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Congenital diaphragmatic hernia and other congenital diaphragmatic defects are associated with significant mortality
and morbidity in neonates; however, the molecular basis of these developmental anomalies is unknown. In an analysis
of E18.5 embryos derived from mice treated with N-ethyl-N-nitrosourea, we identified a mutation that causes
pulmonary hypoplasia and abnormal diaphragmatic development. Fog2 (Zfpm2) maps within the recombinant interval
carrying the N-ethyl-N-nitrosourea-induced mutation, and DNA sequencing of Fog2 identified a mutation in a splice
donor site that generates an abnormal transcript encoding a truncated protein. Human autopsy cases with
diaphragmatic defect and pulmonary hypoplasia were evaluated for mutations in FOG2. Sequence analysis revealed a
de novo mutation resulting in a premature stop codon in a child who died on the first day of life secondary to severe
bilateral pulmonary hypoplasia and an abnormally muscularized diaphragm. Using a phenotype-driven approach, we
have established that Fog2 is required for normal diaphragm and lung development, a role that has not been
previously appreciated. FOG2 is the first gene implicated in the pathogenesis of nonsyndromic human congenital
diaphragmatic defects, and its necessity for pulmonary development validates the hypothesis that neonates with
congenital diaphragmatic hernia may also have primary pulmonary developmental abnormalities.
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Introduction

Congenital diaphragmatic defects are a spectrum of
relatively common birth defects. The Bochdalek or postero-
lateral hernias (often referred to as congenital diaphragmatic
hernia [CDH]) occur in 1/3,000 live births [1], and although
these are the most common type of diaphragmatic defect
presenting at birth, diaphragmatic aplasia and diaphragmatic
muscularization defects (eventrations) may have a similar
clinical presentation.

Making specific anatomic distinctions among these types of
defects can be difficult without direct gross (intraoperative or
postmortem) examination. Pulmonary hypoplasia associated
with these diaphragmatic defects causes severe mortality and
morbidity. The pathogenesis and developmental relationship
between diaphragmatic defects and pulmonary hypoplasia is
not understood. Although advances in the medical manage-
ment of pulmonary hypoplasia may have decreased the
mortality associated with CDH patients who survive to
receive care at high-volume centers [2,3], the population-
based mortality has been reported to be as great as 62%, and
there are a large number of deaths prior to birth or to
transfer to a tertiary care facility [4]. As these patients
commonly present with severe respiratory failure at birth,
therapy has been centered around developing better methods
to provide ventilatory support while not producing further
lung injury. Extracorporeal membrane oxygenation (ECMO)
is used in some centers to provide an extended period of

cardiopulmonary bypass [5,6], while other centers have
success using other ventilatory support techniques [7]. The
morbidity in those who survive is high, and many patients
survive with chronic respiratory insufficiency, cognitive and
neuromotor deficits, and hearing loss as a result of necessary
intensive interventions and associated structural and irrever-
sible developmental abnormalities [8–11].
To date, there have been no specific mutations found to be

associated with nonsyndromic diaphragmatic defects and
pulmonary hypoplasia in humans. The heritability of these
defects is unclear, as the high morbidity and mortality limit
the collection of multigenerational families for analysis. The
genetic etiologies are likely to be complex and probably arise
from different mutations in various parts of the molecular
developmental pathways required for diaphragmatic devel-
opment. Indeed, there are numerous reports implicating
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different chromosomal abnormalities in the pathogenesis of
CDH [12,13]. Given the difficulty of studying lethal devel-
opmental abnormalities in humans, it is of great potential
utility to develop animal models of human birth defects, as
the specific genetic abnormalities found in animal models can
then be investigated in human populations.

