalized to the dendritic compartment in Cdk5 mutants 

and the number of retrogradely-moving vesicles was significantly increased in PCT-1, 
Cdk-5 double mutants. That this reflects a shift in a dynamic balance of anterograde vs 
retrograde motility is demonstrated by the observation that mutations in the genes encoding 

dynein heavy chain or Ndel can suppress the mislocalization phenotype of Cdk5 mutants.

In other C. elegans neurons, Cdk5 interacts with PCT-1 in different ways to control the 

balance of anterograde and retrograde transport. In a subset of cholinergic neurons PCT-1 

was shown to be a downstream target of Cdk5 rather than acting redundantly [27]. In yet a 

third setting in the worm, GABAergic DD motoneurons, the CyclinY (CYY-1)/PCT-1 and 

p35/Cdk5 kinases act sequentially to control distinct steps in trafficking of synaptic 

components [100]. These neurons remodel their synapses during development by 

eliminating early larval synapses that are proximal to the cell body and reusing the synaptic 

components to construct definitive synapses more distally. CYY-1/PCT-1 is required for the 

disassembly of the original synapses, while p35/Cdk5 first stimulates kinesin-3 to promote 

delivery of synaptic material to distal portions of the axon, and then modifies dynein activity 

to redistribute these materials along the axon in a proximal direction at a later step in 

synapse formation.

Actin-based mechanisms of polarized transport also exist in neurons, particularly for short-

range trafficking, and are also modulated by Cdk5 [92,101]. These have recently been 

reviewed in detail by Lalioti and co-authors in the context of synaptic vesicle cycling and 

cell migration [102]. We note, however, that the effects of Cdk5 are mediated through 

modulation both of myosin function and of the dynamics of the actin cytoskeleton itself, 

executed through the Rho GTPase Cdc42 and its kinase partner, Pak-1 [101].
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Scaffolding Molecules

The specificity of neuronal trafficking relies heavily on adaptor and scaffolding proteins that 

link cargos to their appropriate motors, and Cdk5 regulation is often directed at these 

interactions. In C. elegans, Cdk5 promotes trafficking of glutamate receptors (GLR-1), 

probably acting at an early stage in the secretory process, in the soma [103]. It is thought 

that this is mediated, in part, via Cdk5-dependent phosphorylation of the PDZ-containing 

scaffolding protein LIN-10/Mint-1. LIN-10/Mint-1 can act as a cargo adaptor protein 

supporting association of neurotransmitter receptors with kinesin motors and promote 

trafficking from ER and Golgi to the synapse [103]. By this model Cdk5 promotes GLR-1 

anterograde traffic by controlling the abundance of LIN-10/Mint-1, and thus its ability to 

promote GLR-1 entry into neuronal processes.

Cargo selective effects of Cdk5 on transport are also apparent in the specific trafficking of 

neuropeptide filled Dense Core Vesicles (DCVs) in cholinergic DB motoneurons of C. 
elegans [104]. Cdk5 activity modified DCV distribution in both axon and dendrite, primarily 

by modulating kinesin-3 dependent anterograde transport. Synaptic vesicle distribution was 

not affected. The molecular mechanisms are not completely clear, but probably are not due 

to direct regulation of the kinesin-3 or dynein motors. Goodwin and co-authors [104] 

suggested that Cdk5-dependent phosphorylation of a cargo adaptor protein in the soma 

might work as a switch controlling association with kinesin3 vs dynein and thus promoting 

polarized trafficking in axons and preventing dynein dependent trafficking into dendrites.

In several cases, Cdk5-regulated adaptor proteins are implicated in neurological disorders 

making them of particular interest. Huntingtin (Htt), the protein mutated in Huntington’s 

disease, acts as a scaffolding protein that facilitates interaction between dynein and kinesin 

motors and their cargo, and phosphorylation of Htt by Akt kinase regulates the directionality 

of Htt-dependent transport [105,106]. Cdk5 also phosphorylates wild type Htt protecting it 

from caspase cleavage, and inhibition of Cdk5 enhances accumulation of mutated polyQ-

expanded Htt in protein aggregates [107]. Cdk5 can also inhibit Htt aggregate formation by 

disrupting microtubules that are required for the formation of Htt inclusions [108].

Another Cdk5-associated adaptor protein is Disrupted in schizophrenia 1 (DISC1), which 

has multiple functions including microtubule-mediated transport and regulation of the 

structure and composition of dendritic spines [109]. Mutations in DISC1 are strongly 

associated with psychiatric disorders, such as schizophrenia, major depression, bipolar 

disorder, and autism [109]. Two-hybrid screens and biochemical experiments revealed that 

DISC1 binds Cdk5 [110], and the DISC1 interactome includes two other proteins that are 

associated with Cdk5 and that interact functionally with DISC1 in the migration of 

embryonic cortical neurons, NDEL and DIXDC1 (Dix domain containing 1) [111]. The 

observation of both physical and functional interactions among this group of four proteins 

that share common biological functions makes them an attractive target for investigating the 

mechanisms that underlie DISC1-associated psychiatric disorders.
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Functional Modifications of the Microtubule Cytoskeleton by Cdk5

Post translation modifications of MTs control their stability and availability for interactions 

with other molecules, including motors. Cdk5/p35 binds tubulin, promoting microtubule 

polymerization and stability [98,102,112]. This stabilization of MTs can be abolished by 

competition with calmodulin (CaM) in a calcium dependent manner suggesting a switchable 

balance between the Cdk5 and CaMKII signaling pathways [113]. Cdk5 also regulates other 

signaling pathways that have an effect on MT stability. Tubulin acetylation leads to 

microtubule stabilization and resistance to depolymerizating agents, as well as promoting 

binding of molecular motors. SIRT2, a member of the Sirtuin family of NAD(+) dependent 

deacetylases, targets alpha-tubulin and inhibits neurite growth in hippocampal neurons 

[114]. Cdk5-mediated phosphorylation of SIRT2 at Ser-331 inhibits the catalytic activity of 

the protein and thus increases alpha-tubulin acetylation. Other protein deacetylases, such as 

HDAC6, can also act downstream of Cdk5 and show patterned distribution in axons, 

potentially offering another pathway for Cdk5 to regulate the modification state of 

microtubules.

Cdk5 also regulates the microtubule cytoskeleton through its effects on Microtubule 

Associated Proteins (MAPs) and intermediate filaments (IFs). Two of the most prominent 

MAPs, MAP2 and tau, are well-established targets of CDK5 activity [98,115,116]. MAP2 is 

located in the somatodendritic compartment of mature neurons, while tau is largely axonal 

[117]. MAP2 phosphorylation by Cdk5 stabilizes MTs, though the physiological 

significance of this modification remains unclear. In contrast, phosphorylation of tau by 

Cdk5 reduces its affinity for microtubules, thereby reducing microtubule stability [118,119]. 

