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Purpose: Laron syndrome (LS) is a severe growth disorder caused by GHR gene
mutation or post-receptor pathways defect. The clinical features of these patients
collected in our present study were summarized, GHR gene variants were investigated
and further in vitro functional verification was carried out.

Methods: Four patients with LS were collected, their clinical characteristics were
summarized, genomic DNA was extracted, and GHR gene was amplified and
sequenced. GHR wild type (GHR-WT) and mutant GHR expression plasmids were
constructed, and transiently transfected into HepG2 cells and HEK293T cells to
observe the subcellular distribution of the GHR protein by immunofluorescence and to
determine the expression of GHR and its post-receptor signaling pathway changes by
Western blotting.

Results: All of the four patients were male, and the median height was -4.72 SDS. Four
GHR gene variants including c.587A>C (p.Y196S), c.766C>T (p.Q256*), c.808A>G
(p.I270V) and c.1707-1710del (p.E570Afs*30) were identified, and the latter two were
novel mutations. The results of mutant GHR plasmids transfection experiments and
immunofluorescence assay showed that the subcellular distribution of GHR-Q256* and
GHR-E570Afs*30 mutant proteins in HepG2 and HEK293T cells presented with a unique
ring-like pattern, gathering around the nucleus, while GHR-Y196S mutant protein was
evenly distributed on HepG2 cell membrane similar to GHR-WT. The GHR protein levels of
HepG2 cells transiently transfected with GHR-Y196S, GHR-Q256* and GHR-E570Afs*30
were all significantly lower when compared with cells transfected with GHR-WT (P<0.05).
Further mutant GHR post-receptor signal transduction investigation demonstrated that
GH induced phosphorylated STAT5 levels of HepG2 cells transfected with three mutant
plasmids were all significantly decreased in comparison with that of GHR-WT (P<0.05).

Conclusions: Two novelGHR gene mutations (I270V and E570Afs*30) were found in our
patients with LS. GHR mutations influenced the subcellular distribution and GHR protein
n.org April 2021 | Volume 12 | Article 6057361
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Abbreviations: LS, Laron syndrome; GHR,
GHR wild type; rhGH, Recombinant
Recombinant human IGF-1.
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levels, then led to the impaired post-receptor signal transduction, suggesting that the
GHR mutations contributed to the pathological condition of LS patients.
Keywords: Laron syndrome, GHR gene mutation, subcellular distribution, STAT5, HepG2 cells
INTRODUCTION

Laron syndrome (LS) is a rare inherited disorder characterized
by severe postnatal growth failure, normal or increased
circulating growth hormone (GH) secretion and insulin-like
growth factor 1 (IGF-1) deficiency (1). Classical LS was first
described by Laron et al. in 1966 who reported three siblings with
severe growth retardation from a consanguineous Jewish family,
and the disorder was termed “Laron-type dwarfism” or “growth
hormone insensitivity” subsequently (2, 3). LS is a kind of
autosomal recessive disease which often occurred in families
with parental consanguinity and sporadic cases have also been
reported (3). Since 1966 when LS was firstly reported, more than
250 patients have been reported so far (4, 5).

LS is mainly caused by growth hormone receptor (GHR) gene
mutations and monogenic defects of post-receptor components
in the GH signal transduction pathway, such as signal transducer
and activator of transcription 5B (STAT5B), IGFALS, IGF1, IGF-
1R and pregnancy-associated plasma protease A2 (PAPPA2) (5–
13). Among the various genetic aberrations, GHR gene
mutations are most commonly reported (4).

GH, also known as somatotropin, plays a critical role in the
promotion of growth, cell division and regeneration (3, 4). The
effects of GH are directly mediated through its cell surface
receptor, GHR. GHR gene is located on chromosome 5p13.1-
p12 and is composed of 10 exons, with exon 1 being an
untranslated region (3, 14). Exons 2 to 10 encode a peptide of
638 amino acid residues. After GHR proteins are synthesized in
the endoplasmic reticulum, they are transported to the cell
membrane through a protein-conducting channel and inserted
in the cell membrane (15, 16). The mature GHR protein is
comprised of three domains: an extracellular domain of 246
residues (encoded by exons 2-7 of GHR), a transmembrane
domain of 24 residues (encoded by exon 8), and an
intracellular domain of 350 residues (encoded by exons 9 and
10) (17). GH binds with GHRs to form a trimolecular complex
and changes the conformation of the GHRs, triggers signaling
molecules, such as Janus kinase 2 (JAK2), STAT5, and Src family
kinases (2, 18–20). Activated, tyrosine-phosphorylated STAT5
proteins translocate into the nucleus and promote the
transcription of the downstream IGF-1 gene (6, 21).