We screened mice treated with the chemical mutagen N-
ethyl-N-nitrosourea (ENU) for lines with developmental
defects that present in the perinatal period [14]. From this
screen, we identified a line of mice carrying a recessive
mutation that results in primary pulmonary hypoplasia and
abnormal diaphragmatic and cardiac development. Position-
al cloning analysis identified Fog2 (Zfpm2) as a likely candidate,
and DNA sequencing revealed a mutation in a splice donor
site that generates an abnormal transcript encoding a
truncated protein. This result suggested that we examine
the orthologous gene in humans with similar developmental
defects, and we report the finding of a de novo nonsense
mutation in FOG2 in a patient who died at birth with a
diaphragmatic defect and severe pulmonary hypoplasia. This
is the first reported mutation associated with these abnor-
malities in a human. We present additional data that provide
direct evidence that pulmonary hypoplasia may be a primary
component of this spectrum of disorders.

Results

Identification of the little lung Mutation in Fog2
We screened third-generation progeny of ENU-mutagen-

ized mice at embryonic day 18.5 (E18.5) for abnormal
developmental phenotypes [14]. One line of mice was found
to have multiple embryos in independent litters that
displayed pulmonary hypoplasia and a thin diaphragm. The
mutation, which we called little lung (lil), was mapped to

Chromosome 15 by utilizing a strategy of interval haplotype
analysis (data not shown) [15]. For high-resolution mapping,
F2 progeny from two crosses were analyzed. In 450 progeny of
an intercross of F1 (A/J 3 FVB/N) lil/þ mice, the interval
containing the mutation was defined by 19 recombinants
between D15Mit220 and D15Mit154. Because of the lack of
informative markers within this interval, an additional 39 F2
progeny from an A/J 3 C57BL/6J cross were tested. The
identification of two recombinants established D15Mit85 as
the proximal and D15Mit5 as the distal flanking markers.
The lil phenotype was identified at E18.5 to have bilateral

pulmonary hypoplasia and an abnormal diaphragm. Pulmo-
nary hypoplasia was apparent in all mutant mice that
survived to birth. In a comparison between wild-type and
mutant mice found dead on day one of life, body weights were
not different; however, the lung weights were significantly
lower in the mutant mice. The average mutant lung weight
was 9.6 6 2.5 mg while the average wild-type lung weight was
26.4 6 4.6 mg (p , 0.001). All lungs from mutant mice were
lacking an accessory lobe on the right side and had under-
development of the anterior right middle lobe (Figure 1A).
Diaphragms from mutant lil mice were intact, but muscula-
rization was absent in the dorsal regions. Myotubules were
present in a limited and abnormal distribution. More
specifically, myotubules normally radiate in a mediolateral
fashion to meet the lateral body walls, with a normal paucity
of muscle fibers in the central tendonous region. In the
mutant diaphragm, myotubules radiated in a dorsal–ventral
orientation, and muscle tissue did not meet the entire surface
of the body walls (Figure 1B).
The number of lil mutant mice that survived to birth was

less than 5% of total progeny, rather than the 25% expected
for a recessive mutation. We evaluated litters at different
embryonic time points to determine whether the reduced
number was due to intra-uterine demise. Litters were
collected at E12.5, 13.5, 15.5, 17.5, and 18.5, and embryos
were genotyped and evaluated for evidence of intra-uterine
demise, including growth retardation, pallor, and tissue
friability. lil embryos had a progressively higher rate of
demise between E13.5 and E15.5. At E12.5, 20 out of 87 (23%)
were homozygous for the mutation, and all of these appeared
viable. At E13.5, 13 of 49 (27%) were mutant and two had
died. At E15.5, 22 out of 91 (24%) were mutant and the
majority of mutant embryos (17 out of the 22) had died. By
E18.5, nine of 29 embryos (31%) were homozygous for the
mutation, of which only one embryo was viable. Diaphrag-
matic muscularization was abnormal in all mutant mice
examined (n . 25). Pulmonary hypoplasia was observed in
100% of mutants evaluated for that phenotype between E11.5
and birth (n . 50).
Examination of cardiac morphology showed that hearts

from E15.5 lil mutant mice had a variety of developmental
defects, including enlarged and abnormally developed endo-
cardial cushions, a double-outlet right ventricle, and a
complete atrioventricular canal. The myocardium was also
poorly developed, with thinning of the outer compact layer
and decreased vascularity. The cohort of mutant mice that
survived to birth also had cardiac malformations including
atrioventricular-canal-type ventricular septal defects, ostium
primum atrial septal defects, and enlarged atria (data not
shown). All mutants specifically evaluated for a cardiac
phenotype (n ¼ 10) had abnormal cardiac development.
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Synopsis

