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Abstract

The Facioscapulohumeral Muscular Dystrophy (FSHD) is an autosomal dominant neuromuscular disorder whose incidence is
estimated in about one in 400,000 to one in 20,000. No effective therapeutic strategies are known to halt progression or
reverse muscle weakness and atrophy. It is known that the FSHD is caused by modifications located within a D4ZA repeat
array in the chromosome 4q, while recent advances have linked these modifications to the DUX4 gene. Unfortunately, the
complete mechanisms responsible for the molecular pathogenesis and progressive muscle weakness still remain unknown.
Although there are many studies addressing cancer databases from a machine learning perspective, there is no such
precedent in the analysis of the FSHD. This study aims to fill this gap by analyzing two specific FSHD databases. A feature
selection algorithm is used as the main engine to select genes promoting the highest possible classification capacity. The
combination of feature selection and classification aims at obtaining simple models (in terms of very low numbers of genes)
capable of good generalization, that may be associated with the disease. We show that the reported method is highly
efficient in finding genes to discern between healthy cases (not affected by the FSHD) and FSHD cases, allowing the
discovery of very parsimonious models that yield negligible repeated cross-validation error. These models in turn give rise
to very simple decision procedures in the form of a decision tree. Current biological evidence regarding these genes shows
that they are linked to skeletal muscle processes concerning specific human conditions.
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Introduction

The Facioscapulohumeral Muscular Dystrophy (FSHD) is an

autosomal dominant neuromuscular disorder and the third most

common inherited muscular dystrophy [1,2]. Its incidence may

vary in different places and probably in different racial groups, but

recent estimates account for one in about 400,000 to one in 20,000

[3]. FSHD patients show progressive weakening and atrophy of

the muscles in the face, slowly progressing to the shoulder, upper

arm muscles and shoulder girdle, down to the stomach and lower

limbs. Inability to flex the foot upward, foot weakness, and an

onset of right/left asymmetry are also common symptoms [4,5].

Although the FSHD is considered a relatively benign dystrophy,

about 20% of the patients presenting this disorder are eventually

restrained to a wheel chair. The age of onset is variable, being the

second decade of life the most common stage where patients

become symptomatic. In some cases, however, symptoms never

develop even when the individual has the mutation associated with

the FSHD.

No effective therapeutic strategies are known to either halt

progression or reverse muscle weakness and atrophy in the FSHD

[6]. However, there are a number of actions that can provide

symptomatic and functional improvement in many patients. In

particular, the use of assistive devices –such as braces, standing

frames, or walkers– is of great help. Physical therapies like

exercises in water, complemented by psychological support and

speech therapy may also alleviate specially difficult life conditions.

It is known that the FSHD is caused by deletion of a subset

of D4Z4 macrosatellite repeat units in the subtelomere of

chromosome 4q [7]. D4Z4 modification needs to occur on a

specific chromosomic background to cause the FSHD. More

than 95% of patients with clinical FSHD have an associated

D4Z4 deletion on the 4q35 chromosome. However, a small

number of kindreds with clinically typical FSHD do not present

this dynamic. A second FSHD locus has not yet been identified

[8]. Recent advances involve the DUX4 gene, a retrogene

sequence within D4Z4 that encodes a double homeodomain

protein whose exact function is not entirely known. Although

the proper mechanisms responsible for the progressive muscle

weakness still remain unknown, the study of this gene could

offer a possible therapeutic way [7].

It is generally believed that the monitoring of expression levels

for thousands of genes simultaneously may lead to a more

complete understanding of the molecular variations among

different cell conditions. In the literature on machine learning,

contributions concerning the analysis of gene expression FSHD

data are very scarce, probably because of unawareness towards the

highly rare diseases. The situation is aggravated by the absence of

scientific data outside purely medical domains, in order to attack

the problem from a different point of view. In contrast, there is

now a vast body of available datasets about microarray gene

expression analysis when focused to cancer diseases. Specifically,

microarray gene expression databases have been used to
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discriminate between tumours or tumour subtypes, and to study

biological properties of tumours –see, e.g., [9].

Over the last decade, Machine Learning (ML) has made

significant inroads in the fields of bioinformatics and biomedicine

[10]. Specifically, cancer research has applied a variety of ML

algorithms for tumor prediction by associating expression patterns

with clinical outcomes for patients with tumors [11]. The majority

of this research has focused on building accurate classification

models from reduced sets of features. Some of these analyses also

aim to gain understanding of the differences between normal and

malignant cells and to identify genes that are differentially

regulated during cancer development. The importance of the

validity and reproducibility of statistical analysis and reporting

cannot be stressed enough [12].

