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Research on elemental 2D materials has been experiencing a renaissance in the

past few years. Of particular interest is tellurium (Te), which possesses many

exceptional properties for nanoelectronics, photonics, and beyond.

Nevertheless, the lack of a scalable approach for the thickness engineering and

the local properties modulation remains a major obstacle to unleashing its full

device potential. Herein, a solution-processed oxidative etching strategy for post-

growth thickness engineering is proposed by leveraging the moderate chemical

reactivity of Te. Large-area ultrathin nanosheets withwell-preservedmorphologies

could be readily obtained with appropriate oxidizing agents, such as HNO2, H2O2,

and KMnO4. Compared with the conventional physical thinning approaches, this

method exhibits critical merits of high efficiency, easy scalability, and the capability

of site-specific thickness patterning. The thickness reduction leads to substantially

improved gate tunability of field-effect transistors with an enhanced current

switching ratio of ~103, promoting the applications of Te in future logic

electronics. The response spectrum of Te phototransistors covers the full range

of short-wave infrared wavelength (1–3 μm), and the room-temperature

responsivity and detectivity reach 0.96 AW-1 and 2.2 × 109 Jones at the telecom

wavelength of 1.55 μm, together with a favorable photocurrent anisotropic ratio of

~2.9. Our study offers a new approach to tackling the thickness engineering issue

for solution-grown Te, which could help realize the full device potential of this

emerging p-type 2D material.
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Introduction

Monoelemental two-dimensional (2D) crystals represent a

particular category in the 2D materials family because of their

unique physicochemical properties (Mannix et al., 2017).

Graphene is indisputably the most famous one that has

triggered the whole research field. Nevertheless, research on

compound 2D materials (e.g., transition metal disulfides,

metal halides, and transition metal carbides/nitrides) seems to

dominate this area owing to their much larger numbers. With the

substantial progress in synthesis technologies, a series of 2Dmain

group elements and transition metals have been experimentally

realized over the past few years and reawaken the researcher’s

intense interest (Glavin et al., 2020; Fan et al., 2021; Si et al., 2021;

Zhou et al., 2021). The elemental 2D materials typically exhibit

metallic or semiconducting characteristics with high room-

temperature carrier mobility, strong light absorption, and

emerging topological properties, enabling potential widespread

applications in future electronics, photonics, and energy-related

devices (Nevalaita and Koskinen, 2018; Lin et al., 2020; Wu Z

et al., 2021; Bat-Erdene et al., 2022). Moreover, the elemental

materials bear a distinct advantage over 2D compounds in high-

FIGURE 1
Characterizations of the solution-grown 2D Te flakes. (A) Schematic lattice structure of trigonal Te. (B) Optical images of Te nanosheets. The
scale bar is 20 μm. (C) Low- and high-magnification TEM images of individual Te and corresponding selected area diffraction pattern, evidencing its
single crystallinity and growth direction along the c-axis. (D) XRD pattern of synthetic Te. (E) Raman spectrum that shows characteristic peaks of E1-
TO, A1, and E2 vibrational modes. (F) Angle-resolved polarized Raman mapping of Te nanosheet. Polar plots of Raman intensity for (G) E1-TO
and (H) A1 mode. (I) AFM image of a typical Te nanosheet, the thickness is ~30 nm.
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quality synthesis because the dissociation and stoichiometric

problems do not exist.

Of particular interest among them is the emerging 2D

tellurium (Te) that exhibits an intrinsic p-type transport

characteristic and high hole mobility of ~1,300 cm2·V−1·s−1,
offering a new material platform to combine with many n-type

2D crystals for van der Waals (vdW) heterojunction

electronics (Huang et al., 2017; Zhu et al., 2017; Wang

et al., 2018; Tong et al., 2020; Zhao et al., 2021; Zhang

et al., 2022) Besides, the highly-tunable bandgap of Te

(~0.35–1.2 eV) perfectly bridges the gap between

semimetals and the widely-studied 2D transition metal

disulfides and has unique applications in the short-wave

infrared (SWIR) photodetection (Amani et al., 2018;

Deckoff-Jones et al., 2019; Chaves et al., 2020; Peng et al.,

2021; Ma et al., 2022). In particular, its strong anisotropic

lattice structure enables the direct detection of the

polarization information of infrared light, which is difficult

to realize with the current infrared imaging technology.