Birth defects involving the diaphragm are as common and as serious
as genetic disorders such as cystic fibrosis, yet the underlying causes
of these defects are unknown. Most babies born with diaphragmatic
defects have very small lungs, and many die in the newborn period
with severe breathing difficulties. It is unknown whether the small
lungs occur because these children have a diaphragmatic defect, or
whether some patients might have a genetic abnormality that
affects the development of both the lung and the diaphragm
simultaneously.

In a screen of fetal mice carrying chemically induced genetic
mutations, the authors found that a mutation in the gene Fog2
(Friend of gata 2), causes abnormal diaphragm development and
small lungs. The lungs have a primary developmental abnormality
that includes the specific loss of one lung lobe. Based on this result,
the authors studied children affected with diaphragmatic abnor-
malities, and identified one human baby with a serious mutation in
the human gene FOG2 who died at five hours of life with severe
breathing difficulties, a diaphragmatic defect, and small lungs.

The authors have established that Fog2 is necessary for both
diaphragm and lung development in mice and in humans. This is
the first known cause of a nonsyndromic congenital diaphragmatic
defect and establishes that some patients may have a primary
developmental abnormality of both the lung and the diaphragm.



Examination of the 3-Mb region between D15Mit85 and
D15Mit5 in DNA sequence databases revealed three predicted
genes and four known genes, including Fog2. Targeted
mutations of Fog2 have cardiac defects strikingly similar to
those we identified in lil mutant mice, including atrioven-
tricular canal defects, thinned myocardium, and absent
coronary vasculature [16]. RT-PCR amplification of the
proximal portion of Fog2 revealed longer transcripts in the
lil mutant than in the wild-type embryos (Figure 2A).
Sequencing of the mutant transcript revealed a point
mutation (from thymine to cytosine) 2 bp after position
301, which is in the splice donor site at the end of the third
exon. This mutation causes a splicing defect that results in the
insertion of 85 bp of intronic sequence into the mutant
transcript, and introduces a stop codon that generates a
severely truncated protein product (Figure 2B). Heterozygous
lilmutant mice were crossed with a Fog2þ/� (null allele) mutant
generated by gene targeting [16]. Doubly heterozygous mice
had an embryonic lethal phenotype; this failure to comple-
ment proves that lil is a mutation in Fog2. The variable
phenotype of lil mice (relative to that found for the Fog2 null
mutant) is likely due to the generation of a low level of
normal transcript despite the presence of the splice site
mutation.

Lung and Diaphragm Development in the Fog2 Mutant
Mouse

Experiments were conducted to evaluate the role of Fog2 in
pulmonary and diaphragmatic development. The pulmonary

phenotype is characterized by diffuse hypoplasia and specific
loss of the accessory lobe and a portion of the right middle
lobe.
It is well established that abnormalities in either diaphrag-