Typically, a gene expression data set may consist of dozens of

samples but with thousands or even a few tens of thousands of

genes (acting as features, using the ML terminology). Predictive

model construction using this very high ratio between number of

features and number of samples is a delicate undertaking, prone to

obtain unreliable readings. As a result, dimensionality reduction

and in particular feature selection techniques may be very useful, as a

way to reduce the problem complexity and lighten medical expert

diagnosis.

Of special importance in a practical medical setting is the

interpretability of the obtained solutions, something that limits the

applicability of methods such as PCA or ICA (whose solutions

involve weighted combinations of genes, instead of individual

genes). Moreover, in a medical context, data visualization in a low-

dimensional representation space may become extremely important,

as it would help doctors to gain insights into this complex and

highly sensitive domain. The development of predictive models

able to discern between healthy and FSHD samples with minimal

error rate and amenable to direct interpretation is thus a clear

research goal. When predictive models use very low numbers of

relevant genes, these genes are likely to be associated with the

disease, and can be used as a starting mechanism for further

dedicated study from a biological point of view.

The present study addresses all these issues in two FSHD

databases (named, just for reference in this paper, as FSHD-DB1

and FSHD-DB2) to discern between healthy and FSHD samples

(clinical cases). We report experimental results supporting the

practical advantage of combining robust feature selection and

classification in the analyzed FSHD datasets. The described

method is able to unveil two groups of genes that yield very low

mean cross-validation error. These genes can be used to build very

simple decision procedures in the form of a decision tree.

Results and Discussion

FSHD-DB1 Database
The feature selection process in Algorithm 1 comes to a final

solution in the form of a subset with only three genes and a 100%

of mean 565 cv accuracy. This final subset is presented in Table 1

including its gene IDs and full names. It will be hereafter referred

as the FSHD-DB1 model. In comparison, PAMR delivers a 96.8%

of mean 565 cv accuracy with 2 genes (Table 2), and SVM-RFE

delivers a comparable 99.4% mean 565 cv accuracy, using 5

genes (Table 3). As a further comparison, if we consider the two

genes signaled as most relevant in the literature (DUX4 [7] and

FRG1 [13]), the corresponding mean 565 cv accuracy of these two

genes (taken together) is 84.65%.

Visualization. Data visualization in a low-dimensional rep-

resentation space is extremely important to gain a better

understanding of the solution delivered by the process. To

visualize the result, the data corresponding to the FSHD-DB1

model are plotted using the three selected genes as axes, without

any pre-processing method or projection technique –Fig. 1. In

addition, the LDA decision boundary fitted in the whole data set is

shown. The FSHD group presents a less compact distribution,

while the Healthy group is clustered around a specific region of the

representation space given by the three genes found. It can be seen

that the two conditions are neatly separated.

Figure 2 shows a box plot for each gene in the FSHD-DB1

model. LAMP1 shows a mean value for FSHD samples of

2087:90+157:04, against Healthy with mean 1092:91+54:41;

DPF3 shows a more even expression level, FSHD with

1005:78+83:79 and Healthy with 881:93+40:73; KPNA2 tends

to up-regulate heavily in FSHD (mean 788:81+78:92, compared

to Healthy with 305:92+23:59).

Figure 3 depicts a dendrogram of cases and standardized gene

expression levels for the FSHD-DB1 model. Each case is identified

with an ID number, prefixed by a letter indicating class

membership, H for Healthy and F for FSHD. It is apparent that

LAMP1 shows an up-regulation in most of the FSHD cases, as well

as KPNA2; DPF3 shows a slightly diffuse expression level.

Nonetheless, it is noticed in Fig. 3 that the natural clusters do

not necessarily correspond to labeled samples, and thus supervised

information is needed to create accurate prediction models, even

in this low-dimensional representation. Three clusters are discov-

ered: a first one (H1 to H17), in which most (but certainly not all)

of the samples belong to Healthy class; a second group (H18 to

H22), containing three Healthy and two FSHD samples; finally, a

third group (from F23 on) which is completely messed up. This

result –although is certainly dependent on the limitations of

clustering methods– alerts against using unsupervised feature

extraction methods like PCA.

An interesting point to be emphasized in these graphic

representations is that the FSHD-DB1 model clearly clusters the

two conditions neatly –Fig. 1. We were therefore interested in

ascertaining to what extent is this result stable and may thus

constitute a good departing point for future studies. To this end,

we performed two further investigations:

Table 1. Best gene subset found using the proposed method
and LDA as performance measure in FSHD-DB1 (the FSHD-
DB1 model).