Moreover, tau can control neuronal traffic by interacting with kinesins independently of its 

effects on microtubules [120,121]. The effect of Cdk5 phosphorylation of tau has been 

studied intensively due to the accumulation of hyperphosphorylated tau in the intracellular 

tangles that are a hallmark of Alzheimer’s disease [122–124]. It remains controversial 

whether the pathological effects of phospho-tau are due to its aggregation per se, or to the 

effects of the modification on wild type functions of tau in processes such as trafficking. In 

this context, it is important to remember that neurotoxic effects of altered Cdk5 activity have 

been associated with changes in trafficking and clustering of various cellular organelles, 

including ER and mitochondria [125,126].

Neurofilaments (NFs) also have multiple potential Cdk5 phosphorylation sites on their C-

terminal tails [127]. The extensive modification of NF by Cdk5 is associated with 

redistribution of the protein from its wild type axonal localization to accumulation in the cell 

body in the neurodegenerative state [128]. The C-terminal phosphorylation of the 

neurofilament heavy chain (NF-H) can redirect NF from binding kinesin to binding dynein, 

perhaps contributing to this redistribution of the protein [127]. Moreover, it has been 

proposed that C-terminal phosphorylation of NF plays a role in forming cross-bridges 

between neurofilaments and microtubules, immobilizing neurofilaments, stabilizing the 

axon and slowing axonal transport, potentially affecting the transport of other microtubule-

dependent cargo as well as NF itself [127].
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Thus, Cdk5 regulates neuronal trafficking at a variety of levels, and in ways that are highly 

specialized depending on cell type, cellular compartment and physiological state. Many of 

these activities of Cdk5 are undoubtedly connected to its roles in neuropathology, as we will 

discuss below.

Cdk5 and Pathology

In the final section of this review we will consider how disruptions in the function of Cdk5, 

and particularly those functions related to neuronal excitability, neurotransmission, protein 

trafficking and the compartmentalization of the neuron, contribute to neurological disease.

Synaptic Functions of Cdk5: Implications for Neuropathology and Disease

Given the many ways in which Cdk5 modulates neural structure and activity, it is not 

surprising that alterations of Cdk5 activity are associated with an equally broad range of 

neurological disorders. The neurotransmission effects of Cdk5 have many impacts on neural 

function, sometimes in complex and unexpected ways. For example, Cdk5 can alter 

dopaminergic transduction, and, in turn, DA and NMDA receptor activity can cause over 

activation of Cdk5 that leads to toxicity and cell death. Paoletti et al. [11] propose a model 

of HD where mutant huntingtin protein increases activation of DA and NMDA receptors, 

leading to dysregulated intracellular Ca2+ and overactivation of calpains [129]. Calpains 

then increase the conversion of p35 to p25 [130], which in combination with NMDA-

potentiated DA1-phosphorylation of Cdk5, phosphorylates tau and initiates striatal cell 

death. This proposal is further supported by observed elevations in Cdk5 levels in HD 

knock-in mice and HD human brains [11]. Sometimes the relationship is more complex, 

however. While Cdk5 typically limits excitatory glutamatergic transmission, for example, 

once an excitotoxic event is underway Cdk5 activity can intensify the consequent 

degeneration of hippocampal neurons [13]. It was hypothesized that the Cdk5-mediated 

activation of NMDA receptors is an underlying cause of ischemia-induced damage in CA1 

pyramidal neurons [12] and expression of a Cdk5 dominant negative mutant protected 

neurons from such damage. Further, Cdk5 hyperphosphorylates tau in the wake of ischemic 

events that induce formation of p25, potentially initiating cellular degeneration [131], and 

thus exacerbating neuronal damage and loss. These findings indicate a dichotomous role for 

Cdk5 in either preventing or exacerbating excitotoxic events such as epilepsy and ischemia.

Emotional disorders may also be linked to Cdk5, both through its generalized effects on 

neuronal excitability and more specifically those on DA metabolism and function. 

Dopamine and the dopaminergic nuclei (substantia nigra pars compacta, nucleus accumbens, 

and ventral tegmental area) are important in reward signaling. Reward or reinforcement 

cause a behavior to increase in intensity or frequency and is critical to the development of 

habit. Almost all addictive drugs cause increased dopamine release and this signaling is an 

important neural basis of substance abuse. Cdk5 is implicated in regulating the neural 

processes underlying cocaine addiction through its effects on dopaminergic 

neurotransmission [132]. Chronic cocaine administration increases striatal Cdk5 production 

and activity, which interacts with dopaminergic targets mentioned previously, including 

DARPP-32 [133] and tyrosine hydroxylase [38]. Infusion of Cdk5-inhibitors in the nucleus 
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accumbens prior to cocaine administration resulted in increased locomotor function. Cdk5 

activity within the basolateral amygdala is critical for memory consolidation and 

reconsolidation of reward-associated environmental cues [134]. These findings suggest a 

role for Cdk5 as a negative regulator of the behavioral and biochemical effects of cocaine 

exposure.

In addition to drug-based models of Cdk5-mediated emotional disorders, p35 loss-of-

function has been proposed as a model of hyperactivity [135], and through its effects on DA 

signaling, dysregulation of Cdk5 has been linked as a contributor to ADHD pathology [14]. 

Administration of a drug used to treat ADHD in humans, atomoxetine, decreased 

impulsivity in adolescent rats and was associated with decreased Cdk5 mRNA expression 

[136]. These findings, in conjunction with those describing the role of Cdk5 in hyperactivity 

and ADHD, argue for a role of Cdk5 in impulsivity, reward, and addiction.

Axon Trafficking and Neuropathology

Disruption of ion channel trafficking is often associated with neurological disorders 

including epilepsy, ataxia, pain and autism [137]. Consistent with this, Cdk5 contributes to 

neural disease in a host of ways related to its control of the polarized structure of the neuron 

and the trafficking of neuronal components. For example, the evidence linking Cdk5 to the 

functional organization of the AIS takes on added meaning in the light of recent data 

implicating the AIS in the pathology of Angelman syndrome and epilepsy [138,139].

Among axonopathies, amyotrophic lateral sclerosis (ALS) has probably the clearest 

association with axon transport as the motor neurons affected by the disease have unique 

characteristics such as very long axons and high energy metabolism [140]. ALS pathology is 

characterized by progressive degeneration of axons of motor neurons with accumulation of 

inclusion bodies containing phosphorylated NFs, SOD-1, TDP-43 and other proteins [140], 

leading to muscle atrophy and paralysis [141].