matic development or fetal breathing can result in a
secondary pulmonary hypoplasia, although loss of normal
structure has never been documented in this context [17,18].
Fog2 is expressed diffusely in the pulmonary mesenchyme
during the period of branching morphogenesis, while later
expression is restricted to the smooth muscles of airways and
pulmonary vessels (Figure 3). This, and the observation that
lungs appeared small on transverse sections evaluated prior
to diaphragmatic muscularization or function, suggests that
the pulmonary hypoplasia occurs independently of the
diaphragmatic defect. To test this hypothesis, lungs were
dissected from Fog2�/� mice and littermate controls before
the onset of fetal diaphragmatic motion. Fog2�/� mice were
used for this experiment, as we wanted to avoid potential
phenotypic variance from the lil hypomorphic mutation.
Lungs dissected at E12 from Fog2�/� embryos were smaller in
size and lacked the development of an accessory lobe. In 11
viable Fog2�/� lung culture explants, there was never develop-
ment of an accessory lobe, and the weights of mutant lungs
cultured for 5 d were significantly lower than those of
littermate controls (Figure 4). These data demonstrate that
the pulmonary hypoplasia in Fog2 mutant mice is a primary
defect.
Branching in the unaffected lobes appeared to be delayed

Figure 1. Abnormal Pulmonary and Diaphragmatic Development in the lil Mouse

(A) The mutant hypoplastic lung (right) lacks the development of the accessory lobe and the anterior portion of the right middle lobe (marked with
arrows on the control sample on the left).
(B) Whole diaphragms show a lack of normal muscularization in the posterolateral regions and the peripheral regions of the mutant diaphragm (control
on left and lil diaphragm on the right).
DOI: 10.1371/journal.pgen.0010010.g001

Figure 2. The ENU-Induced lil Mutation in Fog2 is a Splice Site Mutation

(A) RT-PCR revealed a lengthened transcript in mice with the lil phenotype: the first band is a lil mouse, and the second band is a control mouse.
(B) Sequencing Fog2 revealed a splice site mutation that causes the insertion of 85 bp of intronic sequence in the mutant mouse. This results in a
premature stop codon prior to zinc finger transcription.
DOI: 10.1371/journal.pgen.0010010.g002
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by 6–12 h, but all mutants developed an intricate branching
pattern in the unaffected lobes after culture for 5 d.

Because the Fog2 phenotype is striking for specific lobar
loss, the spatial pattern of Fog2 expression was evaluated in
normal embryos during the period of early lobar establish-
ment to determine whether Fog2 expression is specifically
different at these lobar buds. Expression was evaluated in
mice carrying a lacZ gene incorporated into the Fog2 locus (S.
Tevosian, unpublished data). In nine mice examined at E11.5,
all lungs showed a specific enhancement of Fog2 expression in
the mesenchyme surrounding the accessory bud and the right
middle lobe bud, which are the lobes that do not develop
normally in Fog2 mutant mice (Figure 5). By E12.5, expression
was diffuse in the pulmonary mesenchyme, as was seen
previously with in situ hybridization on tissue sections.

Diaphragms from Fog2 lil mice show an intact membrane
with a defect in muscular patterning (see Figure 1B). The
membranous portion of the diaphragm is populated by a
migratory population of muscle precursor cells, much like the
limbs [19,20]. Mice with defects in genes known to be
important for the control of this process have intact but
amuscular diaphragms [17,21,22]. Hepatocyte growth factor/
Scatter factor (HGF) is one potential candidate responsible
for the guidance of muscle precursors to the membranous
diaphragm. It has been shown that HGF is expressed along
this anatomic pathway [23], and mice with absence of the HGF
receptor c-Met fail to form muscularized pleuroperitoneal
folds (PPFs), and thus have amuscular diaphragms [24,25].
Fog2 is expressed diffusely in the early amuscular diaphragm
at E11.5 as well as in the later muscularized diaphragm (see

Figure 3. Fog2 Is Expressed in the Developing Lung and Diaphragm

Fog2 is expressed in the diffuse pulmonary mesenchyme at E13.5 (A) (arrow shows mesenchyme) and is restricted to the bronchial and vascular smooth
muscle (sm) at E16.5 (B). Fog2 is expressed diffusely in the developing diaphragm (Dia) both prior to (E11.5) (C) and after muscularization (E13.5) (D).
DOI: 10.1371/journal.pgen.0010010.g003