Generally, Te shares many similar properties with black

phosphorus (BP) but has better ambient stability due to its

higher oxidation barrier in ambient. Many previous studies

have established that the performance of Te-based transistors

and detectors hardly degrades over several months, even

without any encapsulation (Wang et al., 2018; Tong et al.,

2020; Ma et al., 2022).

Despite the versatile synthesis techniques for Te, such as

chemical vapor deposition (Huang et al., 2021; Peng et al.,

2021; Yang et al., 2022; Zhao et al., 2022), physical vapor

deposition (Wang et al., 2014; Tao et al., 2021), and molecular

beam epitaxy (Chen et al., 2017; Zheng W et al., 2021), the

substrate-free solution approach offers distinct advantages of

low temperature (<200°C) and scalability. It has been widely

used to prepare monocrystal quasi-2D nanosheets with a

lateral size of over 100 μm (Yao et al., 2021a). Nevertheless,

due to its special growth mechanism, this method could not

easily acquire ultrathin Te by adjusting the synthesis

parameters (Londono-Calderon et al., 2020; Li et al., 2021).

The hydrothermally-processed 2D crystals using Na2TeO3

and polyvinylpyrrolidone (PVP) as the precursor possess a

typical thickness larger than 20 nm, while the Te flakes

synthesized by oxidizing tellurium sodium hydride

generally have a thickness of 50–170 nm (Wang et al., 2019;

Hu et al., 2021). Due to the small bandgap and large carrier

density, the thick Te usually exhibits degenerate charge

transfer characteristics and a weak gate tuning of drain

FIGURE 2
Controllable thinning of the Te nanosheets. (A)Optical images of an individual Te flake upon in-situ oxidative etching with HNO2 solution. Scale
bar, 10 μm. (B)Corresponding Raman spectra of the Te sample, indicating blueshift of A1 and E2 peaks with thickness reduction. (C)Optical images of
Te before and after the wet etching process with HNO2, revealing the capability of scalable thinning.
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current at room temperature, limiting its application in logic

electronics and optoelectronics.

Te is located between semiconducting selenium and metallic

polonium in group VIA of the periodic table. The special

electronic configuration endows it with moderate reactivity,

allowing properties manipulation by appropriate chemical

transformation (Xu et al., 2015). Leveraging this unique

characteristic, we present a novel solution-processed oxidative

etching method for Te post-growth thickness engineering.

Scalable ultrathin Te nanosheets with well-retained

morphologies could be easily obtained with appropriate

oxidizing agents, such as HNO2, H2O2, and KMnO4.

Particularly, thickness patterning is realized when combined

with the photolithography technique, which enables the local

modulation of material properties and the artificial design of

novel device architectures. Field-effect transistors (FETs)

fabricated with thinned Te reveals a much-enhanced current

ON/OFF ratio of ~103, promoting their future applications in

logic devices. The response spectrum of Te phototransistors

covers the full range of SWIR wavelength (λ = 1–3 μm), and

the responsivity and detectivity reach 0.96 AW−1 and 2.2 × 109

Jones at the optical communication wavelength of 1.55 μm.

Besides, a high photocurrent anisotropic ratio of ~2.9 is

obtained, which ensures the promising application of Te in

polarized infrared imaging. Scalable Thickness engineering has

been considered a major obstacle for solution-grown Te. Our

study offers a new approach to tackling this issue, helping

unleash the full device potential of this emerging 2D material.

Materials and methods

Hydrothermal synthesis of Te and post-
growth thinning process

The synthesis of quasi-2D Te nanosheets starts with

dissolving 0.6 g of PVP (Mw 58,000) and 0.11 g of Na2TeO3

in 16 ml of ultrapure water. The mixture was magnetically stirred

for 20 min to form a transparent homogeneous solution. 2 ml of

ammonia solution (25%–28%, w/w) and 1 ml of hydrazine

hydrate (80%, w/w) were then added. After another 1 min of

magnetic stirring, the nutrient solution was transferred into a

50 ml hydrothermal reactor. The crystal growth process was

performed at 180°C for 4.5 h. The resulting Te nanosheets

FIGURE 3
(A) Schematic fabrication process for the thickness patterning of Te nanosheet. (B) Optical image of the Te nanosheet with a “TE” photoresist
pattern on the surface. (C–D) 2D and 3D AFM images of the locally-thinned Te flake. (E) Height profiles along the blue and red lines in (C), revealing
the capability of local thinning with this oxidative etching method.
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were centrifuge-washed several times at 5,000 rpm and finally

redispersed in the ultrapure water.