Alteration of Cdk5 function was shown in motor neurons in an SOD1-ALS mouse model 

[142]. ALS-type mutations in the SOD-1 gene caused Cdk5 mislocalization in the cell and 

elevated activity of Cdk5 due to a changed p35/p25 ratio, and it caused 

hyperphosphorylation of tau and NFs. Previous studies had shown reduction in both fast and 

slow anterograde axonal transport of NFs and other cytoskeleton proteins in SOD1-ALS 

neurons. This was accompanied by accumulation of NFs and NF inclusions in the perikarya 

and proximal axon of motor neurons and reduced levels of NFs in the distal axon [143,144]. 

Given the highly regulated topographic regulation of NF phosphorylation in the soma and 

the axon, together with the differential effects of Cdk5 on transport in different neuron 

compartments in wild type neurons, this raises the possibility of Cdk5 involvement in early 

events of the traffic impairment in ALS pathology. Remarkably, perikaryal accumulation of 

NF in this model seemed to be associated with reduced, rather than enhanced accumulation 

of phospho-tau, leading the authors to suggest that formation of inclusions may be a 

protective mechanism employed by the cell [142].

Morphologically, transport defects often are manifested as accumulation of materials in the 

soma and neurites accompanied by swollen axon segments or spheroids [143–146]. Analysis 

McLinden et al. Page 13

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of varicosities or swellings of the axon observed in many animal models of 

neurodegenerative diseases have shown that they contain abnormal organelles such as 

swollen mitochondria in ALS and Parkinson, and synaptic vesicles and protein aggregates in 

Alzheimer’s Disease. Cells eliminate these abnormal organelles and large protein aggregates 

by autophagy [147].

Recent results implicate Cdk5 activity in regulation of autophagy, though without 

addressing whether subcellular localization plays a role in Cdk5-dependent autophagy 

activation or inhibition. Loss of Cdk5 activity causes age-dependent accumulation of 

autophagosomes in the Drosophila central brain at a level exceeding that in physiologically 

matched controls [148]. In a mouse cell culture model of AD, Cdk5/p25 phosphorylated a 

critical component of the autophagy core complex, VPS34 [149]. VPS34 is a class III 

phosphatidylinositol-3 kinase that is involved in multiple vesicular trafficking events [150]. 

Cdk5-mediated phosophorylation of VPS34 interrupted its interaction with the autophagy 

protein Beclin1 and blocked induction of autophagy in response to starvation stress. These 

authors suggested that abnormal activation of Cdk5 in AD could negatively regulate 

autophagy and lead to cell death [149]. In contrast, the opposite effect on autophagy was 

observed in two models of Parkinson pathology, one using injection of MPTP into mice, and 

another employing an alpha-synuclein mutation [151]. In these cases, Cdk5 activity was 

required to activate autophagy by phosphorylation of endophilinB1 that in turn recruited 

another key component of the autophagy core complex, the UVRAG protein. This 

mechanism of autophagy induction increased cell death specifically under starvation stress. 

It is interesting that UVRAG is preferentially localized to late endosomes while the VPS-34-

Beclin1 complex has preference for isolation membrane/phagophore during starvation. 

Perhaps the difference in subcellular localization is relevant to the opposite directionality of 

the effect of Cdk5 in these two cases, though we note that different cell types were also 

employed in the two experiments.

The question of whether autophagy enhances or suppresses neurodegeneration has been 

contentious. Autophagy can clearly be part of the mechanism of pathological degeneration, 

but just as clearly, lack of autophagy can trigger degeneration by the failure to remove 

dysfunctional mitochondria and toxic aggregates. It seems likely that the contradictory 

effects of Cdk5 on degeneration via its regulation of the autophagy pathway stem in part 

from this dual nature of autophagy itself, and will depend on the details of a specific 

pathological context. It may also be relevant that autophagy has quite different properties in 

the axon vs the soma. The abundance of autophagy core complexes at the synapse and the 

trafficking dynamics of the process depend strongly on their interaction with both kinesin 

and dynein motors in primary neuronal culture [152]. It is plausible that depending on the 

pathological condition Cdk5 may have a stronger effect on one side of the autophagic 

pathway or the other, depending on the predominance of its various interactions with 

molecular motors. It will therefore be interesting to determine whether compartment specific 

regulation of neuronal traffic and autophagy regulation by Cdk5 are related.
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Conclusion

Neuronal physiology depends on a series of balancing acts: excitation vs inhibition, stability 

vs turnover, transmitter release vs recycling, transport towards vs away from the soma and 

many others. Many neural disorders are linked to the failure of one or more of these delicate 

equilibria, and in a remarkable number of cases, Cdk5 plays a central role in the 

establishment and maintenance of the necessary physiological balance. Here we have 

reviewed a few illustrative cases, particularly those associated with neurotransmission and 

the affiliated processes of neuronal subcellular organization. Exploiting Cdk5 in the 

treatment of neural disorders and disease will require a nuanced understanding of the subtle 

physiology to which it contributes.

Acknowledgments

We thank the members of our lab, particularly Ranjini Prithviraj, for many helpful discussions in synthesizing the 
ideas discussed in this review. McLinden KA, Trunova S contributed equally in writing this article. This work was 
supported by the Basic Neuroscience Program of the Intramural Research Program, NINDS, NIH, (Z01 NS 
003106).

References

1. Trunova S, Baek B, Giniger E. Cdk5 regulates the size of an axon initial segment-like compartment 
in mushroom body neurons of the Drosophila central brain. J Neurosci. 2011; 31:10451–10462. 
[PubMed: 21775591] 

2. Causeret F, Jacobs T, Terao M, Heath O, Hoshino M, et al. Neurabin-I is phosphorylated by Cdk5: 
implications for neuronal morphogenesis and cortical migration. Mol Biol Cell. 2007; 18:4327–
4342. [PubMed: 17699587] 

3. Connell-Crowley L, Le Gall M, Vo DJ, Giniger E. The cyclin-dependent kinase Cdk5 controls 
multiple aspects of axon patterning in vivo. Curr Biol. 2000; 10:599–602. [PubMed: 10837225] 

4. Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, et al. Phosphorylation of DARPP-32 by Cdk5 
modulates dopamine signalling in neurons. Nature. 1999; 402:669–671. [PubMed: 10604473] 

5. Li BS, Sun MK, Zhang L, Takahashi S, Ma W, et al. Regulation of NMDA receptors by cyclin-
dependent kinase-5. Proc Natl Acad Sci USA. 2001; 98:12742–12747. [PubMed: 11675505] 

6. Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, et al. Cyclin-dependent kinase 5 
governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci. 2007; 
10:880–886. [PubMed: 17529984] 

7. Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J. Cyclin-dependent kinase 5 is required 
for associative learning. J Neurosci. 2002; 22:3700–3707. [PubMed: 11978846] 