Figure 4. Fog2 Is Necessary for Primary Lung Development

Fog2 null lungs removed prior to diaphragmatic muscularization and grown in vitro show no accessory lobe development. Accessory lobe is labeled
with black arrow in control littermate lungs.
DOI: 10.1371/journal.pgen.0010010.g004
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Figure 3C and 3D). Pax3 and MyoD, transcription factors
required for appropriate migration and determination of
myogenic precursors, were detected in the PPFs of Fog2 lil
mice (data not shown). However, in situ expression analysis
demonstrated that the expression of HGF in the region where
this structure meets the membranous diaphragm was mark-
edly reduced in Fog2 mutant mice (Figure 6). We hypothesize
that Fog2 is required (either directly or indirectly) for the
induction of HGF in the developing diaphragm, and
dysregulation of HGF patterning along the path of muscle
precursor cell migration between the PPF and the diaphragm
accounts for the abnormal phenotype in these mice.

FOG2 Mutation in a Patient with Diaphragm and Lung
Abnormalities

FOG2 sequence analysis was performed on autopsy tissue
from 30 of 32 deceased children with an anatomic diagnosis
of diaphragmatic defect evaluated at the Children’s Hospital
in Boston, Massachusetts, between 1993 and 2003. Autopsy
reports were reviewed to determine the specific diagnoses. Of
these 30 cases, 17 (57%) had Bochdalek CDH, two (7%) had
diaphragmatic agenesis, seven (23%) had diaphragmatic
eventration/muscularization defects (without Bochdalek
CDH), and four (13%) had Bochdalek hernia of one hemi-
diaphragm and eventration of the other. Pulmonary hypo-
plasia was assessed using lung/body weight ratio and radial
alveolar counts [26]. The material available for review
included written reports and histologic slides in all cases
and gross kodachromes in a subset of cases.

One child carried a highly significant FOG2 sequence
change. The patient was a full-term 3,500-g baby girl who
developed severe respiratory failure at birth and died after 5
h of resuscitation. Antemortem radiographs showed opaci-
fied lung fields and possible bowel in the chest. The patient’s
clinical diagnosis was CDH.
Review of autopsy material revealed severe bilateral

pulmonary hypoplasia (combined lung weight, 11.1 g;
expected for body length/weight, 46.8 6 26.2 g; [27]), most
markedly involving the left lung. The lung/body weight ratio
was 0.0037 (expected . 0.010) [28]. There were a reduced
number of bronchial generations, and the radial alveolar
count was 2–3 (expected ¼ 5) [29]. There were incomplete
lung fissures bilaterally. A deep posterior diaphragmatic
eventration was present on the left side. Additionally, two
muscularized ligamentous bands resembling diaphragmatic
remnants encircled the left lobe of the liver, creating an
abnormal fissured liver contour. Away from the eventration,
the diaphragm appeared well muscularized, measuring 0.3 cm
in thickness. A complete autopsy revealed no other malfor-
mations; the heart was determined to be grossly normal and
was donated for valve harvest.
Sequence analysis revealed a cytosine to thymine hetero-

zygous change in exon 4 that changes the 112th amino acid
from arginine to a stop codon. This mutation produces a
severely truncated peptide that does not contain zinc finger
domains (Figure 7). This base change was not present in the
analysis of DNA from 400 normal adults. To assess the
likelihood that the mutation was causal for the developmental

Figure 5. Fog2 Expression in Embryonic Non-Mutant Lungs

In embryonic non-mutant lungs, Fog2 is most highly expressed at the tips of the accessory (single arrows) and right middle lobes (double arrows) at
E11.25 (A) and E11.75 (B), while expression is diffuse by E12.75 (C).
DOI: 10.1371/journal.pgen.0010010.g005

Figure 6. HGF Patterning Is Abnormal in Fog2 Null Mice

In situ hybridization of HGF in E12.5 wild-type (A) and Fog2�/� (B) embryos demonstrates decreased expression in the region where the PPF meets the
membranous diaphragm. Li, liver; Lu, lung.
DOI: 10.1371/journal.pgen.0010010.g006
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phenotype, we examined both parents. Paternity was con-
firmed, and sequence analysis revealed that the neither
parent carried this mutation, proving that the patient had a
de novo mutation in FOG2 (Figure 7).