An oxidative-etching method with HNO2 was first adopted

for post-growth thinning of Te nanosheets. The oxidant solution

was prepared by adding 25 mg of sodium nitrite (NaNO2) into

40 ml of dilute hydrochloric acid (HCl, 10 mmol/L). The number

of moles of H+ is slightly larger than that of NO2- for the

subsequent acid etching process. The thinning was performed

by immersing drop-casted Te nanosheets on SiO2/Si substrate

into the solution at room temperature (or mixing the oxidant

solution with Te redispersion solution). Thickness engineering

with other appropriate oxidizing agents, such as H2O2 and

KMnO4, and the H2O2 concentration-dependent thinning

effect were also investigated.

Device fabrication

The FETs and phototransistors were fabricated by

transferring Te nanosheets onto the SiO2/p
+-Si substrate via a

poly (vinyl chloride)-assisted dry transfer method (Wakafuji

et al., 2020). The standard electron-beam lithography process

was performed to define the source and drain patterns. High-

work-function metals Pd/Au (10 nm/50 nm) were evaporated as

the contact electrodes.

Material and device characterizations

An optical microscope (SOPTOP-CX40M) was employed to

investigate the Te morphologies. The accurate thickness of

materials was measured with an atomic force microscope

(AFM, Bruker dimension Icon). The transmission electron

microscopy (TEM) characterization was performed with a

JEM-2100 electron microscope operated at 200 kV. The

polarized Raman spectra were taken using the LabRAM HR

Evolution Raman system with a 532 nm excitation laser. The

room-temperature electrical properties were acquired with a

Keithley 4200A-SCS semiconductor parameter analyzer.

Power-tunable lasers (980 nm, 1.55 μm, and 3.0 μm

wavelength) coupled with optical fiber were used as the

illumination source.

Results and discussion

The elemental Te typically forms a trigonal lattice structure,

which consists of helical chains arranged hexagonally, as shown

in Figure 1A (Agapito et al., 2013; Zhu et al., 2017; Qiao et al.,

2018). The bonds between neighboring Te atoms on the same

chain are covalent, whereas the interaction between chains is

considered a mixture of electronic and vdW types (Weidmann

and Anderson, 1971). Figure 1B exhibits the optical microscope

images of solution-grown Te nanoflakes. It can be found that the

length and width could exceed 100 and 30 μm, respectively. The

Te crystal structure is determined using TEM and X-ray

diffraction (XRD). Figure 1C presents the low- and high-

magnification TEM images of an individual Te and

corresponding selected area electron diffraction pattern with

sharp spots, revealing the high crystallinity of synthetic

nanosheets. The calculated interplanar distance of 0.6 nm is

consistent with the trigonal-Te (0001) planes, which verifies

that the length’s growth direction is c-axis oriented (Wang

et al., 2018). The XRD result in Figure 1D matches well with

the standard diffraction file JCPDS card (No. 36-1452), further

confirming the trigonal structure of Te. The Raman spectrum in

Figure 1E shows three sharp characteristic peaks at 91.5 cm−1,

119.9 cm−1, and 139.8 cm−1, corresponding to the E1-TO, A1, and

E2 vibrational modes (Pine and Dresselhaus, 1971; Tong et al.,

2020; Wang et al., 2022). Lorentzian fitting of these peaks yields a

narrow full width at half maximum of 3.6 cm−1, 6.7 cm−1, and

3.2 cm−1, respectively (Supplementary Figure S1). Moreover,

angle-resolved Raman spectra were measured to investigate

the optical anisotropy properties of Te, as shown in Figure 1F.