8. Lopes JP, Oliveira CR, Agostinho P. Neurodegeneration in an Abeta-induced model of Alzheimer’s 
disease: the role of Cdk5. Aging Cell. 2010; 9:64–77. [PubMed: 19895631] 

9. Chergui K, Svenningsson P, Greengard P. Cyclin-dependent kinase 5 regulates dopaminergic and 
glutamatergic transmission in the striatum. Proc Natl Acad Sci USA. 2004; 101:2191–2196. 
[PubMed: 14769920] 

10. Nguyen MD, Julien JP. Cyclin-dependent kinase 5 in amyotrophic lateral sclerosis. Neurosignals. 
2003; 12:215–220. [PubMed: 14673208] 

11. Paoletti P, Vila I, Rife M, Lizcano JM, Alberch J, et al. Dopaminergic and glutamatergic signaling 
crosstalk in Huntington’s disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J 
Neurosci. 2008; 28:10090–10101. [PubMed: 18829967] 

12. Wang J, Liu S, Fu Y, Wang JH, Lu Y. Cdk5 activation induces hippocampal CA1 cell death by 
directly phosphorylating NMDA receptors. Nat Neurosci. 2003; 6:1039–1047. [PubMed: 
14502288] 

McLinden et al. Page 15

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



13. Putkonen N, Kukkonen JP, Mudo G, Putula J, Belluardo N, et al. Involvement of cyclin-dependent 
kinase-5 in the kainic acid-mediated degeneration of glutamatergic synapses in the rat 
hippocampus. Eur J Neurosci. 2011; 34:1212–1221. [PubMed: 21978141] 

14. Drerup JM, Hayashi K, Cui H, Mettlach GL, Long MA, et al. Attention-deficit/hyperactivity 
phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35. Biol Psychiatry. 2010; 
68:1163–1171. [PubMed: 20832057] 

15. Liu J, Kipreos ET. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases 
(CAKs): differential conservation of CAKs in yeast and metazoa. Mol Biol Evol. 2000; 17:1061–
1074. [PubMed: 10889219] 

16. Dhavan R, Tsai LH. A decade of CDK5. Nat Rev Mol Cell Biol. 2001; 2:749–759. [PubMed: 
11584302] 

17. Lew J, Beaudette K, Litwin CM, Wang JH. Purification and characterization of a novel proline-
directed protein kinase from bovine brain. J Biol Chem. 1992; 267:13383–13390. [PubMed: 
1618840] 

18. Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E. p35 is a neural-specific regulatory subunit 
of cyclin-dependent kinase 5. Nature. 1994; 371:419–423. [PubMed: 8090221] 

19. Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, et al. Structure and regulation of the CDK5-
p25(nck5a) complex. Mol Cell. 2001; 8:657–669. [PubMed: 11583627] 

20. Wu DC, Yu YP, Lee NT, Yu AC, Wang JH, et al. The expression of Cdk5, p35, p39, and Cdk5 
kinase activity in developing, adult, and aged rat brains. Neurochem Res. 2000; 25:923–929. 
[PubMed: 10959488] 

21. Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu CL, et al. Cables links Cdk5 and c-Abl and 
facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron. 
2000; 26:633–646. [PubMed: 10896159] 

22. Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai LH. p35, the neuronal-specific activator of 
cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem. 
1998; 273:24057–24064. [PubMed: 9727024] 

23. Kim SH, Ryan TA. CDK5 serves as a major control point in neurotransmitter release. Neuron. 
2010; 67:797–809. [PubMed: 20826311] 

24. Fletcher AI, Shuang R, Giovannucci DR, Zhang L, Bittner MA, et al. Regulation of exocytosis by 
cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem. 1999; 274:4027–4035. 
[PubMed: 9933594] 

25. Taniguchi M, Taoka M, Itakura M, Asada A, Saito T, et al. Phosphorylation of adult type Sept5 
(CDCrel-1) by cyclin-dependent kinase 5 inhibits interaction with syntaxin-1. J Biol Chem. 2007; 
282:7869–7876. [PubMed: 17224448] 

26. Cheng K, Li Z, Fu WY, Wang JH, Fu AK, et al. Pctaire1 interacts with p35 and is a novel substrate 
for Cdk5/p35. J Biol Chem. 2002; 277:31988–31993. [PubMed: 12084709] 

27. Liu Y, Cheng K, Gong K, Fu AK, Ip NY. Pctaire1 phosphorylates N-ethylmaleimide-sensitive 
fusion protein: implications in the regulation of its hexamerization and exocytosis. J Biol Chem. 
2006; 281:9852–9858. [PubMed: 16461345] 

28. Fu WY, Cheng K, Fu AK, Ip NY. Cyclin-dependent kinase 5-dependent phosphorylation of 
Pctaire1 regulates dendrite development. Neuroscience. 2011; 180:353–359. [PubMed: 21335063] 

29. Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, et al. Site-specific phosphorylation of 
synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological 
functions. J Biol Chem. 1996; 271:21108–21113. [PubMed: 8702879] 

30. Floyd SR, Porro EB, Slepnev VI, Ochoa GC, Tsai LH, et al. Amphiphysin 1 binds the cyclin-
dependent kinase (cdk) 5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J Biol 
Chem. 2001; 276:8104–8110. [PubMed: 11113134] 

31. Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, et al. Cdk5 is essential for synaptic 
vesicle endocytosis. Nat Cell Biol. 2003; 5:701–710. [PubMed: 12855954] 

32. Tomizawa K, Sunada S, Lu YF, Oda Y, Kinuta M, et al. Cophosphorylation of amphiphysin I and 
dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J Cell Biol. 2003; 
163:813–824. [PubMed: 14623869] 

McLinden et al. Page 16

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



33. Fu AK, Ip FC, Fu WY, Cheung J, Wang JH, et al. Aberrant motor axon projection, acetylcholine 
receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad 
Sci USA. 2005; 102:15224–15229. [PubMed: 16203963] 

34. Fu AK, Fu WY, Cheung J, Tsim KW, Ip FC, et al. Cdk5 is involved in neuregulin-induced AChR 
expression at the neuromuscular junction. Nat Neurosci. 2001; 4:374–381. [PubMed: 11276227] 

35. Mohseni P, Sung HK, Murphy AJ, Laliberte CL, Pallari HM, et al. Nestin is not essential for 
development of the CNS but required for dispersion of acetylcholine receptor clusters at the area 
of neuromuscular junctions. J Neurosci. 2011; 31:11547–11552. [PubMed: 21832185] 

36. Moy LY, Tsai LH. Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase 
and regulates its stability. J Biol Chem. 2004; 279:54487–54493. [PubMed: 15471880] 

37. Lin W, Dominguez B, Yang J, Aryal P, Brandon EP, et al. Neurotransmitter acetylcholine 
negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron. 
2005; 46:569–579. [PubMed: 15944126] 