Probe set ID Gene Name

201088_at KPNA2 karyopherin alpha 2 (RAG cohort
1, importin alpha 1)

219746_at DPF3 D4, zinc and double PHD fingers,
family 3

201552_at LAMP1 lysosomal-associated membrane
protein 1

doi:10.1371/journal.pone.0082071.t001

Table 2. Best gene subset found using PAMR in FSHD-DB1.

Probe set ID Gene Name

218959_at HOXC10 homeobox C10

215000_s_at FEZ2 fasciculation and elongation protein
zeta 2 (zygin II)

doi:10.1371/journal.pone.0082071.t002

Classification and Gene Expression for the FSHD
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1. The first action was to change the resampling method to 10

times 10-fold cross validation (10610 cv). This form of

resampling entails a much higher computational cost; however,

it has been suggested as adequate for small sample situations

[14].

2. The second action was to analyze the statistical differences

between FSHD vs. Healthy samples in the expression levels for

the genes in the model. In addition, we explored the possibility

that a single gene is able to (almost) perfectly separate the two

classes by mere chance.

Statistical analysis. We were interested in exploring the

effect of changing the resampling method, keeping the same

classifier (LDA in this case), in order to exclude this source of

variation from the analysis. Remarkably, using 10610 cv instead

of 565 cv in Algorithm 1, it was found that the final result fully

coincided with the FSHD-DB1 model.

In order to assess statistical significance of expression levels, the

Mann-Whitney U-test (MWU) was used in the comparison

between FSHD vs. Healthy samples in the model. This is a non-

parametric hypothesis test for assessing whether one of the two

conditions (FSHD in this case) tends to have larger values than the

other.

For KPNA2, medians for the two groups Healthy and FSHD

were 307:41 and 736:98; the distributions in the two groups

differed significantly (Mann-Whitney W = 243, p-value

2:06:10{7).

For DPF3, medians for the two groups Healthy and FSHD were

888:61 and 867:44; the distributions in the two groups did not

differed significantly (Mann-Whitney W = 150, p-value 0:1886).

For LAMP1, medians for the two groups Healthy and FSHD

were 1088:76 and 2000:11; the distributions in the two groups

differed significantly (Mann-Whitney W = 243, p-value

2:06:10{7).

Therefore both KPNA2 and LAMP1 genes present high

differences in the two conditions. Although these two genes are

not equal, they present notable similarities. Spearman’s rank

correlation coefficient is equal to 0:771. This fact will be used to

simplify the FSHD-DB1 model.

One may still wonder about the probability of finding such a

single gene like KPNA2–that separates the two conditions with one

exception– by mere chance (Fig. 2). If a gene bears no relation

with the disease, we could expect an arbitrary pattern for the

distribution of the two conditions (healthy vs. FSHD cases) across

the expressed values of the gene. The probability that one or more

genes in 22,283 separates the two conditions (14 FSHD; 18

healthy) with only one exception is found to be around 7:9:10{4.

A final interpretable model. Even though the LDA

decision boundary in Fig. 1 depicts a clean separation between

the two patient conditions, its application as a decision tool may

not be straightforward. In this sense, decision trees are one of the

preferred tools by experts in decision making processes. Moreover,

the final selection of a gene subset may still provide few clues about

the structure of the two conditions with respect to their expression

levels. Some accuracy may be sacrificed for increased interpret-

ability of the model.

Figure 4 shows a CART decision tree [15] built with the FSHD-

DB1 model. The main question is on the expression level of gene

KPNA2: the right branch corresponds to 13 (all but one) of the

FSHD patients; the left branch corresponds to all of the 18 healthy

ones plus the remaining FSHD patient. Moreover, one may

wonder if there is a second gene, expressed such that it separates

this specific patient from the 18 healthy ones, and indeed there is

one: precisely DPF3. Whether this last patient is an outlier in a

medical sense we cannot know, but it deserves further clinical

Table 3. Best gene subset found using SVM-RFE in FSHD-DB1.

Probe set ID Gene Name

202594_at LEPROTL1 leptin receptor overlapping transcript-like 1

208065_at ST8SIA3 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3

209797_at CNPY2 canopy 2 homolog (zebrafish)

215000_s_at FEZ2 fasciculation and elongation protein zeta 2 (zygin II)

218959_at HOXC10 homeobox C10

doi:10.1371/journal.pone.0082071.t003

Figure 1. LDA decision surface for the FSHD-DB1 model.
doi:10.1371/journal.pone.0082071.g001

Classification and Gene Expression for the FSHD
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investigation. Therefore, despite LAMP1 shows a markedly

differential expression, it may be excluded from the decision flow.