To date, more than 100 GHR gene defects have been
identified, and the majority of the mutations occur in the
extracellular domain of GHR gene, while mutations in the
transmembrane domain and intracellular domain are relatively
rare (4, 17, 22, 23). Several studies investigated the effects of GHR
gene variations on the GH post-receptor signal transduction in
Growth hormone receptor; GHR-WT,
human growth hormone; rhIGF-1,
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vitro experiments. Fang et al. reported a compound heterozygous
GHR mutations, C94S and H150Q, in an Austrian family, and
functional studies showed that both the compound heterozygous
mutation and C94S heterozygous mutation resulted in deficiency
in activating GH-induced gene expression and diminished GH-
induced STAT5b activation (24). Rughani et al. reported a novel
W267* heterozygous nonsense mutation in the transmembrane
domain in a Caucasian child, and the W267* mutation was
shown to inhibit GH-induced STAT5 activation (25). Besides
missense and nonsense mutation, the c.784G>C splicing
mutation was investigated in a Turkish child, and in vitro
studies revealed that the c.784G>C splicing mutation destroyed
the intron 7 donor site and led to an absence of functional GHR
(26). While, intragenic GHR deletion of 1454 nucleotides led to
exon 8 skipping from the GHR mRNA transcript and translated
a truncated GHR protein (27).

In the present study, four Chinese children diagnosed with LS
in our Department of Endocrinology were collected and their
clinical and biochemical characteristics were summarized. GHR
gene variants were investigated and further in vitro functional
verification was performed by cellular experiments to further
elucidate the effects of GHR gene variations on GHR gene
expression, subcellular distribution and GH-induced
signal transduction.
MATERIALS AND METHODS

Clinical and Biochemical Characteristics
Four Chinese patients with severe growth retardation were
admitted to Peking Union Medical College Hospital from 2012
to 2017. Height and weight were recorded as standard deviation
scores (SDSs) based on the age- and sex-appropriate reference
ranges of Chinese children. Blood samples were collected in the
morning after an overnight fast, and the concentrations of GH
and IGF-1 were measured by a solid-phase, two-site,
chemiluminescent immunometric assay (IMMULITE 2000,
Siemens, UK). Blood biochemical parameters and whole blood
cell count were measured. The L-dopa GH provocative test was
conducted as follows: L-dopa was given at a dosage of 125mg to
patients weighing less than 10 kilograms (kg), 250 mg for
patients weighing 10-30 kg, and for patients weighing more
than 30 kg, 500 mg L-dopa was given (28). The basal GH level
was quantified before medication, and peripheral serum was
sampled every 30 minutes for up to 2 hours to measure GH
concentration. The insulin-induced hypoglycemia GH
provocative test was carried out by subcutaneously injecting
insulin at a dosage of 0.1 U/kg, and the time-point of blood
collection was 0, 30, 60, 90 and 120 minutes after medication
(29). A peak GH concentration after stimulation of <5 ng/ml was
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used to diagnose growth hormone deficiency (28). Pituitary
magnetic resonance imaging (MRI) was conducted in each
patient. LS was suspected when patients presented with
extreme postnatal growth failure and midfacial hypoplasia.
Biochemically, LS was featured by normal or elevated GH
secretion and subnormal serum IGF-1 concentration,
demonstrating the inability to generate normal quantities of
IGF-1. GHR gene sequencing was then performed for patients
suspected of LS, and the detailed process was described in the
following part. The parents of the patients have given their
written informed consent. The study was approved by the
Ethics Committee of Peking Union Medical College Hospital
and the reference number was JS-1663.

DNA Extraction and GHR Gene
Sequencing
Genomic DNA was extracted from peripheral blood leukocytes
using the Qiagen DNeasy Blood Kit (Qiagen, 69504, Germany)
according to the standard protocol. Coding exons (exon 2 to
exon 10) and the boundaries between introns and exons of the
GHR gene were amplified by polymerase chain reaction (PCR)
method. The primers used for PCR amplification were shown in
Table 1. All PCR products were sequenced (Tianyi Huiyuan
Biotech Corporation, Beijing, China) and aligned with the
standard GHR sequence (RefSeq NM_000163.5) in UCSC
BLAT (http://genome.ucsc.edu/cgi-bin/hgBlat). Our sequencing
data is uploading to GenBank, and the accession numbers are
MW701347, MW701348 and MW701349.