38. Kansy JW, Daubner SC, Nishi A, Sotogaku N, Lloyd MD, et al. Identification of tyrosine 
hydroxylase as a physiological substrate for Cdk5. J Neurochem. 2004; 91:374–384. [PubMed: 
15447670] 

39. Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/protein 
phosphatase-1 cascade. Neuron. 1999; 23:435–447. [PubMed: 10433257] 

40. Lebel M, Cyr M. Molecular and cellular events of dopamine D1 receptor-mediated tau 
phosphorylation in SK-N-MC cells. Synapse. 2011; 65:69–76. [PubMed: 20506302] 

41. Morabito MA, Sheng M, Tsai LH. Cyclin-dependent kinase 5 phosphorylates the N-terminal 
domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci. 2004; 24:865–876. 
[PubMed: 14749431] 

42. Sun Q, Turrigiano GG. PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up 
and down. J Neurosci. 2011; 31:6800–6808. [PubMed: 21543610] 

43. Rao A, Kim E, Sheng M, Craig AM. Heterogeneity in the molecular composition of excitatory 
postsynaptic sites during development of hippocampal neurons in culture. J Neurosci. 1998; 
18:1217–1229. [PubMed: 9454832] 

44. El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS. PSD-95 involvement in 
maturation of excitatory synapses. Science. 2000; 290:1364–1368. [PubMed: 11082065] 

45. Zhang S, Edelmann L, Liu J, Crandall JE, Morabito MA. Cdk5 regulates the phosphorylation of 
tyrosine 1472 NR2B and the surface expression of NMDA receptors. J Neurosci. 2008; 28:415–
424. [PubMed: 18184784] 

46. Bianchetta MJ, Lam TT, Jones SN, Morabito MA. Cyclin-dependent kinase 5 regulates PSD-95 
ubiquitination in neurons. J Neurosci. 2011; 31:12029–12035. [PubMed: 21849563] 

47. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of 
quantal amplitude in neocortical neurons. Nature. 1998; 391:892–896. [PubMed: 9495341] 

48. Seeburg DP, Feliu-Mojer M, Gaiottino J, Pak DT, Sheng M. Critical role of CDK5 and Polo-like 
kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron. 2008; 58:571–583. 
[PubMed: 18498738] 

49. Roselli F, Livrea P, Almeida OF. CDK5 is essential for soluble amyloid beta-induced degradation 
of GKAP and remodeling of the synaptic actin cytoskeleton. PLoS One. 2011; 6:e23097. 
[PubMed: 21829588] 

50. Hisanaga S, Saito T. The regulation of cyclin-dependent kinase 5 activity through the metabolism 
of p35 or p39 Cdk5 activator. Neurosignals. 2003; 12:221–229. [PubMed: 14673209] 

51. Minegishi S, Asada A, Miyauchi S, Fuchigami T, Saito T, et al. Membrane association facilitates 
degradation and cleavage of the cyclin-dependent kinase 5 activators p35 and p39. Biochemistry. 
2010; 49:5482–5493. [PubMed: 20518484] 

52. Zhu YX, Tiedemann R, Shi CX, Yin H, Schmidt JE, et al. RNAi screen of the druggable genome 
identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5. Blood. 
2011; 117:3847–3857. [PubMed: 21289309] 

53. Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R. Block of long-term potentiation by 
naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via 
activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-

McLinden et al. Page 17

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci. 2004; 
24:3370–3378. [PubMed: 15056716] 

54. Wei FY, Tomizawa K, Ohshima T, Asada A, Saito T, et al. Control of cyclin-dependent kinase 5 
(Cdk5) activity by glutamatergic regulation of p35 stability. J Neurochem. 2005; 93:502–512. 
[PubMed: 15816873] 

55. Ohshima T, Ogawa M, Takeuchi K, Takahashi S, Kulkarni AB, et al. Cyclin-dependent kinase 
5/p35 contributes synergistically with Reelin/Dab1 to the positioning of facial branchiomotor and 
inferior olive neurons in the developing mouse hindbrain. J Neurosci. 2002; 22:4036–4044. 
[PubMed: 12019323] 

56. Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH. Opposing roles of transient and prolonged 
expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron. 2005; 
48:825–838. [PubMed: 16337919] 

57. Lisman J, Yasuda R, Raghavachari S. Mechanisms of CaMKII action in long-term potentiation. 
Nat Rev Neurosci. 2012; 13:169–182. [PubMed: 22334212] 

58. Sananbenesi F, Fischer A, Wang X, Schrick C, Neve R, et al. A hippocampal Cdk5 pathway 
regulates extinction of contextual fear. Nat Neurosci. 2007; 10:1012–1019. [PubMed: 17632506] 

59. Guan JS, Su SC, Gao J, Joseph N, Xie Z, et al. Cdk5 is required for memory function and 
hippocampal plasticity via the cAMP signaling pathway. PLoS One. 2011; 6:e25735. [PubMed: 
21984943] 

60. Ris L, Angelo M, Plattner F, Capron B, Errington ML, et al. Sexual dimorphisms in the effect of 
low-level p25 expression on synaptic plasticity and memory. Eur J Neurosci. 2005; 21:3023–3033. 
[PubMed: 15978013] 

61. Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, et al. Deregulation of HDAC1 by p25/
Cdk5 in neurotoxicity. Neuron. 2008; 60:803–817. [PubMed: 19081376] 

62. Bahari-Javan S, Maddalena A, Kerimoglu C, Wittnam J, Held T, et al. HDAC1 regulates fear 
extinction in mice. J Neurosci. 2012; 32:5062–5073. [PubMed: 22496552] 

63. Neukirchen D, Bradke F. Neuronal polarization and the cytoskeleton. Semin Cell Dev Biol. 2011; 
22:825–833. [PubMed: 21884814] 

64. Barnes AP, Polleux F. Establishment of axon-dendrite polarity in developing neurons. Annu Rev 
Neurosci. 2009; 32:347–381. [PubMed: 19400726] 

65. de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis 
in the mammalian brain. Neuron. 2011; 72:22–40. [PubMed: 21982366] 

66. Fang WQ, Ip JP, Li R, Ng YP, Lin SC, et al. Cdk5-mediated phosphorylation of Axin directs axon 
formation during cerebral cortex development. J Neurosci. 2011; 31:13613–13624. [PubMed: 
21940452] 

67. Shelly M, Cancedda L, Lim BK, Popescu AT, Cheng PL, et al. Semaphorin3A regulates neuronal 
polarization by suppressing axon formation and promoting dendrite growth. Neuron. 2011; 
71:433–446. [PubMed: 21835341] 