Biological evidence. In this section, we compile scientific

knowledge about the two genes in the final subset, including their

known primary functions in cellular process.

KPNA2. KPNA2 is Karyopherin alpha 2 (RAG cohort 1,

importin alpha 1). It is known that muscle functions are dependent

on spatial and temporal control of gene expressions in myofibers.

These are multinucleated cells that contain hundreds of nuclei

spread across the length of the cell in a common cytoplasm. Their

very important role is to control the transcriptional activity of

several nuclei in a common cytoplasm [16].

Analyzing the role of karyopherin alpha (KPNA) and paralogs-

specific roles of KPNA1 and KPNA2 during myogenesis, it has been

found that these two genes do regulate myoblast proliferation.

Particularly, KPNA2 regulates myotube size and myocyte migra-

tion [17]. Therefore, both may be involved in the nuclear

transport of proteins [18], which has a key role in controlling gene

expression in skeletal muscles.

DPF3. DPF3 is D4, zinc and double PHD fingers, family 3.

This gene belongs to the neuron-specific chromatin remodeling

complex (nBAF complex), acting as a tissue-specific anchor

between histone acetylations and methylations and chromatin

remodeling [18,19]. Experiments in human cardiac samples and

mouse embryonic and adult hearts showed that it plays a role in

heart and skeletal muscle development [20]. It also presents an up-

regulated expression in patients with Tetralogy of Fallot, a congenital

heart defect, partially characterized by muscular hypertrophy.

FSHD-DB2 Database
The feature selection process in Algorithm 1 comes to a final

solution with six genes and 99.6% of mean 565 cv accuracy. This

final subset is presented in Table 4 including its gene IDs and full

names (of which two of them are yet unknown). It will be hereafter

referred as the FSHD-DB2 model. In comparison, PAMR delivers

a 70.4% of mean 565 cv accuracy with 3 genes (Table 5), and

SVM-RFE delivers 85.2% mean 565 cv accuracy, using 5 genes

(Table 6, of which three of them are unknown). This database

Figure 2. Box plots for the expression levels of the genes in the FSHD-DB1 model.
doi:10.1371/journal.pone.0082071.g002

Classification and Gene Expression for the FSHD
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contains DUX4 entries, corresponding to 4 isoforms. If we consider

the most informative model, including the 4 sequences of DUX4

and FRG1 together, the corresponding 565 cv accuracy is found

to be a disappointing 39.60%.

Visualization. Figure 5 shows a box plot for each gene in

the FSHD-DB2 model. The first three genes in the model

(Unknown-7905039, GDNF and EXTL1) tend to up-regulate

heavily, this time in Healthy samples. The other three seem to

contain complementary information in the variance rather than in

the central tendency. Figure 6 depicts a dendrogram of cases and

standardized gene expression levels for the FSHD-DB2 model.

Each case is identified with an ID number, prefixed by a letter

Figure 3. Clustering of the expression levels of the genes in the FSHD-DB1 model. Left: by genes; Top: by samples.
doi:10.1371/journal.pone.0082071.g003

Classification and Gene Expression for the FSHD
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indicating class membership, H for Healthy and F for FSHD. It is

apparent that the natural clusters are less homogeneous than those

obtained for the FSHD-DB1 database. Nonetheless, the group of

central clusters (formed only by Healthy cases, H4 to H36) is

clearly identified by GDNF and EXTL1, both genes showing a

definite up-regulation in all cases.

Statistical analysis. Again, statistical significance of individ-

ual expression levels in the FSHD-DB2 model is assessed with a

Mann-Whitney U-test (MWU) in the comparison between FSHD

vs. Healthy samples.

For Unknown-7905039, medians for the two groups (FSHD and

Healthy) were 2:41 and 2:62, resp.; the distributions in the two

groups differed significantly (MannWhitney W = 118, p-value

9:22:10{5).

For GDNF, medians for the two groups (FSHD and Healthy)

were 6:76 and 7:22, resp.; the distributions in the two groups

differed significantly (MannWhitney W = 114, p-value 6:32:10{5).

For EXTL1, medians for the two groups (FSHD and Healthy)

were 6:98 and 7:26, resp.; the distributions in the two groups

differed significantly (MannWhitney W = 96, p-value 9:90:10{6).