Construction of the GHR Wild-Type and
Mutant Expression Plasmids
The full-length human GHR gene cDNA (NM_000163.5) was
obtained by RT-PCR method from human total RNA isolated
from white blood cells using EZNA Total RNA Kit (Omega Bio-
Tek, Doraville, USA). GHR wild-type (GHR-WT) expression
plasmid was yielded by inserting the GHR gene whole cDNA
(+193~+2109) into pcDNA3.1(+) vector, both GHR gene cDNA
and the pcDNA3.1(+) vector were digested by Kpnl and EcoRI
enzymes and were ligated by T4 DNA ligase (Thermo Fisher
Scientific, USA). The HA tag sequence (TACCCCTACGAC
GTGCCCGACTACGCC) was inserted after the signal peptide
sequence, then the plasmid was sequenced. Site-directed
mutagenesis experiments were performed by Vigene Biosciences
Company (Beijing, China) to construct GHR-Y196S, GHR-Q256*
Frontiers in Endocrinology | www.frontiersin.org 3
and GHR-E570Afs*30 mutant expression plasmids and Sanger
sequencing was performed to verify the GHR gene mutations.
Expression plasmids were extracted with a Qiagen Plasmid Maxi
Kit (Qiagen 12162, Germany).

Cell Culture
Human embryonic kidney (HEK293T) cells and HepG2 cells
were purchased from Cell Resource Center of Institute of Basic
Medicine, Chinese Academy of Medical Sciences. HEK293T cells
were cultured in DMEMmedium (Hyclone, USA) supplemented
with 10% fetal bovine serum (Cell Resource Center of Institute of
Basic Medicine, Beijing, China) and antibiotics (100U/ml
penicillin and 100U/ml streptomycin from Gibco, USA) under
5% CO2 and 95% O2 at 37°C. HepG2 cells were maintained in
MEM medium (Hyclone, USA) containing 10% fetal bovine
serum (Cell Resource Center of Institute of Basic Medicine,
Beijing, China), nonessential amino acids (Gibco, USA)
and antibiotics.

Transient Transfection
HEK293T cells and HepG2 cells were seeded on 12-well plates at
a density of 6×105 cells/well. The cells were grown to 50~60%
confluence prior to removal of antibiotic-containing medium
and then incubated with 1ml antibiotic-free medium per well.
The cells were transfected with 1.0 mg expression plasmids
(GHR-WT, GHR-Y196S, GHR-Q256* and GHR-E570Afs*30
expression plasmids) and 1.5 ml of Lipofectamine 3000
(Thermo Fisher Scientific, USA) in 100 ml of OPTI-MEM
serum-free medium (Hyclone, USA) for 5 hours, then the
culture medium was replaced with fresh medium containing
10% fetal calf serum for 48h. The vector group was transfected
with 1.0 mg pcDNA3.1(+) empty vector instead of
expression plasmids.

Immunofluorescence Assays
Immunofluorescence was performed on fixed cells to determine
the subcellular distribution of GHR. HEK293T cells and HepG2
cells were plated on 12-well plates treated with polylysine and
transfected with either GHR-WT or mutant GHR expression
plasmids. 48 hours after transfection, the cells were fixed with 4%
paraformaldehyde for 20 minutes and permeabilized with
saponin (Beyotime Biotechnology, P0095, China) for 20
minutes. QuickBlockTM blocking solution (Beyotime
Biotechnology, P0220, China) was added to block non-specific
TABLE 1 | Primers used in the PCR amplification for GHR gene.

Exon Forward primer sequence Reverse primer sequence Length of PCR products

Exon 2 AGCTCATTCATGTCTTACCC AAAACTTGGATGTAGCGAAT 252bp
Exon 3 AGCCACAAAATGACCTGTTTAGC GCCACACACTTTTAAACAACCAGA 781bp
Exon 4 CTAGACACGGAATACACTGG AACAAATCACTTCCATTCCCACA 347bp
Exon 5 GAAGTACCAAACGGCCTC TCTTCTTCACAACATTTACTGC 611bp
Exon 6 AAAATATTGGAAGAAATAAGAGCA GGCCTCCATATATACATAAGCATC 516bp
Exon 7 AAAATGGGAGAATACCTG ATATTTTGATTTGGACAACAC 349bp
Exon 8 GCTGAAACCTTTATGATACTCCC CTGGAATGAATGGGTCAACT 758bp
Exon 9 ACACTCCAATTATATAAAGTACCA TCCAGGAGAAGAGACACAAG 331bp
Exon 10 ACTGTTGTTCTTATTGTAACCAT AAGGCATTTTAGAATCCATACCC 1213bp
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antibody binding sites for 10 minutes. The cells were then stained
with anti-HA monoclonal antibody (Abcam, USA, ab18181,
1:200 dilution) at 4°C overnight. Anti-mouse secondary
antibody conjugated with Alexa Fluor 488 (CST, Danvers, MA,
USA, 4408s, 1:1000 dilution) were added and incubated at room
temperature in dark for 1 hour. DAPI was added to stain nucleus
at room temperature in dark for 10 minutes. Fluorescence was
detected using a Leica TCS SP5 II confocal fluorescence
microscope (Leica, Germany).

