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Abstract: High-quality fluorescent probes based on carbon dots (CDs) have promising applications
in many fields owing to their good stability, low toxicity, high quantum yield, and low raw material
price. The fluorine- and nitrogen-doped fluorescent CDs (NFCDs) with blue fluorescence was
successfully synthesized using 3-aminophenol and 2,4-difluorobenzoic acid as the raw material by
the hydrothermal method. The NFCDs as probe can be used to directly and indirectly detect Fe3+

(detection range: 0.1–150 µM and detection limit: 0.14 µM) and ascorbic acid (AA) (detection range:
10–80 µM and detection limit: 0.11 µM). The NFCDs-based probe shows exceptional selectivity and
strong anti-interference for Fe3+ and ascorbic acid (AA). In addition, we examined the response
of NFCDs to Fe3+ and AA in living cells, which showed that the timely use of AA can reduce the
effects of iron poisoning. This has important biological significance. This means that using NFCDs as
fluorescent probes is beneficial for Fe3+ and AA detection and observing their dynamic changes in
living cells. Thus, this work may contribute to the study of Fe3+- and AA-related diseases.

Keywords: carbon dot; Fe3+; ascorbic acid; cell imaging; molecular detection

1. Introduction

Fe is an essential trace element in the human body [1], but an overdose of this element
may lead to iron poisoning. Importantly, once iron is absorbed by the human body, it
can only be excreted in a few ways, except for Fe lost during blood loss. Excess iron in
the body is stored in the form of ferritin, which can then be deposited in the liver, heart,
and endocrine organs. Furthermore, Fe can cause various diseases, such as cancer, tissue
necrosis, Parkinson’s disease, and myocardial infarction disease [2–5]. Researchers have
found that ascorbic acid (AA), also known as vitamin C, can reduce Fe3+ to Fe2+, reducing
the acute diseases caused by excess Fe3+. AA has been widely used in health products
owing to various benefits such as promoting the formation of antibodies, absorption of
Fe, maintaining the activity of sulfhydrylase, and preventing cancer [6–9]. Therefore, the
quantitative detection of Fe3+ and AA is of great biological significance.

In the past few decades, there have been a variety of methods used for the quantitative
analysis and detection of intracellular and extracellular Fe3+, such as atomic absorption
spectrometry, electrochemical methods, and inductively coupled plasma in vivo mass
spectrometry [10–12]. However, these techniques have various disadvantages such as
high cost, complicated procedures, narrow detection range, and easy interference from
other metal ions during detection. There are also many types of detection methods for
AA, such as titrimetry [13], chemiluminescence [14], and capillary electrophoresis [15].
However, these methods also have various limitations such as damage to the sample,
high cost, and slow speed. In this context, fluorescence spectroscopy sensing technology
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based on fluorescent probes have received widespread attention owing to its advantages
such as simple operation, low cost, fast response, and high selectivity. In the past few
years, many fluorescent probes have been reported that can simultaneously detect Fe3+ and
AA, including nanocomposites, carbon dots (CDs), and gold nanoclusters. For example,
Yang et al. designed a red-emitting gold nanocluster with a precise molecular formula of
Au7(DHLA)2Cl2. This rigid structure of probe was destroyed in the presence of Fe2+, so
it can be used to detect Fe2+. The detection range and detection limit of Fe2+ were in the
range 10–100 µM and 0.2 µM [16]. Although the probe has great advantages in stability and
quantum yield, the detection ability of Fe2+ needs to be improved. Tai et al. prepared A
cysteamine (CA) functionalized copper nanoclusters, which exhibited a detection range of
0–1000 µM and 0–10,000 µM for Fe3+ and I−, respectively, while the detection limit of Fe3+