For the other three genes, the medians for the two groups are

very close and the test is non-significant at the 95% level. This

seems to confirm the previous interpretation of a first subgroup of

three genes (Unknown-7905039, GDNF and EXTL1) that contain

highly discriminant information in their means (or medians) and a

second subgroup of another three genes (RPL36AP40, IGHMBP2

and Unknown-8147750) that complement the first group. Interest-

ingly, this split fully coincides with the order in which the genes

were discovered by the feature selection process in Algorithm 1.

The second-ranked gene, GDNF, is also chosen by the PAMR

method (Table 5).

In contrast to the previous database, the genes in the FSHD-

DB2 model seem quite different and, this time, no single gene can

separate the two conditions neatly; rather, they collaborate to

reach a very high classification accuracy. Indeeed, the absolute

value of Spearman’s rank correlation coefficient is lower than 0.5

in all cases, and specially low in the first subgroup of relevant

genes.

A final interpretable model. As for the previous database,

accuracy may be sacrificed for increased interpretability of the

model. Figure 7 shows a CART decision tree built with the FSHD-

DB2 model. The interpretation of the tree is as follows: patients

showing a value of GDNF lower than 6.8 are all classified

(correctly) as having the FSHD condition, and this group

constitutes 28% of the total; patients showing a value of GDNF

greater than 6.8 and a value of EXTL1 greater than 7.2 are all

classified (correctly) as not having the FSHD condition, and this

group constitutes 34% of the total; for the final group (38% of the

total), 12 patients are correctly identified as having the FSHD

condition, and the remaining 7 are incorrectly identified as having

the FSHD condition; thus the tree makes 7 false positives and no

false negatives.

Biological evidence. In this section, we compile scientific

knowledge about the two genes in the final subset, including their

known primary functions in cellular process.

GDNF. GDNF is glial cell derived neurotrophic factor: a gene

encoding a highly conserved neurotrophic factor. The recombi-

nant form of the protein has been shown to promote the survival

and differentiation of dopaminergic neurons in culture, and is able

to prevent apoptosis of motor neurons induced by axotomy [18].

GDNF is also associated to the Hirschsprung disease (HSCR), a

congenital disorder typically characterised by a part or all of the

large intestine having no nerves and intestinal obstruction, due to

an absence of intramural ganglia along the intestine [21].

EXTL1. EXTL1 is exostoses (multiple)-like 1. This gene is a

member of the multiple exostoses (EXT) family of glycosyltrans-

ferases. The encoded protein is involved in chain elongation of

some acidic complex polysaccharides found on the cell surface and

Figure 4. Classification tree for the simplified model in the
FSHD-DB1 database. The boxes are leaves indicating the prediction,
the numbers of cases for each condition, and the overall percentage of
covered cases.
doi:10.1371/journal.pone.0082071.g004

Table 4. Best gene subset found using the proposed method
and LDA as performance measure in FSHD-DB2 (the FSHD-
DB2 model).

Probe set ID Gene Name

7905039 Unknown

8111670 GDNF glial cell derived neurotrophic factor

7899075 EXTL1 exostoses (multiple)-like 1

7947152 RPL36AP40 ribosomal protein L36a pseudogene 40

7942073 IGHMBP2 immunoglobulin mu binding protein 2

8147750 Unknown

doi:10.1371/journal.pone.0082071.t004

Table 5. Best gene subset found using PAMR in FSHD-DB2.

Probe set ID Gene Name

8111892 OXCT1 3-oxoacid CoA transferase 1

8062461 LBP lipopolysaccharide binding protein

8111670 GDNF glial cell derived neurotrophic factor

doi:10.1371/journal.pone.0082071.t005

Classification and Gene Expression for the FSHD
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Table 6. Best gene subset found using SVM-RFE in FSHD-DB2.

Probe set ID Gene Name

7893282 Unknown

8129666 SLC2A12 solute carrier family 2 (facilitated glucose transporter), member 12

7926818 Unknown

8094938 NIPAL1 NIPA-like domain containing 1

7938667 Unknown glial cell derived neurotrophic factor

doi:10.1371/journal.pone.0082071.t006

Figure 5. Box plots for the expression levels of the genes in the FSHD-DB2 model.
doi:10.1371/journal.pone.0082071.g005

Classification and Gene Expression for the FSHD
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Figure 6. Clustering of the expression levels of the genes in the FSHD-DB2 model. Left: by genes; Top: by samples.
doi:10.1371/journal.pone.0082071.g006
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in the extracellular matrix [18]. Mutation in EXT1 is associated

with hereditary multiple exostoses, a human disorder character-

ized by the formation of cartilage-capped bony outgrowths at the

epiphyseal growth plates [22].