Western Blotting for Detection of GHR
and Phosphorylated-STAT5
To assess the influence of GHR mutations on the expression of
GHR protein, the GHR protein levels were determined by
Western blotting method in HepG2 cells. HepG2 cells were
transfected with GHR-WT or mutant GHR expression
plasmids as described above. Total proteins were extracted
using RIPA cell lysis buffer. 30 mg of proteins were separated
by electrophoresis on 8% SDS-PAGE gels. The proteins were
then transferred to nitrocellulose membranes (Applygen, Beijing,
China) through a wet transfer method (Bio-Rad, California,
USA) followed by the immunodetection. The primary rabbit
anti-GHR antibody (Abcam, USA, ab65304, 1:1000 dilution) was
incubated at 4°C overnight, followed by incubation with the
HRP-coupled secondary antibody for 1 hour at room
temperature (anti-rabbit antibody from CST, 7074, 1:3000
dilution). Signals were detected by using high sensitivity
SuperSignal West Pico PLUS reagent (ThermoFisher Scientific,
USA, 34577) and visualized using the Tanon 5200
Chemiluminescence imager (China). The bands were analyzed
using Image J. A similar process was also conducted to assay b-
actin as an internal reference.

To further investigate whether the mutant GHRs affect GH-
induced signal transduction, the levels of the total and
phosphorylated-STAT5 (p-STAT5) protein was further
determined by Western blotting method in HepG2 cells. As
described previously, HepG2 cells were transfected with GHR-
WT or mutant GHR expression plasmids for 5 hours, and the cell
culture medium was changed to low serum medium (1% fetal
bovine serum) 16 hours. Then, 100 ng/ml rhGH was
supplemented for 30 minutes. Total proteins were extracted
with a phosphatase inhibitor cocktail (MedChemExpress, USA,
HY-K0022) which protected the proteins from being
dephosphorylated during protein extraction procedure. The
following western blotting process were conducted as described
above. The primary rabbit anti-phospho-STAT5-Y694 (Abcam,
ab32364), rabbit anti-STAT5 (Abcam, ab16276) and rabbit anti-
b-actin (CST, 4970s) were incubated at 1:1000 dilution at 4°C
overnight, while the secondary anti-rabbit antibody (CST, 7074)
was incubated at 1:2000 dilution for 1 hour at room temperature.
All immunoblot data shown were representative of at least three
independent experiments.

Statistical Analysis
Each experiment was carried out three times. Samples in each
group of experiments were repeated in triplicate. Normally
Frontiers in Endocrinology | www.frontiersin.org 4
distributed data are expressed as the mean ± standard
deviation (SD), and skewness distribution data are expressed as
the median. Statistical analysis was performed by t-test for two
groups or one-way ANOVA for more than two groups. The
Kruskal-Wallis test was used for skewed data. P<0.05 was
considered significant. All statistical computations were
performed with SPSS 23.0, and GraphPad Prism 6 was used
for all statistical graphs.

RESULTS

The Demographic Characteristics and
Biochemical Measurements of LS Patients
The demographic characteristics and biochemical measurements
of the four patients are shown in Table 2. All of the four patients
with LS were male, the median age was 6.2 years old. Three
patients had a severe short stature with height SDS of -5.49, -6.71
and -3.95, while the height SDS of patient 2 was -2.80. The median
height was -4.72 SDS, and the median weight was -2.77 SDS.

As shown in Table 2, three patients (P1, P2, P3) had higher
basal GH levels than the normal reference range (<2.0 ng/ml),
ranging from 2.10 to 15.44 ng/ml, whereas the basal GH levels of
P4 patient was 1.59 ng/ml (<2.0 ng/ml). The peak GH levels
during the GH stimulation test were extremely high in P1, P3
and P4 patients with unknown peak GH levels of P2. However,
IGF-1 levels of P2, P3 and P4 patients was less than the lower
limit of normal range (<25 ng/ml), and IGF-1 concentration of
P1 was only 32 ng/ml. As expected, all four patients had bone age
retardation with the median retardation time of 18 months.
Finally, none of the patients showed abnormalities in the
pituitary MRI.