and I− was 0.92 µM and 3.01 µM, respectively [17]. However, considering the high detection
limit for Fe3+ and significant cost of precious metals, these techniques are not suitable for
mass production. Ungor et al. synthesized an adenosine monophosphate (AMP)-stabilized
fluorescent gold nanoclusters for the sensitive and selective detection of Fe3+. The detection
range and limit of Fe3+ reached 10–100 µM and 2.0 µM, respectively [18]. Despite the low
detection range, the detection limit still needs to be improved. Shojaeifard et al. designed
novel fluorometric penicillamine-capped bimetallic gold-copper nanoclusters. This probe
was significantly quenched upon the addition of Fe3+ due to the inner filter effect, so it
can be used to detect Fe3+. The detection range and limit of Fe3+ reached 0.5–100 µM and
0.1 µM, respectively. Despite the low detection limit, the detection range still needs to be
improved. Shabbir et al. designed a novel carbon quantum dot. This probe was quenched
upon the addition of Fe3+, so it can be used to detect Fe3+. The detection range and limit
of Fe3+ reached 0–60 ppM and 0.49 ppM, respectively. Although the low detection limit
is very excellent, the detection range still needs to be improved. Therefore, research on
high-quality fluorescent probes with broad detection ranges for Fe3+ and AA is still of great
significance. Xu et al. prepared nitrogen-doped graphene quantum dots, which exhibited a
detection range of 0.5–50 µM and 6–60 µM for Fe3+ and AA, respectively [19]. However,
considering the narrow detection range for Fe3+ and significant cost of precious metals,
these techniques are not suitable for mass production. In addition, although semiconductor
quantum dots and nanoclusters possess a greater fluorescence quantum yield and stability,
they have a higher toxicity and contain fewer types of surface ligands, which limits the
possibility for dynamic imaging of living cells and detection of a wide range of ions and
molecules. In comparison, CDs have better chemical and optical properties, such as a
high fluorescence quantum yield, good stability, excellent biocompatibility, and strong
resistance to bleaching, and are thus widely used for biological imaging and sensing, ion-
and small-molecule detection, and other fields [20–22]. Therefore, using CDs as fluorescent
probes is more beneficial for Fe3+ and AA detection and observing their dynamic changes
in living cells.

We hope to design a fluorescent carbon dot with a better detection limit and detection
range for Fe3+ and AA to detect Fe3+ and AA in cells. In this work, we used 3-aminophenol
and 2,4-difluorobenzoic acid as precursors to synthesize fluorine- and nitrogen-doped fluo-
rescent CDs (NFCDs) with an emission peak wavelength of 428 nm via the hydrothermal
method. The NFCDs could directly and indirectly detect Fe3+ and AA and exhibited a
wider detection range for each. An experiment was subsequently performed to determine
the response of NFCDs for Fe3+ and AA in living cells, which showed that the timely ad-
ministration of moderate AA can reduce the effects of iron poisoning, which has important
biological implications.

2. Experiment Section
2.1. Materials

Metal salts (AgNO3, NaCl, KI, MnCl2·4H2O, CaCl2, MgCl2·6H2O, Ba(CH3COO)2,
Pb(CH3COO)2, ZnCl2, FeCl3·6H2O, CrCl3·6H2O, CuCl2, NaOH, Na2HPO4, Na2SO3,
Na2CO3, and NaF), AA, L-Aspartic Acid (ASP), L-Lysine (Lys), Glycine (Gly), L-Glutathione
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(GSH), L-Histidine (His) and HCl were purchased from Macklin (Shanghai, China). 3-
aminophenol was supplied by Macklin (Shanghai, China). 2,4-diflouorbenzoylacetonitrile
was purchased from Shanghai Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Instruments

Transmission electron microscopy (TEM, FEI TECNAI G2 F20, Hillsboro, OR, USA),
X-ray photoelectron spectroscopy (XPS, Thermo Fisher ESCALAB 250Xi, Waltham, MA,
USA), Fourier-transform infrared spectroscopy (FT-IR, Nicolet 5700 spectrometer, Waltham,
MA, USA), ultraviolet-visible spectroscopy (UV-Vis, UV-2550 Shimadzu, Osaka, Japan),
photoluminescence spectroscopy (PL, Varian Cary Eclipse Agilent, Santa Clara, CA, USA),
and fluorescence lifetime measurements (FL, FLS1000 photoluminescence spectrometer)
were used to determine the morphology, chemical composition, chemical structure, and op-
tical properties of each sample. A laser-scanning confocal fluorescence microscope (Nikon
A1R MP+, Tokyo, Japan and Leica SP8, Wetzlar, Germany) was used for cell imaging.