Concluding Remarks

The Facioscapulohumeral Muscular Dystrophy, or FSHD, is a

highly rare muscle disease for which there is no known cure

nowadays. Two databases presenting samples of both healthy and

FSHD patients have been analyzed with machine learning (ML)

methods. There is hardly any precedent in the literature

addressing this disease with these techniques.

The fact that the FSHD data analyzed in this study are scarce

and of high dimensionality makes their computer-based automat-

ed classification a difficult undertaking. Most importantly, this

high dimensionality precludes a straightforward interpretation of

the obtained results, limiting their usability in a practical medical

setting. In this vein, computational solutions like the one reported

here should reckon the need of reporting not only highly accurate

models: they should also represent low complexity and interpret-

able solutions amenable to further analysis by experts.

We have devised an approach to prediction of the FSHD

condition from gene expression profiling, comprising an effective

algorithm for gene selection enhanced with a mechanism for tie-

breaking and based on a fairly standard classifier. To demonstrate

its effectiveness, we show that the method was highly efficient in

identifying two subsets of genes that best characterize each class.

In both cases, the discrimination process is shown very

conveniently as a two-question decision tree. We have also

provided evidence for the statistical significance and stability of the

result. Our method delivers highly interpretable solutions that are

more accurate than competing methods. The technique is general

and could be used in other similar scenarios.

However, in small sample scenarios, there is a high risk of

overfitting the data: small samples will appropriately support only

simple models with few parameters (acting as the coefficients of the

features). Moreover, the use of a classifier having one or more

hyper-parameters (these are parameters that the classifier cannot

determine in its training process, and must be determined

externally) is unaffordable, since this would require an additional

resampling loop, for which there would almost be no data left. As a

consequence, the determination of these parameters would be

subject to a very high degree of uncertainty. We have selected

Linear Discriminant Analysis (LDA) as the target classifier, using

equal-covariance Gaussians to approximate class conditional

probability densities. This choice corresponds to a linear, stable

and parameter-free classifier. The LDA recognition rate was

resampled using 5 times 5-fold cross validation.

One should bear in mind that the excellent reported results do

not –by themselves– entail a medical solution to the disease, a

situation that is faced by all statistical and ML solutions. On the

contrary, a main goal of exploratory studies of this kind should be

aimed towards understanding how the variables selected by the

model fit in relation to prior knowledge from the medical domain.

Materials and Methods

The FSHD Databases
The first database used in this contribution was obtained from

the EMBL-EBI repository of the European Bioinformatics

Institute [23]. Specifically, the Experiment E-GEOD-3307 uses the

Affymetrix GeneChip Human Genome HG-133A and HG-

U133B designs to analyse a range of muscle diseases for gene

expression comparative profiling purposes. A total of 121 muscle

samples of 11 muscle pathologies (plus several healthy samples)

integrate the data: acute quadriplegic myopathy, juvenile derma-

tomyositis, amyotophic lateral sclerosis, spastic paraplegia, fascios-

capulohumeral muscular dystrophy, Emery Dreifuss muscular

dystrophy, Becker muscular dystrophy, Duchenne muscular

dystrophy, calpain 3, dysferlin, and the FKRP using U133A and

U133B array design. These are diseases with a extremely low

incidence rate in the general population. The Facioscapulohu-

meral Muscular Dystrophy (FSHD), the targeted group in this

work, consists of 14 FSHD samples and 18 healthy samples

described by 22,283 genes or features (HG-133A version).

The second database was obtained from the GEO (Gene

Expression Omnibus) repository, a publicly available site in the

National Center for Biotechnology Information (NCBI). The

Experiment GSE36398, ‘‘Transcriptional profiling in facioscapulo-

humeral muscular dystrophy to identify candidate biomarkers’’ is a

very recent database containing FSHD information only. Using

the Affymetrix Human Gene 1.0 ST Array, the experiment

analyses RNA extracted from both biceps and deltoids of FSHD

subjects (26 samples) and unaffected first-degree relatives (24

samples), rendering a dataset that consists of 50 samples, described

by 33,297 genes or features [24].

There are no missing data in any of the two datasets; and both

contain a mixture of positive and negative examples, necessary for

learning. Moreover, in both cases the whole datasets were used.

Linear Discriminant Analysis
Linear and quadratic discriminant analyses or LDA/QDA

(Duda et al. 2001) are widely used parametric methods which

assume that the class distributions are multivariate Gaussians.