Discussion

Congenital diaphragmatic defects are a heterogeneous
group of disorders of unknown etiology. The defects that
present in the pre- or perinatal period include Bochdalek
hernia, diaphragmatic aplasia, and various degrees of
muscularization defects or eventrations. Different types of
defects occur in the same patients or in siblings, suggesting
these represent variable expression of the same underlying
pathogenesis [30,31]. Clinical differentiation between these
defects may be very difficult, as the residual membranous
diaphragm of a muscularization defect is thin and may not be
easily visible on prenatal ultrasound or postnatal chest
radiographs [32]. Although diaphragmatic muscularization
defects were historically considered to be predictive of a good
outcome, there have been inadequate population-based
studies that include fetal or neonatal cases and autopsy
diagnoses to make this conclusion definitive. In fact, the
series of patients we report here and the published literature
indicate that an eventration defect may be associated with
displacement of abdominal contents and also with severe
pulmonary hypoplasia and respiratory insufficiency [33,34].

Numerous chromosome abnormalities have been found in
association with congenital diaphragm abnormalities [12,35].
Human FOG2maps to Chromosome 8q23.1, and, importantly,
several patients with diaphragm defects and rearrangements
involving this locus have been reported. Specifically, there are

three unrelated CDH patients with cytogenetically balanced
translocations at or near the FOG2 locus [36,37]. Additionally,
two patients with deletions apparently encompassing the
FOG2 locus have died from multiple congenital anomalies
including CDH [38–40]. Inactivation of this gene due to
chromosomal rearrangement or deletion would result in a
heterozygous null mutation similar to that found in the
patient we report.
Because the FOG2 mutation we report is de novo and the

phenotypes of the pulmonary and diaphragmatic defects are
similar between mouse and human, we suggest that this
mutation in FOG2 is the first reported cause of a human
developmental diaphragmatic and pulmonary defect. In
contrast to the affected child, mice heterozygous for a null
mutation of Fog2 appear normal. However, there is ample
precedent for the observation that haploinsufficiency of a
gene with developmental functions is much less well tolerated
in humans than mice [41].
It is unclear how the Fog2 diaphragmatic defect relates to

the more common Bochdalek CDH, as the pathogenic
mechanisms for both are largely unknown. Muscle precursors
destined to populate the diaphragm migrate from the lateral
dermomyotome of cervical somites. Prior to migration onto
the diaphragm, they populate the PPF, a wedge-shaped tissue
that tapers medially from the lateral body wall to the
esophageal mesentery and fuses ventrally with the septum
transversum [42]. Muscle precursors reach the PPF by E11,
where they proliferate, differentiate, and then migrate
toward the dorsolateral costal, sternal costal, and crural
regions of the developing diaphragm. Thus, a defect in PPF
formation subsequently results in the abnormal formation of
the diaphragm [43]. We have shown that the Fog2 mutant does
have an abnormal pattern of HGF expression in the region
through which muscle precursor cells migrate onto the
developing diaphragm. This finding may account for the
abnormally patterned muscle that develops in the Fog2
mutant diaphragm. Although Pax3 and MyoD expression is
detected in the PPF, a detailed analysis of transcription
factors responsible for muscle precursor cell migration and
differentiation will need to be completed both in the PPF and
along the pathway of muscle precursor cell migration
between the PPF and the membranous diaphragm. Fog2 can
interact with any of the Gata factors, Gatas 1–6, as well as
other transcription factors such as CoupTFII [44,45]. It is
known that a Fog2–Gata4 interaction is critical for normal
cardiac and gonadal development, but interacting factors in
the lung and diaphragm have not yet been determined.
The severity of pulmonary hypoplasia in the patient we