2.3. Synthesis of NFCDs and Measurement of Fluorescence Quantum Yield of NFCDs

During the synthesis of the NFCDs, 0.2 g 3-aminophenol and 0.075 g 2,4-difluorobenzoic
acid were added as solutes into a polytetrafluoroethylene-lined autoclave containing 15 mL of
water and heated at 180 ◦C for 12 h.

After the reaction, the reaction container was naturally cooled to room temperature.
The solution was removed and placed in a centrifuge tube, centrifuged at 8000 rpm for
5 min, and the supernatant collected. Centrifugation was performed twice as to remove
large particles. Then, the sample was dialyzed with a 500 Da membrane and deionized
water for three days. The deionized water was changed every 12 h during the dialysis
process. The dialysate was filtered through a 0.22 µM polyethersulfone aqueous membrane
and lyophilized to obtain the NFCD powder. Then, the absolute quantum yield of NFCDs
was measured by photoluminescence spectroscopy.

2.4. Quantitative Detection of Fe3+ and AA

The same concentration of NFCDs (0.1 mg mL−1) was mixed with different known
concentrations of Fe3+ (0.1–150 µM), and a fluorescence spectrometer was used to measure
the emission intensity at 428 nm under excitation at 355 nm. However, to detect AA, NFCDs
were added to 150 µM Fe3+ and different concentrations of AA (10–80 µM) for 20 min, and
the changes in the fluorescence intensity were recorded. The detection limit of the NFCDs
for Fe3+ and AA were subsequently calculated according to the formula proposed by the
International Union of Pure and Applied Chemistry (IUPAC) [23]:

L = 3σ/k

where k represents the slope of the graph of fluorescence intensity versus Fe3+ or AA
concentration, and σ represents the standard deviation of the background sample. The
standard deviation was measured by measuring the emission wavelength of the blank
sample multiple times at a fluorescence wavelength of 428 nm.

2.5. Cell Imaging and Cell Viability

Human esophageal cancer cells (KYSE-150 cells) were placed in a 96-well plate and
incubated for one day, and then a mixture of different concentrations of the CDs and
culture medium was added to the 96-well plate for another 12 h. The relative viability of
the KYSE-150 cells was determined using the CCK-8 assay. Finally, the absorbance of the
lysed cells was recorded at 570 nm using a microplate reader. To reduce the error, each
experiment had six comparison data.

Fluorescence quenching was recorded after exogenous addition of 100 µL Fe3+ (con-
centration: 10 mM) to the KYSE-150 cells stained with NFCDs for 20 min. After the
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cell fluorescence was stable, 200 µL of AA (concentration: 10 mM) was added and the
fluorescence recovery recorded.

3. Results and Discussion
3.1. Characterization of Nanoprobe NFCDs

In this study, blue emission NFCDs were synthesized by the hydrothermal method
at 180 ◦C for 12 h (Scheme 1). To further investigate the optimal synthesis conditions, we
used different ratios of 3-aminophenol and 2,4-difluorobenzoic acid to synthesize different
fluorescent carbon dots (Figure 1a). It is obvious that the fluorescent carbon dots have
the best fluorescence when the ratio of 3-aminophenol and 2,4-difluorobenzoic acid is 8/3
strength. Therefore, NFCDs are synthesized with this ratio. And its quantum yield is
12.66% (Figure 1b). The TEM results revealed the morphology and size distribution of
the NFCDs (Figure 1c). The NFCDs consist of approximately 2.60 nm sized nanoparticles
(Figure 1c,d).

In addition, FT-IR spectroscopy revealed the surface functional groups of the NFCDs
(Figure 2a). The characteristic absorption peaks at 3448 and 3228 cm−1 correspond to the
typical stretching vibrations of -COH and -NH2, respectively, which presumably originate
from 3-aminophenol after the reaction. The characteristic absorption band at 1630 cm−1