With LDA, all classes are assumed to have the same covariance

Figure 7. Classification tree for the simplified model in the
FSHD-DB2 database. The boxes are leaves indicating the prediction,
the numbers of cases for each condition, and the overall percentage of
covered cases.
doi:10.1371/journal.pone.0082071.g007
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matrix. QDA does not need such an assumption; however, the

number of parameters to be estimated from the data available for

each class is much higher, entailing lower statistical significance.

In both methods, classification is achieved by assigning an

example to the class for which the posterior probability P(vkj x )
is greater, or equivalently for which lnfP(vk)p( x jvk)g is

greater.

These methods are attractive because they need no parameter

tuning, and their limited complexity (quadratic at most) may be a

solid guard against overfitting the data. Moreover, for LDA fast

updating procedures exist for the computation of certain forms of

the cross-validation error [25]. The discriminant function for class vk

is expressed as:

gk(x)~ ln fP(vk)p(xjvk)g

~ ln P(vk){ ln f(2p)
n
2jSkj

1
2g{ 1

2
(x{mk)tS{1

k (x{mk)

which simplifies to:

gk(x)~ ln P(vk){
1

2
ln jSkjz(x{mk)tS{1

k (x{mk)
� �

If we assume that all class-conditional distributions p(xjvk) have

the same covariance matrix S, we get:

gk(x)~ ln P(vk)zm t
kS

{1 x{
1

2
m t

kS
{1 mk

These are linear discriminant functions (linear in x) and

the decision boundaries gi(x)~gj(x) are hyperplanes in n-

dimensional space.

In practical situations, only an i.i.d data sample S is available.

When means, covariances and priors for every class are not

available, maximum-likelihood estimates on S can be used,

although in this case the Bayesian optimality properties are no

longer valid. Let Sk5S be the subset of samples known to belong

to class vk. Then S1, . . . ,Sc is a partition of S. Unbiased estimates

for the vector means and for the class priors can be obtained as:

m k& m̂m k~
1

jSkj
X

x [Sk

x ; P(vk)&P̂P(vk)~
jSkj
jSj

The following pooled covariance matrix is then used:

S&ŜSpooled~
1

jSj{c

Xc

k~1

(jSkj{1)ŜSk

where

ŜSk~
1

jSkj{1

X

x [Sk

(x{ m̂mk)(x{ m̂mk)t

Linear Support Vector Machines
The support vector machine (SVM) is a machine learning

method solidly based on statistical learning theory [26]. Intuitively,

given a set of examples labeled into one of two classes, the linear

SVM finds their optimal linear separation: this is the hyperplane

that maximizes the minimum orthogonal distance to a point of

either class (this distance is called margin of the separation).

Consider again an i.i.d data sample S~fx1, . . . ,xNg of training

patterns (in n dimensions), labelled into two classes v1,v2 by

z1, . . . ,zN , with zi~z1 if x i[v1 and zi~{1 if x i[v2. If we

set up an affine function g(x)~Sw,xTzb, then we have a linear

discriminant as sgn(g( x )), for which we would like:

Sw ,xiTzbw0 x i[v1 (zi~z1)

Sw ,xiTzbv0 x i[v2 (zi~{1)

In short, zi(Sw,xiTzb)w0, or zig(xi)w0, for all 1ƒiƒN.

Given the hyperplane p : g(x)~0, the perpendicular distance

from x to p is d(x ,p)~
jg(x)j
EwE

. The support vectors are those x

closest to the hyperplane. Rescaling w,b such that jSw,xTzbj~1
for these closest points, one obtains jSw,xTzbj§1. The support

vectors are now those fxi=jSw,xiTzbj~1g.
The margin m(p) of a plane p can now be written as twice its

distance of any support vector: m(p)~2d(xSV,p)~
2

EwE
, where

jg(xSV)j~1. To maximize the margin, we should minimize EwE
subject to zi(Sw,xiTzb)§1, for all 1ƒiƒN.

In the case where an hyperplane does not exist that can separate

correctly the points in the data sample, a set of non-negative slack

variables are introduced to allow for small margin violations, leading

to a soft margin:

zi(Sw ,xiTzb)zji§1 i~1, . . . ,N ð1Þ

where ji§0. For an error to occur, the corresponding ji must

exceed unity, and so
P

i ji is an upper bound on the number of

training errors. The optimal separating hyperplane can be found as

the solution of the 1-norm Quadratic Programming problem:

min
w ,j

1

2
jj w jj2zC

XN

i~1

ji

s:t: zi(Sw ,xiTzb)§1{ji,i~1, . . . ,N

The solution to this optimization problem corresponds to the

saddle point of its associated Lagrangian:

jjw jj2

2
{
XN

i~1

ai(zi(Sw ,xiTzb){1zji)zC
XN

i~1

ji{
XN

i~1

miji

where ai,mi§0 for i~1, . . . ,N.