report was out of proportion to that of the diaphragm defect.
Pulmonary hypoplasia is associated with abnormal diaphrag-
matic anatomy or function, and is known to occur as a
secondary developmental defect in models of diaphragmatic
dysfunction such as complete amuscularization [17] or
phrenic nerve disruption [46]. It occurs in a surgical model
of CDH in which a hernia is physically created in an in utero
lamb [47,48]. However, the possibility that primary pulmo-
nary developmental abnormalities occur with, rather than
secondary to, diaphragmatic defects has been suggested by
others based on a teratogenic model of CDH [49–51] and has
long been suspected by clinicians who care for these patients.
In addition, the high incidence of lobar abnormalities
associated with CDH [52] supports the possibility that this

Figure 7. FOG2 Mutation in a Patient with Diaphragm and Lung

Abnormalities

Sequencing revealed a de novo heterozygote nonsense mutation in a
patient who died at birth with severe pulmonary hypoplasia and a
posterior deep diaphragmatic eventration. She was clinically diagnosed
with CDH. This nonsense mutation occurs prior to the functional zinc
finger domains.
DOI: 10.1371/journal.pgen.0010010.g007
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disorder can be associated with a primary developmental
pulmonary abnormality.

Our analysis of mice carrying mutations of Fog2 proves that
there is a primary defect in lung development that results in
specific loss of the accessory lobe and partial loss of the right
middle lobe. The specific lobar defects prompted us to
evaluate Fog2 expression at the time of early lobar budding.
While Fog2 expression is diffuse in the pulmonary mesen-
chyme after lobar structure is well established (E12.5), it is
more focally expressed in the mesenchyme surrounding the
right middle lobe and accessory buds as these lobes form. This
matches the phenotype of right middle lobe and accessory
lobe loss, and suggests that Fog2 has a specific patterning role
in establishment of these lobes. It is less clear whether loss of
Fog2 results in a global branching defect, as Fog2 lungs appear
to have a slight developmental delay, which could result from
many causes. Cultured Fog2 lungs do develop an intricate
branching pattern in the unaffected lobes that appears
similar in the pattern to wild-type lungs after 5 d in culture.

In this report, we show that a mutation of Fog2 in the
mouse causes the phenotype of abnormal diaphragmatic
muscularization and primary pulmonary hypoplasia. We
furthermore demonstrate that a mutation in this gene is
associated with a lethal defect in lung and diaphragm
development in a child. It is notable that, despite extensive
analysis of Fog2 biology and the generation of a Fog2 knock-
out mouse, its role in diaphragm and lung development was
previously not recognized. It is only as a consequence of
phenotype-driven analyses such as those we are pursuing that
one has the opportunity to assay all of the potential
molecular derangements that may result in human disease.

Materials and Methods

These investigations were conducted with approval of the
institutional review board for Children’s Hospital, Boston, and
Brigham and Women’s Hospital, Boston. Animal use was approved
by the Center for Animal Resources and Comparative Medicine
(Harvard Medical School).

Genetic mapping of the mouse mutation lil. The lil mutation was
identified as described in results. Wild-type FVB/N and C57BL/6J
mice used for genetic crosses were obtained from the Jackson
Laboratory (Bar Harbor, Maine, United States). Mice carrying a null
mutation of Fog2 generated by gene targeting [16] were the
generous gift of Dr. Stuart Orkin.