was attributed to the strong stretching vibration of asymmetrical C=O [24]. The peaks at
1410 cm−1 were attributed to the typical stretching vibrations of C=N. In addition, the two
absorption peaks at 990 and 1260 cm−1 correspond to the C-F stretching vibrations [24,25].
To further elucidate the chemical structure, XPS was used to analyze the elemental contents
and chemical bonds. As shown in Figure 2b, the NFCDs are composed of four elements:
C, O, N, and F. The corresponding binding energies at 285.08 eV, 531.08 eV, 400.08 eV, and
600.08 eV originate from C 1s, O 1s, N 1s, and F 1s [26]. The contents of these elements
are 74.22%, 14.33%, 10.11%, and 1.35%, respectively. The O 1s XPS spectrum shows the
presence of C=O (531.2 eV) and C-O (531.8 eV), as shown in Figure 2c [26]. Figure 2d
shows the high-resolution C 1s spectrum, which exhibits three peaks: C=O (286.3 eV),
C-O (285.6 eV), and C-C/C-N (284.8 eV) [24,25]. The N 1s XPS spectrum is displayed in
Figure 2e, which includes three peaks at 399.8 eV, and 401.7 eV, corresponding to pyridinic
N, C-N=C, and Amino N (Figure 2e), respectively [27]. The F 1s XPS spectrum shows two
peaks at 686.48 eV and 687.28 eV, which corresponds to semi-ionic C-F and covalent C-F
(Figure 2f) [24]. Therefore, the XPS and FT-IR analyses confirmed that F and N were doped
into NFCDs.
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ing high-resolution (c) O 1 s, (d) C 1 s, (e) N 1 s, and (f) F 1 s XPS spectra.

The optical characteristics of NFCDs were investigated by measuring the absorption,
excitation and emission spectra, which are collected in Figure 3. The peaks at 242 nm and
308 nm are attributed to the π-π* transition of the conjugated sp2 domains from the C
core. The peak at 427 nm corresponded to the n-π* transition. As shown in Figure 3a, the
NFCDs display a blue emission peak at 428 nm. In Figure 3b, the 3D spectrum shows the
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fluorescence emission spectrum of NFCDs is dependent in different excitation spectrum.
The fluorescence spectrum of NFCD is dependent of excitation wavelength.
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Figure 3. (a) Emission spectrum (blue line) under 355 nm excitation, excitation spectrum (red line)
under 428 nm emission, and the UV-vis absorption (black dotted line) spectrum of NFCDs. Inset:
photograph of the aqueous solution of NFCDs acquired under 365 nm light irradiation. (b) 3D
spectrum of NFCDs.

3.2. Selectivity toward Fe3+ and AA

To use NFCDs as sensors to detect the presence of Fe3+ in the environment, we
examined the stability of the salt solution, photostability, pH stability of NFCDs, and
reaction sensitivity. As shown in Figure 4a, the fluorescence intensity remains stable in
a NaCl solution at a concentration of 0–200 µM, which suggests a good stability in a
salt solution. Under continuous irradiation with a 365 nm light source, the fluorescence
intensity remained relatively consistent for approximately 1 h, which confirmed the optical
stability of the NFCDs (Figure 4b). As shown in Figure 4c, NFCDs are sensitive to both
strong alkalis and acids, although the fluorescence intensity remained relatively stable
within the range of pH 3–12. Although the performance decreased under strong acidic
and basic conditions, most solutions tested in practice are weakly basic or acidic, and thus
the NFCDs are very suitable as Fe3+ sensors. The fluorescence intensity of NFCDs almost
remained unchanged after 10 min reaction with Fe3+, which shows the NFCDs processed
high sensitivity to Fe3+ (Figure 2d).

The selectivity of NFCDs against different ions was examined by measuring the
fluorescence response to ions. Compared to other ions, the NFCDs exhibited a remarkable
fluorescence quenching for Fe3+. Figure 5a shows that Cd2+, Zn2+, Pb2+, Cu2+, Ag+, Mn2+,
Ca2+, Mg2+, HCO3