68. Sasaki Y, Cheng C, Uchida Y, Nakajima O, Ohshima T, et al. Fyn and Cdk5 mediate 
semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral 
cortex. Neuron. 2002; 35:907–920. [PubMed: 12372285] 

69. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, et al. Semaphorin3A signalling is mediated 
via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common 
phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells. 
2005; 10:165–179. [PubMed: 15676027] 

70. Grubb MS, Shu Y, Kuba H, Rasband MN, Wimmer VC, et al. Short- and long-term plasticity at 
the axon initial segment. J Neurosci. 2011; 31:16049–16055. [PubMed: 22072655] 

71. Grubb MS, Burrone J. Activity-dependent relocation of the axon initial segment fine-tunes 
neuronal excitability. Nature. 2010; 465:1070–1074. [PubMed: 20543823] 

72. Gu C, Barry J. Function and mechanism of axonal targeting of voltage-sensitive potassium 
channels. Prog Neurobiol. 2011; 94:115–132. [PubMed: 21530607] 

73. Jensen CS, Rasmussen HB, Misonou H. Neuronal trafficking of voltage-gated potassium channels. 
Mol Cell Neurosci. 2011; 48:288–297. [PubMed: 21627990] 

McLinden et al. Page 18

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



74. Vacher H, Yang JW, Cerda O, Autillo-Touati A, Dargent B, et al. Cdk-mediated phosphorylation 
of the Kvbeta2 auxiliary subunit regulates Kv1 channel axonal targeting. J Cell Biol. 2011; 
192:813–824. [PubMed: 21357749] 

75. Cerda O, Trimmer JS. Activity-dependent phosphorylation of neuronal Kv2.1 potassium channels 
by CDK5. J Biol Chem. 2011; 286:28738–28748. [PubMed: 21712386] 

76. Waxman SG, Ritchie JM. Molecular dissection of the myelinated axon. Ann Neurol. 1993; 
33:121–136. [PubMed: 7679565] 

77. Rasband MN. Composition, assembly, and maintenance of excitable membrane domains in 
myelinated axons. Semin Cell Dev Biol. 2011; 22:178–184. [PubMed: 20932927] 

78. Sala C, Cambianica I, Rossi F. Molecular mechanisms of dendritic spine development and 
maintenance. Acta Neurobiol Exp (Wars). 2008; 68:289–304. [PubMed: 18511962] 

79. Parrish JZ, Emoto K, Kim MD, Jan YN. Mechanisms that regulate establishment, maintenance, 
and remodeling of dendritic fields. Annu Rev Neurosci. 2007; 30:399–423. [PubMed: 17378766] 

80. Tavosanis G. Dendritic structural plasticity. Dev Neurobiol. 2012; 72:73–86. [PubMed: 21761575] 

81. Cheung ZH, Ip NY. The roles of cyclin-dependent kinase 5 in dendrite and synapse development. 
Biotechnol J. 2007; 2:949–957. [PubMed: 17526057] 

82. Zhang P, Yu PC, Tsang AH, Chen Y, Fu AK, et al. S-nitrosylation of cyclin-dependent kinase 5 
(cdk5) regulates its kinase activity and dendrite growth during neuronal development. J Neurosci. 
2010; 30:14366–14370. [PubMed: 20980593] 

83. Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, et al. Cdk5 is required for multipolar-to-
bipolar transition during radial neuronal migration and proper dendrite development of pyramidal 
neurons in the cerebral cortex. Development. 2007; 134:2273–2282. [PubMed: 17507397] 

84. Jessberger S, Aigner S, Clemenson GD Jr, Toni N, Lie DC, et al. Cdk5 regulates accurate 
maturation of newborn granule cells in the adult hippocampus. PLoS Biol. 2008; 6:e272. 
[PubMed: 18998770] 

85. Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol. 
2006; 16:95–101. [PubMed: 16361095] 

86. Lippman J, Dunaevsky A. Dendritic spine morphogenesis and plasticity. J Neurobiol. 2005; 64:47–
57. [PubMed: 15884005] 

87. Kim Y, Sung JY, Ceglia I, Lee KW, Ahn JH, et al. Phosphorylation of WAVE1 regulates actin 
polymerization and dendritic spine morphology. Nature. 2006; 442:814–817. [PubMed: 16862120] 

88. Sung JY, Engmann O, Teylan MA, Nairn AC, Greengard P, et al. WAVE1 controls neuronal 
activity-induced mitochondrial distribution in dendritic spines. Proc Natl Acad Sci USA. 2008; 
105:3112–3116. [PubMed: 18287015] 

89. Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, et al. Cdk5 regulates EphA4-mediated dendritic spine 
retraction through an ephexin1-dependent mechanism. Nat Neurosci. 2007; 10:67–76. [PubMed: 
17143272] 

90. Xin X, Wang Y, Ma XM, Rompolas P, Keutmann HT, et al. Regulation of Kalirin by Cdk5. J Cell 
Sci. 2008; 121:2601–2611. [PubMed: 18628310] 

91. Setou M, Hayasaka T, Yao I. Axonal transport versus dendritic transport. J Neurobiol. 2004; 
58:201–206. [PubMed: 14704952] 

92. Kapitein LC, Hoogenraad CC. Which way to go? Cytoskeletal organization and polarized transport 
in neurons. Mol Cell Neurosci. 2011; 46:9–20. [PubMed: 20817096] 

93. Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, et al. A novel CDK5-dependent pathway for 
regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J. 2004; 23:2235–2245. 
[PubMed: 15152189] 

94. Ratner N, Bloom GS, Brady ST. A role for cyclin-dependent kinase(s) in the modulation of fast 
anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor 
protein. J Neurosci. 1998; 18:7717–7726. [PubMed: 9742142] 

95. Niethammer M, Smith DS, Ayala R, Peng J, Ko J, et al. NUDEL is a novel Cdk5 substrate that 
associates with LIS1 and cytoplasmic dynein. Neuron. 2000; 28:697–711. [PubMed: 11163260] 

McLinden et al. Page 19

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



96. Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, et al. A LIS1/NUDEL/cytoplasmic 
dynein heavy chain complex in the developing and adult nervous system. Neuron. 2000; 28:681–
696. [PubMed: 11163259] 

97. Pandey JP, Smith DS. A Cdk5-dependent switch regulates Lis1/Ndel1/dynein-driven organelle 
transport in adult axons. J Neurosci. 2011; 31:17207–17219. [PubMed: 22114287] 

98. Smith DS, Tsai LH. Cdk5 behind the wheel: a role in trafficking and transport? Trends Cell Biol. 
2002; 12:28–36. [PubMed: 11854007] 

99. Ou CY, Poon VY, Maeder CI, Watanabe S, Lehrman EK, et al. Two cyclin-dependent kinase 
pathways are essential for polarized trafficking of presynaptic components. Cell. 2010; 141:846–
858. [PubMed: 20510931] 