The intensity anisotropic ratios for E1-TO and A1 vibrational

mode (Figures 1G,H) reach 29.4 and 2.1, evidencing its great

potential for applications in polarized infrared photodetection

(Supplementary Figure S2). The atomic force microscope is

employed to measure the material thickness, ranging from

about 20 to 120 nm (Supplementary Figure S3). Figure 1I

shows an AFM image of a typical Te nanosheet and

corresponding cross-section height profile, revealing a

thickness of ~30 nm.

The Kelvin probe force microscope (KPFM) measurement

was performed to investigate the work function of Te on

conductive Au substrate (Supplementary Figure S4B). The

result indicates that the average contact potential difference

ΔVCPD of Te nanosheet is ~240 mV larger than Au.

Considering the determined work function of ~5.1 eV for

Au, the work function of Te is calculated to be ~4.86 eV.

Moreover, ultraviolet photoelectron spectroscopy (UPS) was

also measured (Supplementary Figure S4A). The estimated

work function of as-grown Te is ~4.85 eV, which is consistent

with the KPFM results.

A major obstacle in the solution synthesis of Te is that the

ultrathin nanosheets with a thickness less than 10 nm cannot be

easily derived via tuning synthetic parameters (e.g., temperature,

the mole ratio of precursors, synthesis time, etc.) (Wang et al.,

2019; Hu et al., 2021). The large material thickness generally

results in weak electrostatic tunability of the Te FETs and a high

off-state current, which is unfavorable for logic electronics and

optoelectronics (Wang et al., 2018; Zhao et al., 2020; Yao et al.,

2021b). Despite the excellent ambient stability, the element Te

has been demonstrated to possess moderate chemical reactivity

(Yang et al., 2015; He et al., 2019). Using this unique

characteristic, we propose a solution-processed wet-chemical
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strategy with the weak oxidizing agent HNO2 for the Te thickness

engineering. The standard redox potential of HNO2/NO is

~0.996 V (vs. standard hydrogen electrode), higher than that

of TeO2/Te (0.59 V) (Bockris and Oldfield, 1955; Yang et al.,

2018; Zheng B et al., 2021). Therefore, the elemental Te could be

oxidized in dilute HNO2 solution, with the generated TeO2 being

subsequently etched away by the excess H+, leading to the gradual

reduction of material thickness. Figure 2A presents the optical

images of an individual Te flake upon in-situ thinning with

HNO2 solution for different times, showing an apparent gradual

thickness reduction. From the Raman spectra in Figure 2B, it can

be found that the A1 and E2 vibrational peaks blueshift with

decreasing thickness, which agrees with our previous reports

(Yao et al., 2021b). Moreover, the control experiments were

carried out with individual NaNO2 and HCl solutions

(Supplementary Figure S5). No apparent morphology change

could be observed, confirming the thinning effect with HNO2.

Compared with the physical thinning approaches such as

plasma, focused ion beam, or laser etching (Castellanos-Gomez

et al., 2012; Wang et al., 2016; Nan et al., 2019), this method has a

distinct advantage of low cost and easy scalability. The large-area

ultrathin Te nanosheets could be easily prepared, as shown in

Figure 2C. Based on the same rationale, other appropriate

oxidizing agents such as H2O2 and KMnO4 are also employed

for the thinning process, as demonstrated in Supplementary

Figure S6. Ultrathin Te nanosheets with well-retained

morphologies and controllable thickness are obtained,

revealing the general applicability of this method. It should be

noted that under the similar oxidant concentration, the thinning

efficiency of H2O2 and KMnO4 is typically higher than HNO2,

which is due to the higher standard redox potential. The H2O2

concentration-dependent thinning effect was also explored, and

the details are presented in Supplementary Figure S7. Compared

with the previously reported post-growth thinning of Te inmixed

FIGURE 4
Characterizations of the pristine and thinned Te FETs. (A) Transfer and output curves of FET fabricated with as-grown Te nanosheet, and the
inset shows the corresponding optical image of the device. (B) Transfer and output curves of FET fabricated with thinned Te. Inset shows the optical
image of the device, and Pd/Au is employed as the source and drain electrodes. (C) Transfer and output curves of another thinned Te FET, in which
Cr/Au is used as the electrode. (D) Schematic energy band profiles for Cr, Pd, and Te.
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alkaline and acetone solution (Wang et al., 2018), our approach

relies on a different mechanism. Furthermore, it is supposed to

have higher thinning efficiency. Ultrathin Te crystals with a

thickness smaller than 10 nm could be readily derived within

several minutes.