Developmental analysis of mice. Timed pregnancies were set up
for collection of E11.5–E17.5 embryos. Embryos were fixed,
dehydrated, and embedded in paraffin prior to sectioning. In older
embryos, a median sternotomy was performed under microscopic
guidance, and diaphragm, lungs, and heart were examined. The
lungs and tracheobronchial tree were removed and weighed. Whole
diaphragms were isolated from fixed thoracic tissue from E15.5 and
E17.5 embryos. For lung explant culture, lungs were dissected from
fresh embryos at E11.5 and E12.5 and placed on porous 24-mm (0.4-
l) polyester membranes floated in wells containing 2 ml of
Dulbecco’s modified Eagle’s medium, nutrient mixture F-12
(11039–021, Gibco, San Diego, California, United States), supple-
mented with 10% fetal bovine serum, 0.3 mg/ml L-glutamine, 100
units/ml penicillin, 100 mcg/ml streptomycin, and 0.25 mcg/ml
amphotericin B. Lung explants were cultured at 37 8C in 95% air/
5% CO2 for up to 5 d. They were photographed daily with a
dissecting microscope (MZ12.5, Leica, Wetzlar, Germany) equipped
with a Leica DC500 digital camera.

Transgenic mice carrying the lacZ gene driven by the Fog2
promoter have been developed by S. Tevosian. In these animals, the
lacZ gene is incorporated (‘‘knocked-in’’) into the Fog2 locus to allow

b-galactosidase expression as a fusion protein in frame with the first
235 amino acids of the FOG2 protein. The Fog2-lacZ module is
followed by an ires-eGFP cassette. This creates a null allele of Fog2
gene. The Fog2-LacZ-eGFP construct was linearized with KspI and
electroporated into the CJ7 ES cells. The correctly targeted clone
was selected by the Southern blot analysis and injected into C57BL/
6J blastocysts. Fog2-lacZ-eGFP animals were maintained on the
mixed C57BL/6J/129 background. lacZ Expression in whole dissected
embryonic lungs was analyzed by staining for b-galactosidase activity
with X-gal after fixation for 30 min.

RT-PCR and sequence analysis in the mouse. RNA was extracted
by standard techniques from thoracic embryonic tissue. RT-PCR was
performed using six primer sets designed to cover the Fog2 gene.
RT-PCR was repeated with radiolabeled primers to amplify an
abnormally spliced region of the gene (Table S1), and the product
was run on a denaturing sequencing gel according to standard
techniques. The RT-PCR product was cloned into pCR2.1 vector
using TOPO TA Cloning Kit (Invitrogen, Carlsbad, California,
United States) and sequenced using gene-specific primers. Sequence
analysis was done using Sequencher 4.1 (Gene Codes, Ann Arbor,
Michigan, United States).

In situ hybridization. After dehydration and embedding in
paraffin wax, 10-l sections were subjected to radioactive in situ
hybridization as described [53]. Probes labeled with 35S were
prepared by run-off transcription of linearized plasmid templates
and hybridized to tissue sections. Nuclei were counterstained with
Hoescht 33258, and signal was imaged using fluorescent and
darkfield microscopy.

Human DNA extraction and sequence analysis. DNA was isolated
from paraffin blocks by phenol-chloroform extraction [54,55], and
from frozen tissues by standard techniques. Primers were designed
to amplify FOG2 coding exons plus 50 bp of flanking upstream and
downstream sequence. PCR amplification and sequencing were
performed by standard methods. Primer sequences used are listed
in Table S2. Sequence analysis was done with Sequencher 4.1 (Gene
Codes).

DNA from the parents of one autopsy patient was extracted from
fresh blood samples. A second set of blood samples was sent to an
outside CLIA-certified laboratory for DNA extraction, PCR, sequenc-
ing, and analysis. Paternity testing was performed by the outside
laboratory using a standard panel of markers. SNP genotyping was
done using Harvard Partners Center for Genetics and Genomics
genotyping core facility (Cambridge, Massachusetts, United States).

Supporting Information

Table S1. Primers for RT-PCR (Mouse): Amplification of Abnormal
Transcript in Fog2 Mutant (lil) Mice

Found at DOI: 10.1371/journal.pgen.0010010.st001 (26 KB DOC).

Table S2. Human Primers for Amplification of FOG2 Coding
Sequence from Genomic DNA

Found at DOI: 10.1371/journal.pgen.0010010.st002 (46 KB DOC).
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