−, CO3
2−, HPO4

2−, Na+, AA, LAC, LLY, Gly, GSH and LHI caused
almost no response, which demonstrates the exceptional selectivity of NFCDs for Fe3+ over
other ions and amino acids. Figure 5b shows the intensity after adding different ions and
amino acids in the solution of Fe3+ co-existing with NFCDs. Notably, only AA added to
the reaction system restored the fluorescence intensity. The results verified that the NFCDs
have a very strong anti-interference capability and can indirectly detect AA.
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Figure 5. (a) Fluorescence intensity of NFCDs in the presence of different ions and amino acids
(concentration: 1 mM). (b) Fluorescence intensity of NFCDs after adding different ions and amino
acids into the reaction system containing Fe3+ and NFCDs (concentration: 1 mM). (c) Fluorescence
lifetime spectrum and (d) fitting diagram of NFCDs (0.1 mg mL−1) with different concentrations
of Fe3+.
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In addition, the absorption spectrum and fluorescence lifetime were used to ana-
lyze the quenching mechanism of the NFCDs (Table S1, Figure 5c,d). Common causes of
decreased fluorescence usually include photo-induced electron transfer, fluorescence reso-
nance energy transfer, static quenching effect (SQE), and dynamic quenching effect [28–31].
Since the fluorescence lifetime has an important relationship with the fluorescence quench-
ing mechanism, we tested the fluorescence lifetime of NFCDs in different concentrations
of Fe3+. Since the fluorescence lifetime of the probe remains unchanged, the quenching
mechanism of NFCDs is considered to be static quenching. In addition, the absorption
spectra of Fe3+, NFCDs and Fe3+/NFCDs were also measured (Figure S1). It can be seen
that the absorption peak of NFCDs absorption spectrum shifted after Fe3+ was added,
which means that new substances were produced. This is because NFCDs combined
with Fe3+ to form a non-luminous ground state complex. This further confirmed that the
fluorescence quenching mechanism of the NFCDs was SQE. In addition, when AA was
introduced into the reaction, the fluorescence was restored and τ3, τ4 and τAvg2 nearly
remained unchanged, which further confirmed that SQE is the cause of fluorescence re-
duction (Figure S2 and Table S2). As this quenching is reversible, an experiment could be
designed to indirectly detect AA using this characteristic. There was no electron transfer
between the NFCDs and Fe3+; therefore, when AA was added to this reaction, Fe3+ was
reduced by AA to Fe2+, which released the NFCDs and restored the fluorescence. After
300 µM AA were added to the reaction system of 300 µM Fe3+ and NFCDs, we examined
the relationship between the corresponding fluorescence intensity and reaction time (the
wavelength was 428 nm) (Figure S3). The fluorescence intensity stabilized and was restored
after 20 min. Thus, the experimental results showed that the NFCDs have very good direct
or indirect selectivity toward Fe3+ and AA.

3.3. Detection Range and Limit of Fe3+ and AA for the NFCDs-Based Probe

Previous experiments have shown that NFCDs have excellent selectivity for Fe3+

and AA. Therefore, the relationship between the fluorescence intensity of NFCDs and the
change in the Fe3+ and AA concentration was further studied. In order to exclude the
influence of the inner filter effect on the NFCDs, the fluorescence intensity of NFCDs was
corrected by the following formula:

FC = FM × 10 × (AEX + AEM)/2

where FC represents the corrected intensity at 428 nm and FM represents the registered
intensity at 428 nm. Further, AEX and AEM represent the absorbance of Fe3+ at 355 nm and
428 nm, respectively. The emission spectrum distribution of 0.1 mg mL−1 NFCDs after
quenching with different Fe3+ concentrations is shown in Figure 6a. Figure 6b shows the
linear relationship between the Fe3+ concentration and (F0 − F)/F0 (where F0 represents the
fluorescence intensity of NFCDs without Fe3+ and F represents the corrected fluorescence
intensity of NFCDs with different concentrations of Fe3+). The linear relationship equation
was determined as:

Y1 = 0.02065 + 0.00242 X1

where X1 represents the concentration of Fe3+ (µM) and Y1 represents (F0 − F)/F0. The
R2 was found to be 0.99578, indicating a very good linear fit. The detection limit was
approximately 0.14 µM and the detection range was between 0.2–150 µM.
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Figure 6. (a) The normalized fluorescence spectra of NFCDs with different Fe3+ concentrations.
(b) Linear relationship between the corrected fluorescence intensity and Fe3+ concentration (F0 is
the fluorescence intensity without Fe3+ and F is the corrected fluorescence intensity at different
Fe3+ concentrations). (c) Fluorescence spectra after adding AA to the solution of Fe3+ (150 µM) and
NFCDs for 20 min. (d) Linear relationship between the corrected fluorescence intensity and AA
concentration (F1 is the corrected fluorescence intensity of NFCDs/Fe3+ without AA and F2 is the
corrected fluorescence intensity at different AA concentrations).