Additionally, due to the mild processing conditions, this

approach enables arbitrary site-specific thickness patterning

when combined with the conventional photolithography

technique (Figure 3A). Figure 3B presents the optical image of

Te nanosheet with a “TE” poly (methyl methacrylate) pattern on

the surface. The local thinning characteristic is confirmed from

the atomic force microscope images after 30 min etching in

HNO2, as shown in Figures 3C,D. Figure 3E shows the height

profiles of pristine and thinned Te areas. The thickness of pristine

Te is measured to be ~31.5 nm, and the etching depth is

~16.7 nm. Moreover, the etched areas exhibit relatively

FIGURE 5
The Ids-Vds curves of Te phototransistors under varying 980 nm (A), 1,550 nm (B), and 3,000 nm (C) illumination power. The gate voltage Vg is
fixed at -10 V. (D–F) Transfer characteristics (upper part) and gate-dependent net photocurrent Iph (lower part) under different illumination
wavelengths. (G–I) Illumination power-dependent photoresponsivity (R), external quantum efficiency (EQE), and detectivity D for different
wavelengths at Vg = −80 V and Vds = 0.2 V.
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uniform thickness and sharp edges, revealing the potential of

creating high-resolution patterns with this method. As is known,

the electronic structure is strongly thickness-dependent for 2D

materials. The artificial thickness patterning offers vast enticing

possibilities to locally manipulate the physical properties of Te

for designing novel electronics and optoelectronics.

The thinning effect on the electrical properties of Te FETs is

further explored. Figure 4A shows the transfer (Ids-Vg) and

output (Ids-Vds) curves of FET fabricated with as-grown Te

nanosheet, revealing a typical p-type transport characteristic

and favorable room-temperature hole mobility of

~630 cm2·V−1·s−1 (Supplementary Figure S8). Nevertheless, the

ON/OFF ratio is generally less than one order of magnitude, and

gate control over the drain current is weak owing to the

considerable material thickness and high carrier density. In

contrast, the FET with thinned Te channel (Figure 4B)

presents significantly improved electrostatic tunability, with

the ON/OFF ratio reaching ~103 at Vg of ± 60 V. Moreover,

the ratio is supposed to be further improved by optimizing the

device structure, such as employing high-k dielectrics and

performing surface passivation. The tunable electrical

properties in Te and the feasibility of local thickness

engineering provide a versatile approach to fabricating on-

demand electronics and optoelectronics. The effect of contact

electrodes on the FET properties is also investigated. Figure 4C

displays the transfer and output curves of another FET with

thinned Te channel and Cr/Au (10 nm/50 nm) electrodes. The

thickness of Te is estimated to be thinner than that in Figure 4B

from the optical contrast, which should logically present a higher

ON/OFF switching ratio. However, the measured ON/OFF ratio

is lower. Meanwhile, a more pronounced Schottky contact is

observed from the output characteristics. One of the reasons may

be that the work function of Cr (~4.5 eV) is smaller than that of

Pd (~5.2 eV), as schematically displayed in Figure 4D. The

resulting larger Schottky barrier height at the Cr/p-Te

interface and, thus, large contact resistance restrains the hole

transport capabilities (details are shown in Supplementary

Figure S9).

Optoelectronic characteristics of the Te FETs were further

studied to demonstrate their applications in photodetectors.

Schematic and optical images of the device are shown in

Supplementary Figure S10. Figures 5A–C presents the Ids-Vds

output curves (at Vg = −10 V) of Te phototransistors under the

980 nm, 1.55 μm, and 3.0 μm laser illumination with varying

power densities, which demonstrate a broad response spectrum

covering the entire SWIR wavelength (λ = 1–3 μm). The net

photocurrent Iph increases monolithically with increasing

incident power for all wavelengths. In contrast, the

responsivity (R) decreases with increasing light intensity,

which may be attributed to the decreased density of

unoccupied states in Te and enhanced photocarrier

recombination under high optical power (Supplementary

Figure S11) (Xue et al., 2016; Zeng et al., 2018; Zeng et al.,

2020; Wu D et al., 2021). Besides, the photoresponse could be

further effectively modulated with electrostatic gating. Figures

5D–F presents the transfer characteristics of the Te transistor

(upper part) and corresponding gate-dependent Iph (lower part)