100. Park M, Watanabe S, Poon VY, Ou CY, Jorgensen EM, et al. CYY-1/cyclin Y and CDK-5 
differentially regulate synapse elimination and formation for rewiring neural circuits. Neuron. 
2011; 70:742–757. [PubMed: 21609829] 

101. Paglini G, Peris L, Diez-Guerra J, Quiroga S, Caceres A. The Cdk5-p35 kinase associates with 
the Golgi apparatus and regulates membrane traffic. EMBO Rep. 2001; 2:1139–1144. [PubMed: 
11743029] 

102. Lalioti V, Pulido D, Sandoval IV. Cdk5, the multifunctional surveyor. Cell Cycle. 2010; 9:284–
311. [PubMed: 20061803] 

103. Juo P, Harbaugh T, Garriga G, Kaplan JM. CDK-5 regulates the abundance of GLR-1 glutamate 
receptors in the ventral cord of Caenorhabditis elegans. Mol Biol Cell. 2007; 18:3883–3893. 
[PubMed: 17671168] 

104. Goodwin PR, Sasaki JM, Juo P. Cyclin-Dependent Kinase 5 Regulates the Polarized Trafficking 
of Neuropeptide-Containing Dense-Core Vesicles in Caenorhabditis elegans Motor Neurons. J 
Neurosci. 2012; 32:8158–8172. [PubMed: 22699897] 

105. Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL. Retrograde axonal transport: 
pathways to cell death? Trends Neurosci. 2010; 33:335–344. [PubMed: 20434225] 

106. Colin E, Zala D, Liot G, Rangone H, Borrell-Pages M, et al. Huntingtin phosphorylation acts as a 
molecular switch for anterograde/retrograde transport in neurons. EMBO J. 2008; 27:2124–2134. 
[PubMed: 18615096] 

107. Luo S, Vacher C, Davies JE, Rubinsztein DC. Cdk5 phosphorylation of huntingtin reduces its 
cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol. 2005; 169:647–
656. [PubMed: 15911879] 

108. Kaminosono S, Saito T, Oyama F, Ohshima T, Asada A, et al. Suppression of mutant Huntingtin 
aggregate formation by Cdk5/p35 through the effect on microtubule stability. J Neurosci. 2008; 
28:8747–8755. [PubMed: 18753376] 

109. Wang Q, Brandon NJ. Regulation of the cytoskeleton by Disrupted-in-schizophrenia 1 (DISC1). 
Mol Cell Neurosci. 2011; 48:359–364. [PubMed: 21757008] 

110. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, et al. Disrupted in Schizophrenia 
1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for 
schizophrenia. Mol Psychiatry. 2007; 12:74–86. [PubMed: 17043677] 

111. Singh KK, Ge X, Mao Y, Drane L, Meletis K, et al. Dixdc1 is a critical regulator of DISC1 and 
embryonic cortical development. Neuron. 2010; 67:33–48. [PubMed: 20624590] 

112. Hou Z, Li Q, He L, Lim HY, Fu X, et al. Microtubule association of the neuronal p35 activator of 
Cdk5. J Biol Chem. 2007; 282:18666–18670. [PubMed: 17491008] 

113. He L, Hou Z, Qi RZ. Calmodulin binding and Cdk5 phosphorylation of p35 regulate its effect on 
microtubules. J Biol Chem. 2008; 283:13252–13260. [PubMed: 18326489] 

114. Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B, et al. The regulation of SIRT2 
function by cyclin-dependent kinases affects cell motility. J Cell Biol. 2008; 180:915–929. 
[PubMed: 18332217] 

115. Cheung ZH, Ip NY. Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol. 
2012; 22:169–175. [PubMed: 22189166] 

116. Lopes JP, Agostinho P. Cdk5: multitasking between physiological and pathological conditions. 
Prog Neurobiol. 2011; 94:49–63. [PubMed: 21473899] 

McLinden et al. Page 20

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



117. Winckler B, Mellman I. Trafficking guidance receptors. Cold Spring Harb Perspect Biol. 2010; 2 
a001826. 

118. Vandebroek T, Terwel D, Vanhelmont T, Gysemans M, Van Haesendonck C, et al. Microtubule 
binding and clustering of human Tau-4R and Tau-P301L proteins isolated from yeast deficient in 
orthologues of glycogen synthase kinase-3beta or cdk5. J Biol Chem. 2006; 281:25388–25397. 
[PubMed: 16818492] 

119. Trinczek B, Biernat J, Baumann K, Mandelkow EM, Mandelkow E. Domains of tau protein, 
differential phosphorylation, and dynamic instability of microtubules. Mol Biol Cell. 1995; 
6:1887–1902. [PubMed: 8590813] 

120. Shahpasand K, Uemura I, Saito T, Asano T, Hata K, et al. Regulation of mitochondrial transport 
and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in 
Alzheimer’s disease. J Neurosci. 2012; 32:2430–2441. [PubMed: 22396417] 

121. Kanaan NM, Morfini GA, LaPointe NE, Pigino GF, Patterson KR, et al. Pathogenic forms of tau 
inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal 
phosphotransferases. J Neurosci. 2011; 31:9858–9868. [PubMed: 21734277] 

122. Flaherty DB, Soria JP, Tomasiewicz HG, Wood JG. Phosphorylation of human tau protein by 
microtubule-associated kinases: GSK3beta and cdk5 are key participants. J Neurosci Res. 2000; 
62:463–472. [PubMed: 11054815] 

123. Wang JZ, Grundke-Iqbal I, Iqbal K. Kinases and phosphatases and tau sites involved in 
Alzheimer neurofibrillary degeneration. Eur J Neurosci. 2007; 25:59–68. [PubMed: 17241267] 

124. Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary 
degeneration. Cold Spring Harb Perspect Med. 2012; 2 a006247. 