Patient 1 received recombinant human GH (rhGH) treatment
at a dosage of 0.053 mg/kg/d for 2 months, and his height
increased by 3.3 cm and IGF-1 increased from 32 ng/ml to
91 ng/ml. Patient 4 was given rhGH treatment at a dosage of
0.057 mg/kg/d for 32 months. During the last follow-up, the
height increased by 17.8 cm (from -3.95 SDS to -2.96 SDS) with
an annual growth rate of 6.8 cm/year, and IGF-1 increased from
less than 25 ng/ml to 64 ng/ml.

GHR Gene Variations of Four Patients
With LS
Exon 2 to exon 10 of GHR gene of four patients with LS were
amplified and sequenced. The results were shown in Table 3 and
Figure 1. Two single nucleotide polymorphism (SNP) sites,
c.1483C>A (p.P495T, rs6183) and c.1630A>C (p.I544L, rs6180),
were detected in Patient 1. Patient 2 carried a novel homozygous
mutation, c.808A>G (p.I270V) as shown in Figure 1A, and
neither of his parents had the c.808A>G mutation. A novel
heterozygous nonsense mutation, c.766C>T (p.Q256*) was
identified in patient 3 as shown in Figure 1B, and the C>T base
substitution led to a premature stop codon, which produced a
truncated GHR protein. Patient 4 carried GHR gene compound
heterozygous mutations including a novel heterozygous mutation,
c.1707_1710del (p.E570Afs*30) in exon 10 (Figure 1D), which
was inherited from his father and a previously reported
April 2021 | Volume 12 | Article 605736
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heterozygous mutation, c.587A>C (p.Y196S, rs747888560) in
exon 6 (Figure 1C), which was inherited from his mother as
presented in Figure 1E. However, neither of his parents
manifested a short phenotype. The height SDS of his father
and mother was 0.14 SDS (177 cm) and -0.03 SDS
(157 cm), respectively.

Abnormal Subcellular Localization
of Mutant GHRs Observed by
Immunofluorescence Assays
To visualize the mutant GHR subcellular distribution, GHR-WT
and mutant GHR expression plasmids were transfected into
HepG2 cells and immunofluorescence assay was performed
with a monoclonal anti-HA tag (HA tag was inserted after the
signal peptide in the extracellular domain) antibody. As
presented in Figure 2, GHR-WT proteins in green color were
evenly distributed on the cell membrane of HepG2 cells.
However, when Q256* mutant GHR expression plasmids were
transfected into HepG2 cells, mutant GHR proteins gathered
around the nucleus and presented in a unique ring-like pattern,
which was apparently different from the GHR-WT. Similar to the
GHR-Q256* truncated protein, the same ring-like pattern was
observed in cells transfected with GHR-E570Afs*30 expression
plasmids, the mutant GHR proteins were concentrated in the
cytoplasm. However, unlike the subcellular distribution of
mutant GHR-Q256* and GHR-E570Afs*30, the mutant GHR-
Y196S proteins had a similar subcellular localization of GHR-
WT with an even GHR distribution on the cell membrane.

Next, the subcellular distribution of mutant GHRs were again
conducted in HEK293T cells by the same transient transfection
method and immunofluorescence assays as shown in Figure 3,
and the localization of the GHR-WT and mutant GHRs were
similar to that of HepG2 cells. GHR-WT proteins in HEK293T
cells presented with a uniform distribution on cell surface as
observed in HepG2 cells transfected with GHR-WT. Q256*
truncated proteins and E570Afs*30 proteins in HEK293T cells
were localized in a region adjacent to the nucleus, similar to the
subcellular distribution pattern seen in HepG2 cells. In HEK293T
cells transfected with Y196S, GHRs had a similar subcellular
localization as GHR-WT, evenly distributed on the cell membrane.
The Significantly Decreased Protein
Levels of Mutant GHRs Transfected
Into HepG2 Cells
Since the cellular localization of the mutant GHR has changed,
has its protein levels also changed? In order to answer this issue,
pcDNA3.1(+) empty vector, GHR-WT and mutant GHR
expression plasmids were transfected into HepG2 cells, total
proteins were extracted and Western blotting was performed. As
shown in Figures 4A, B, GHRs could be detected in HepG2 cells
transfected with pcDNA3.1(+) empty vector, and the molecular
weight of GHRs were about 130 kDa. GHR-WT proteins were
overexpressed compared to cells transfected with empty vector
and the difference was statistically significant (Figure 4C,
P<0.05). The GHR protein levels in HepG2 cells transfected
with GHR-Y196S were significantly lower than that of GHR-WT
T
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and decreased by 19.65% as shown in Figure 4C (P<0.05).
Specifically, unlike GHR-Y196S, HepG2 cells transfected with
GHR-Q256* mutant expression plasmid produced a truncated
protein, with a molecular weight of approximately 43 kDa as
presented in Figure 4B. Protein bands corresponding to the
molecular weight of 130kDa could be detected in HepG2 cells
Frontiers in Endocrinology | www.frontiersin.org 6
transfected with Q256*, and the GHR protein level was
significantly decreased by 81.34% when compared to GHR-WT
(P<0.05). Similar to GHR-Q256*, HepG2 cells transfected with
GHR-E570Afs*30 mutant plasmid also had significantly
diminished GHR protein expression at a molecular weight of
130kDa, which was decreased by 60.22% when compared to
A B