In addition, because of the presence of AA, Fe3+ can be reduced to Fe2+. Therefore,
the fluorescence intensity changes were recorded after adding NFCDs to Fe3+ (150 µM)
and different concentrations of AA (10–80 µM) for 20 min (Figure 6c). Figure 6d shows the
linear relationship between the corrected fluorescence intensity of the emission spectrum at
428 nm and the concentration of AA, from which the following equation was obtained:

Y2 = 0.37176 − 0.00311 X2

where X2 represents the concentration of AA and Y2 represents (F1 − F2)/F1 (where F1
represents the corrected fluorescence intensity of the NFCDs with 10 µM AA and F2
represents the corrected fluorescence intensity with different concentrations of AA). The
detection limit and detection range were 0.11 µM and 10–80 µM, respectively. Compared
with other types of fluorescent probes (Table 1), which have a narrow detection range,
NFCDs are excellent for the selective detection of AA and Fe3+. In general, NFCDs have
very good potential for the quantitative detection of Fe3+ and AA.

3.4. Cell Imaging of NFCDs in Response to Fe3+ and AA

As shown in Figure S4, the cells with the NFCDs at a concentration of 120 µg mL−1

maintained very good activity, indicating that NFCDs have low cytotoxicity and are suitable
for cell imaging. Therefore, cells were stained with 300 µg mL−1 NFCDs for 20 min to
measure the NFCD response toward intracellular Fe3+ and AA. To show the overlapping
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cell imaging information from the bright and fluorescence field, (Figure 7c,f,i) represent the
mixed blue fluorescence and bright field imaging. The cells without any added substance,
those with 100 µL Fe3+ (concentration: 10 mM), and those with 200 µL AA (concentration:
10 mM) added after reacting for 5 min are shown in Figure 7a–i, respectively. The cells
exhibit an obvious darkening and brightening process. These results indicate that AA can
quickly enter the cell and react with Fe3+ to release the NFCDs.

Table 1. Comparison of several fluorescent probes for Fe3+ and AA described in recent reports.

Types of Fluorescent
Probes

Detection Range of
Fe3+ (µM)

Detection Range of
AA (µM) Reference

Carbon dot 0–0.38 0–0.78 [32]

Metal-organic framework 5–60 1–20 [11]

Carbon dot 0–145 0–150 [33]

nanoclusters 0.5–80 0.2–80 [34]

Carbon dot 0–100 0–100 [35]

Carbon dot 0.75–125 0.25–30 [36]

Carbon dot 0.2–150 10–80 This work
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4. Conclusions

In this work, we synthesized a new type of fluorescent NFCD by a simple hydrother-
mal method using 3-aminophenol and 2, 4-difluorobenzoic acid. Due to the doping of N
and F elements, the NFCDs had blue fluorescence (428 nm), showed excellent stability [37],
exhibited a high selectivity for Fe3+ and AA, and have a broad detection range. The detec-
tion range of Fe3+ and AA have reached 0.2–150 µM and 10–80 µM. The detection limit of
Fe3+ and AA have reached 0.14 uM and 0.11 µM. In addition, experiments were conducted
on the response of NFCDs to Fe3+ and AA in living cells. The results showed that when too
much Fe3+ was accidentally consumed, an appropriate amount of AA over time will slow
down the effects of iron poisoning, which illustrates the biological significance of this study.
NFCDs are of great significance for the detection of Fe3+ and AA in living cells. However,
due to the limitation of high detection limit and complex cell environment, NFCDs still
cannot detect spontaneous Fe3+ in alive cells. It also limits wide application of NFCDs in
the biomedical field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196158/s1, Figure S1: Absorption spectra of NFCDs
(blue line), Fe3+ (red line), and NFCDs quenched by Fe3+ (black line); Figure S2: (a,b) Fluorescence
decay of NFCDs with different concentrations of AA added to the NFCDs (0.1 mg mL−1) and Fe3+

solution (150 µM); Figure S3: After putting NFCDs into the reaction system of Fe3+ (1 mM) and
AA (1 mM), the change of its fluorescence intensity over time; Figure S4: Cell viability in different
NFCDs concentration (µg mL−1). Table S1: Double exponential fitting fluorescence lifetime of
NFCDs at different Fe3+ concentrations; Table S2: Double exponential fitting fluorescence lifetime of
Fe3+/NFCDs at different AA concentrations.
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