under different illumination wavelengths. Generally, the

photocurrent and thus the R increase with negative gate

voltage. For the 980 nm laser, the R reaches 2.2 AW−1 at an

incident power density of 48 mWcm−2 at Vg of −80 V and Vds of

0.2 V. For the optical communication wavelength of 1.55 μm, a

responsivity of 0.96 AW−1 is obtained under 64.4 mWcm−2

illumination density, together with an external quantum

efficiency (EQE) of 76.5% and detectivity (D) of 2.2 ×

109 Jones (Figures 5G–I). The calculation details of these

FIGURE 6
Polarized infrared photoresponse of the Te transistor under the incident wavelength of 1.55 μm. (A) Schematic experimental setup for
measuring the polarization-resolved photoresponse. (B) Contour plot of polarized photoresponse characteristics of the Te phototransistor under
constant 340 mW 1,550 nm illumination. (C) Polar plot of the Iph as a function of the sample rotation angle, the Vds is 6 mV.
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critical parameters (R, EQE, and D) are shown in Supplementary

Figure S12 and Supplementary Note S1. Compared with 980 nm,

the reduced photoresponse properties for 1.55 and 3.0 μm light

are due to the lower absorption coefficient of Te for longer

wavelengths (Amani et al., 2018; Tong et al., 2020).

Polarized Raman characterization in Figures 1F–H has

demonstrated the favorable optical anisotropy of Te, revealing its

feasibility for polarized SWIR photodetection. In light of this, the

polarization-resolved photoresponse of Te phototransistor under

1.55 μm illumination was further investigated, with the

experimental setup schematically shown in Figure 6A. The linear

polarization direction of the laser and incident optical power is fixed

during measurement, and the Ids-Vds photoresponse curves are

measured at different sample rotation angles. Figure 6B displays

the contour map of polarized Iph-Vds characteristics of the Te

transistor, exhibiting obvious periodic variation with the sample

rotation angles and changes periodically. The polar plot of Iph as a

function of sample rotation angle at Vds of 6 mV is shown in

Figure 6C. The corresponding photocurrent Iph-Vds curves at each

rotation angle are presented in Supplementary Figure S13. The

anisotropic ratio, defined as the maximum Iph over the minimum,

reaches up to ~2.9, which is very competitive in the SWIR band and

comparable with other widely-studied 2D materials such as BP and

PdSe2 (Yuan et al., 2015; Pi et al., 2021). The results suggest that the

2D Te can be a promising material platform for future polarized

infrared imaging applications.

Conclusion

In summary, we proposed a novel solution-processed strategy

for the thickness engineering of 2D Te based on the oxidative-

etching mechanism. The gradual material thickness reduction was

readily achieved using appropriate oxidants, such as HNO2, H2O2,

and KMnO4. Compared with the conventional physical thinning

approaches, this method has several distinct advantages: Low cost,

easy scalability, and facile processing conditions. In particular, site-

specific thickness patterning was also realized in combination with

the mature photolithography technique, which opens vast

possibilities for arbitrarily tailoring the local properties of Te. The

field-effect transistors fabricated with thinned Te present a

significantly improved gate-tunability, thus promoting their

applications in future logic devices. For optoelectronic

applications, the response spectrum of Te phototransistors covers

the whole SWIR band (λ = 1–3 μm). A favorable responsivity of

0.96 AW−1 and detectivity of 2.2 × 109 Jones was obtained at the

optical communication wavelength of 1.55 μm, together with an

anisotropic photocurrent ratio of ~2.9. As the thickness engineering

approach is implemented by leveraging the material’s intrinsic

chemical reactivity, it should apply to 2D Te prepared by other

techniques, such as physical vapor deposition, chemical vapor

deposition, or thermal deposition. Meanwhile, the feasibility of

site-specific thinning may inspire the design of more

sophisticated Te-based electronics and optoelectronics, which

help realize its full device potential.
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