C D

E

FIGURE 1 | GHR gene variants in patients with Laron syndrome. Patient 2 (A) carried the c.808A>G (p.I270V) homozygous mutation. Patient 3 (B) harbored the c.766C>T
(p.Q256*) heterozygous mutation. Patient 4 (C, D) had GHR gene compound heterozygous mutations: c.587A>C (p.Y196S) and c.1707_1710del (p.E570Afs*30). Pedigree
analysis of patient 4 (E) revealed that the c.587A>C variant was inherited from his mother, while the c.1707_1710del variant was inherited from his father.
TABLE 3 | Genetic variants of the GHR gene in patients with Laron Syndrome.

Patient Exon Nucleotide Protein rs number Homozygote/
Heterozygote

Novel Clinical
Significance

P1 Exon 10 c.1483C>A p.P495T 6183 Heterozygote No Likely benign
Exon 10 c.1630A>C p.I544L 6180 Heterozygote No benign

P2 Exon 8 c.808 A>G p.I270V Homozygote Yes Uncertain
significance

P3 Exon 7 c.766C>T p.Q256* Heterozygote No pathogenic
P4 Exon 6 c.587A>C p.Y196S 747888560 Heterozygote No Likely

pathogenic
Exon 10 c.1707_1710del p.E570Afs*30 Heterozygote Yes pathogenic
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GHR-WT as presented in Figure 4C (P<0.05). However, no
visible truncated GHR protein band was identified in western
blot gel.

The Significantly Decreased GH-Induced
Phosphorylated STAT5 Levels of HepG2
Cells Transfected With Mutant GHRs
Since GHR gene mutations lead to abnormal subcellular location
and the decreased expression of GHR proteins, it was not clear
whether the transduction of post-receptor signal pathway was
also affected. To further elucidate this problem, HepG2 cells were
transfected with GHR-WT and mutant GHR expression
plasmids, and cells were treated with 100ng/ml rhGH for 30
minutes before the total proteins were extracted. The levels of the
total and p-STAT5 protein was measured by Western blotting.
As shown in Figures 5A, B, both total STAT5 (t-STAT5) and p-
STAT5 were detected at a molecular weight of 95 kDa in HepG2
cells. The relative levels of p-STAT5 among different groups was
marked as the ratio of p-STAT5 to t-STAT5. As shown in Figure
5C, the levels of p-STAT5 proteins were significantly decreased
in HepG2 cells transfected with GHR-Y196S mutant plasmid in
comparison with cells transfected with GHR-WT, and decreased
by 32.67% (P<0.05). In consistent with the results of GHR-
Y196S, the levels of p-STAT5 proteins were also significantly
Frontiers in Endocrinology | www.frontiersin.org 7
reduced in HepG2 cells transfected with GHR-Q256* and GHR-
E570Afs*30 mutant plasmids and reduced by 40.57% and
29.63%, respectively, as shown in Figure 5C, which indicated
an impaired post-receptor signal transduction.
DISCUSSION

This study described the demographic characteristic and
biochemical features of four Chinese patients with LS.
Molecular genetic analysis revealed two novel GHR gene
mutations, c.808A>G (p.I270V) and c.1707_1710del
(p.E570Afs*30). Further in vitro functional experiments
demonstrated that the novel GHR gene mutations disrupted
the subcellular translocation of GHR proteins, affected the
expression of GHR proteins and impaired the post-receptor
signal transduction.