125. Darios F, Muriel MP, Khondiker ME, Brice A, Ruberg M. Neurotoxic calcium transfer from 
endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent 
phosphorylation of tau. J Neurosci. 2005; 25:4159–4168. [PubMed: 15843619] 

126. Morel M, Authelet M, Dedecker R, Brion JP. Glycogen synthase kinase-3beta and the p25 
activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. 
Neuroscience. 2010; 167:1044–1056. [PubMed: 20211702] 

127. Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC. Role of phosphorylation on the 
structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res. 2007; 
313:2098–2109. [PubMed: 17498690] 

128. Shea TB, Yabe JT, Ortiz D, Pimenta A, Loomis P, et al. Cdk5 regulates axonal transport and 
phosphorylation of neurofilaments in cultured neurons. J Cell Sci. 2004; 117:933–941. [PubMed: 
14762105] 

129. Tang TS, Chen X, Liu J, Bezprozvanny I. Dopaminergic signaling and striatal neurodegeneration 
in Huntington’s disease. J Neurosci. 2007; 27:7899–7910. [PubMed: 17652581] 

130. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, et al. Neurotoxicity induces cleavage of p35 
to p25 by calpain. Nature. 2000; 405:360–364. [PubMed: 10830966] 

131. Wen Y, Yang SH, Liu R, Perez EJ, Brun-Zinkernagel AM, et al. Cdk5 is involved in NFT-like 
tauopathy induced by transient cerebral ischemia in female rats. Biochim Biophys Acta. 2007; 
1772:473–483. [PubMed: 17113760] 

132. Benavides DR, Bibb JA. Role of Cdk5 in drug abuse and plasticity. Ann N Y Acad Sci. 2004; 
1025:335–344. [PubMed: 15542734] 

133. Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, et al. Effects of chronic exposure to 
cocaine are regulated by the neuronal protein Cdk5. Nature. 2001; 410:376–380. [PubMed: 
11268215] 

134. Li FQ, Xue YX, Wang JS, Fang Q, Li YQ, et al. Basolateral amygdala cdk5 activity mediates 
consolidation and reconsolidation of memories for cocaine cues. J Neurosci. 2010; 30:10351–
10359. [PubMed: 20685978] 

135. Krapacher FA, Mlewski EC, Ferreras S, Pisano V, Paolorossi M, et al. Mice lacking p35 display 
hyperactivity and paradoxical response to psychostimulants. J Neurochem. 2010; 114:203–214. 
[PubMed: 20403084] 

136. Sun H, Cocker PJ, Zeeb FD, Winstanley CA. Chronic atomoxetine treatment during adolescence 
decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic 

McLinden et al. Page 21

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



plasticity in the orbitofrontal cortex. Psychopharmacology (Berl). 2012; 219:285–301. [PubMed: 
21809008] 

137. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiol Rev. 
2011; 91:555–602. [PubMed: 21527732] 

138. Wimmer VC, Reid CA, So EY, Berkovic SF, Petrou S. Axon initial segment dysfunction in 
epilepsy. J Physiol. 2010; 588:1829–1840. [PubMed: 20375142] 

139. Kaphzan H, Buffington SA, Jung JI, Rasband MN, Klann E. Alterations in intrinsic membrane 
properties and the axon initial segment in a mouse model of Angelman syndrome. J Neurosci. 
2011; 31:17637–17648. [PubMed: 22131424] 

140. Soo KY, Farg M, Atkin JD. Molecular motor proteins and amyotrophic lateral sclerosis. Int J Mol 
Sci. 2011; 12:9057–9082. [PubMed: 22272119] 

141. Shelton SB, Johnson GV. Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem. 2004; 
88:1313–1326. [PubMed: 15009631] 

142. Nguyen MD, Lariviere RC, Julien JP. Deregulation of Cdk5 in a mouse model of ALS: toxicity 
alleviated by perikaryal neurofilament inclusions. Neuron. 2001; 30:135–147. [PubMed: 
11343650] 

143. Zhang B, Tu P, Abtahian F, Trojanowski JQ, Lee VM. Neurofilaments and orthograde transport 
are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A 
mutation. J Cell Biol. 1997; 139:1307–1315. [PubMed: 9382875] 

144. Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity 
of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci. 1999; 2:50–56. [PubMed: 
10195180] 

145. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, et al. Axonopathy and transport 
deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005; 307:1282–1288. 
[PubMed: 15731448] 

146. Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci. 
2005; 6:889–898. [PubMed: 16224497] 

147. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, et al. Extensive involvement of autophagy 
in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005; 
64:113–122. [PubMed: 15751225] 

148. Trunova S, Giniger E. Absence of the Cdk5 activator p35 causes adult-onset neurodegeneration in 
the central brain of Drosophila. Dis Model Mech. 2012; 5:210–219. [PubMed: 22228754] 

149. Furuya T, Kim M, Lipinski M, Li J, Kim D, et al. Negative regulation of Vps34 by Cdk mediated 
phosphorylation. Mol Cell. 2010; 38:500–511. [PubMed: 20513426] 

150. Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex--at the crossroads of autophagy 
and beyond. Trends Cell Biol. 2010; 20:355–362. [PubMed: 20356743] 

151. Wong AS, Lee RH, Cheung AY, Yeung PK, Chung SK, et al. Cdk5-mediated phosphorylation of 
endophilin B1 is required for induced autophagy in models of Parkinson’s disease. Nat Cell Biol. 
2011; 13:568–579. [PubMed: 21499257] 

152. Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during 
transport toward the cell soma in primary neurons. J Cell Biol. 2012; 196:407–417. [PubMed: 
22331844] 

McLinden et al. Page 22

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. The lifecycle of Cdk5
Cdk5 kinase activity is initiated by binding to the myristoylated regulatory subunit, p35. 

Myristoylation links Cdk5/p35 to the plasma membrane, limiting the action of the complex 

to specific cellular compartments. Cdk5/p35 autophosphorylates, leads to ubiquitylation and 

degradation. Alternatively, p35 can be cleaved by calpain in response to elevated cytosolic 

Ca+2 to produce Cdk5/p25. This form is resistant to degradation, and it lacks the 

myristoylation site, allowing the complex to dissociate from the membrane and interact with 

different targets.
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Figure 2. Targets of Cdk5 at pre- and post-synaptic sites
Schematic representation of some binding partners and targets of Cdk5 at a glutamatergic 

synapse. Presynaptically, Cdk5/p35 interacts with SNARE proteins and their regulators such 

as Munc18 and syntaxin to facilitate neurotransmitter exocytosis. Synaptic proteins are 

recycled by dynamin-I and amphiphysin-I mediated endocytosis in clathrin-coated vesicles, 

and returned to the reserve or readily releasable synaptic vesicle pools. Cdk5 interacts with 

each of these proteins/receptor complexes. Postsynaptically, Cdk5 regulates NMDA/AMPA 

receptor clustering within the postsynaptic density through the scaffolding protein, PSD-95. 

McLinden et al. Page 24

Brain Disord Ther. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Upon NMDA receptor activation p35 associates with CaMKIIα, potentially influencing 

signal transduction.
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Figure 3. Roles of Cdk5 in neuronal structure and trafficking
Schematic of a typical neuron, with spatially localized Cdk5-regulated functions listed under 

the cellular compartment in which they occur. Symbols referring to specific molecular and 

cellular components are defined in the boxed key at the top. Microtubule polarity is 

indicated by (+) and (−) symbols. Note that positioning of the components in neuronal 

processes typically reflects a balance of anterograde and retrograde trafficking. Most 

components are therefore shown in association with both dynein and kinesin motors.
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