Patient 4 carried a compound heterozygous mutation,
c.1707_1710del (p.E570Afs*30) and c.587A>C (p.Y196S).
c.1707_1710del mutation was located in the intracellular
region of GHR. Deletion of four bases resulted in a frameshift
mutation, introducing a premature termination codon (TAG) at
codon 600. The novel E570Afs*30 mutation influenced the
subcellular distribution of GHR protein. Immunofluorescence
FIGURE 2 | Immunofluorescence images of HepG2 cells transfected with GHR wild type (WT) and mutant expression plasmids (Q256*, E570Afs*30 and Y196S). The
GHR protein was labeled by anti-HA primary antibody in green, the nucleus was labeled by DAPI in blue, and the merged images were displayed in the right column.
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demonstrated that the mutated GHR had a ring-like distribution
pattern gathering around the nucleus, while GHR-WT were
evenly distributed on the cell membrane. The GHR trafficking
process from the endoplasmic reticulum to the cell membrane
might be interrupted. E570Afs*30 mutation not only effected the
translocation of GHR protein, but also influenced the expression
of GHR and the GH-induced signal transduction. The expression
of E570Afs*30 mutant protein was significantly decreased
compared to the GHR-WT. The predicted consequence of this
frameshift mutation would produce a truncated protein.
However, no truncated protein was detected in Western
blotting. The possible explanation of the result may be that the
E570Afs*30 mutant GHR gene activated nonsense-mediated
mRNA decay (30), which led to the GHR mRNA degradation.
Milward et al. reported a homozygous 22-bp deletion in exon 10
of the GHR, resulting in a truncated GHR protein at amino acid
449 (GHR1-449) (31). Although both the GHR1-449 mutation
and the E570Afs*30 mutation located in the intracellular
domain, the mutant GHR1-449 protein had a similar cell
surface distribution pattern as the GHR-WT, suggesting that
GHR1-449 did not affect protein trafficking to the cell
membrane, which was different from E570Afs*30 mutation in
our study.
Frontiers in Endocrinology | www.frontiersin.org 8
The other heterozygous mutation in patient 4, c.587A>C
(p.Y196S), was first reported by Oh PS et al. in two Korean
patients with LS. However, the in vitro cellular function studies
were not performed in this study (32). The heterozygous
c.587A>C substitution did not change the length of the GHR
protein, and the mature Y196S mutant protein had the same
molecular weight as the GHR-WT protein as demonstrated by
Western blotting in our present study. However, the expression
of GHR-Y196S was significantly lower than that of the GHR-
WT, and the GHR post-receptor signal transduction was
significantly impaired although the subcellular distribution of
GHR-Y196S was similar to GHR-WT. Pedigree analysis revealed
that the c.1707_1710del variant was inherited from his father,
and the c.587A>C variant was inherited from his mother,
nevertheless, neither of his parents had a short stature,
suggesting that c.1707_1710del and the c.587A>C mutation
had an additive effect on the phenotype of the patients.

In patient 3, a c.766C>T (p.Q256*) heterozygous nonsense
mutation located in the extracellular domain was discovered. The
substitutionofC toT in exon7 introduced a premature termination
codon in place of a glutamic acid at amino acid 256 and produced a
truncated GHR, leading to a deletion of the entire transmembrane
domain and intracellular domain. The unique ring-like distribution
FIGURE 3 | Immunofluorescence images of HEK293T cells transfected with GHR wild type (WT) and mutant expression plasmids (Q256*, E570Afs*30 and Y196S). The
GHR protein was labeled by anti-HA primary antibody in green, the nucleus was labeled by DAPI in blue, and the merged images were displayed in the right column.
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A B

C

FIGURE 4 | (A, B) Expression of GHR protein in HepG2 cells transfected with pcDNA3.1(+) empty vector, GHR wild type (WT) and mutant expression plasmids
(Y196S, Q256* and E570Afs*30). The GHR protein has a molecular weight of around 130 kDa. Protein bands corresponding to 130 kDa could be detected in
HepG2 cells transfected with Q256* and E570Afs*30, and the relative expression of both of them were significantly decreased compared to GHR-WT (C, P<0.05).
HepG2 cells transfected with Q256* mutant plasmid produced a truncated protein, with a molecular with of around 43kD. However, no truncated protein was
detected in HepG2 cells transfected with E570Afs*30 mutant plasmid.
A B

C

FIGURE 5 | Phosphorylated STAT5 (p-STAT5) expression in HepG2 cells transfected with wild type GHR (WT), mutant GHR Y196S, Q256* and E570Afs*30 after
100ng/ml rhGH was added in the cell culture medium for 30 minutes. Both p-STAT5 and total STAT5 (t-STAT5) had a molecular weight of around 95 kDa (A, B).
The ratio of p-STAT5 to t-STAT5 was converted to gray-scale value by Image J. The expression of p-STAT5 was significantly decreased in GHR-Y196S, GHR-
Q256* and GHR-E570Afs*30 when compared to GHR-WT as shown in (C) (P<0.05).
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pattern of GHR protein shown by immunofluorescence assay may
be attributed to the mutant GHR-Q256* interfered with the
translocation of mature GHR protein from the endoplasmic
reticulum to the cell membrane. Western blot analysis
demonstrated that the truncated protein had a molecular weight
of 43 kDa, and the expression of both GHR and p-STAT5 were
remarkably reduced compared to GHR-WT. The c.766C>T GHR
gene mutation may explain the pathogenesis of the severe growth
retardation in patient 3. A novel compoundheterozygousmutation
of the GHR gene, the c.724G>T (p.E224*) in exon 7 and c.981delC
in exon10,was reported byKaji et al. in a Japanese girl whose height
was -7.6 SDS (33). RT-PCR of the lymphocytes and sequencing of
its cDNA revealed that no GHR mRNA was measured in the
patient, suggesting that neither of the mutant alleles could generate
a functional GHR mRNA.

In patient 2, a novel c.808A>G (p.I270V) homozygousmissense
mutation in the transmembrane domain was identified. GHR
mutations occurring in the transmembrane domain were
extremely rare. To our knowledge, in addition to c.839_875
+1417del (D262Gfs*5) reported by Klammt et al. (27), c.875G>C
(p.R274T) reported byWoods et al. (34) and c.800G>A (p.W267*)
reported by Rughani et al. (25), the c.808A>G (p.I270V) in the
present study was the onlymutation located in the transmembrane
domain of GHR. The I270V recombinant expression plasmid was
Frontiers in Endocrinology | www.frontiersin.org 10
not successfully constructed in our study. Therefore, the in vitro
functional verification of this mutation was not performed in our
present study.

Various mutations in the GHR gene have been documented,
including missense, deletion, nonsense, frameshift, and splice site
mutations, which affect the expression of GHR, ligand binding,
GHR dimerization, or signal transduction and result in the
dysfunction of GHR (4, 17). We performed a literature review to
summarize the published GHR gene mutation locus as shown in
Figure 6 (detailed information could be found in Supplementary
Table 1). Among the 120 known GHR mutations, 77 mutations
occurred extracellularly, 17 occurred in the GHR introns, 17
occurred intracellularly, and 5 occurred in the transmembrane
domain (detailed information was shown in Supplementary
Material). The remaining four mutations were large fragments
deletion. Mutations in transmembrane domain were extremely
scarce. Storr et al. found that the expression of milder gene
defects might show significant variability within each kindred,
explaining why some patients were clinically easy to diagnose,
whereas others may be under-diagnosed (5). The short stature
phenotype did not always parallel theGHR gene defect. Among our
four patients with LS, patient 3 had the most severe genetic defect,
and the loss of function of one GHR allele (Q256*) led to a severe
height deficit. However, as for patient 1, who manifested a severe
FIGURE 6 | Diagrammatic representation of the human GHR gene mutations published in patients with Laron syndrome. Different colors stand for variant severity of
height defect. Red stands for patients with height less than -7 SDS, orange stands for patients with height between -5 SDS to -7 SDS, blue stands for patients with
height between -3 SDS to -5 SDS, and green stands for patients with height above -3 SDS. Novel mutations found in our present study were labeled with ◆.
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short phenotype with a height of -5.49 SDS, noGHR genemutation
was detected. Further genetic study about this patient needs to be
done in the future.

Recombinant human IGF-1 (rhIGF-1) replacement is the
recommended treatment for severe LS (35). However, the efficacy
inmild ormoderate LS patients remains unclear. Moreover, due to
the unavailability of rhIGF-1 in China, themanagement of patients
withLS isdifficult.A studyof combined rhGHplus rhIGF-1 therapy
in children with short stature, low IGF-1 (below -1.0 SD) and
normal GH levels assessed growth responses according to the dose
of rhIGF-1. In the group receiving the highest dose of rhIGF-1 (150
mg/kg/d) combined with rhGH at 45 mg/kg/d, the year 1 height
velocity was 11.2 ± 2.1 compared with 9.3 ± 1.7 cm/y in the group
receiving rhGHat 45mg/kg/d alone (36). rhGHwas administered in
patient 4 at 57 mg/kg/d for 32months in our center, and the growth
velocity was 6.8 cm/y with the height increased by 17.8 cm in total.
The IGF-1 level increased from 25 ng/ml to 64 ng/ml. This finding
may be attributed to the direct effect of GH to promote epiphyseal
growth.Our clinical experience provides evidence andpossibility in
growth-promotion with rhGH under circumstance of
unavailability of rhIGF-1.

Several limitations existed in our study. Since the phenotype
of the patients was typical of LS, we conducted Sanger
sequencing of the GHR gene, it was unclear whether defects of
post-receptor components exist in the GH signal transduction
pathway, such as STAT5B, IGFALS, IGF-1 and PAPPA2 genes.
Besides, overlapping phenotypes and attenuated presentations
can complicate the clinical picture, in which whole-exon
sequencing or even whole-genome sequencing should be
performed to discover underlying genetic abnormalities.
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