Once this QP problem is solved, the solution vector w� can be

expressed as a linear expansion over the support vectors:

w �~
XN

i~1

a�i zi x i ð2Þ

The support vectors are precisely those x i[S for which a�i w0.
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Resampling Methods
Model selection is concerned with the process of finding the

optimal model for a set of samples among a set of candidate

models. Resampling methods aim at making a better use of the

available data. These methods are very useful for assessing how a

predictive model that can be the result of a complex modeling

process will perform in practice.

The generic goal of cross-validation (CV) is to estimate the

expected error of a model in a data set that is independent of the

data that were used to train the model. One round of k-fold CV

(or k-CV) involves partitioning the sample into k complementary

subsets, systematically performing the modeling on the union of

k{1 such subsets and checking the obtained model on the

remaining subset (acting as a validation set). The result of k-CV is

an estimation of the error if only a fraction (k{1)=k of the

available data is used. This error is expected to be conservative

(larger than the error obtained if the entire sample was used). To

reduce variability, multiple rounds can be performed using

different partitions, and the results averaged over the rounds.

The Feature Selection Algorithm
Feature selection can be seen as a search problem, where each

state in the search space corresponds to a subset of the features. In

the ML literature, a wide family of suboptimal algorithms depart

from an initial solution and iteratively add or delete features by

locally optimizing the error function. In forward selection, features

are progressively incorporated into larger subsets; in backward

selection (or elimination) one starts with the full set of features and

progressively eliminates elements from it.

Wrappers are often criticized because they are computationally

very expensive. Moreover, feature selection is badly affected by

small sample sizes, producing overly optimistic results and

introducing an excess of variance in the readings. This is

aggravated in the presence of very sophisticated search algorithms

[27]. On the other hand, greedy search strategies seem to be

particularly computationally advantageous and may alleviate the

problem of overfitting [28]. Nevertheless, traditional pure for-

wardd selection and backward elimination search algorithms are

ill-advised in that they cannot rectify their decisions and may end

up delivering poor solutions both in terms of quality and size.

To reduce the number of genes and obtain small subsets of

highly relevant genes, we use a simple but effective forward-

backward feature selection algorithm. This algorithm follows the

wrapper idea, i.e., the feature selection algorithm uses a learner as

a subroutine in the search for good subsets [29]. In this general

setting, when features are added or removed from the current

subset the algorithm resorts to some performance measure –

commonly the resampled rate of recognition.

An interleaved forward-backward search is developed looking

for the improvement in performance of the chosen performance

measure. The algorithm is described as the listing Algorithm 1.

Given a performance measure L to be maximized (in this case, the

resampled evaluation of a classifier in a data sample), the

algorithm searches the space of subsets by adding/removing

features in a hill-climbing fashion.

Specifically, in every iteration of the outer loop, one feature is

added to the current best solution BEST , as long as this step

improves on current performance Lcur. Then a variable number of

feature removal steps is carried out, inasmuch the same condition

of improved performance is met. This scheme is oriented to favour

solutions with low numbers of features. The outer iteration also

ends when no further improvement is observed. This strategy

bears some resemblances with a floating search algorithm in its

forward version [30]. However, it has a far lower computational

cost given that discarded features are not considered again for

another inclusion round. Note also that current subset perfor-

mance is not compared specifically against the best performance

achieved for the same size of the current subset (as floating methods

do). It should be mentioned that the algorithm itself needs no

parameter specification, although the chosen performance mea-

sure could have.

Algorithm 1 Forward-Backward gene feature selection.

1: Input: S~fs1, . . . ,sng: Full feature set;

C: Class feature (Healthy, FSHD)

L : 2S?R: performance measure, to be maximized

2: BEST/ arg
max

si[S
L(fsig)

3: Lcur/L(fBESTg)
4: S/S\fBESTg
5: repeat

6: ***Forward Stage***

7: snew/ arg
max

si[S
L(BEST|fsig)

8: Lnew/L(BEST|fsnewg)
9: if Lnew

wLcur then.
10: BEST/BEST|fsnewg
11: Lcur/Lnew

12: S/S\fsnewg
13: end if
14: ***Backward Stage***

15: repeat

16: snew/ arg
max

si[BEST
L(BEST\fsig)

17: Lnew/L(BEST\fsnewg)
18: if Lnew

§Lcur then
19: BEST/BEST\fsnewg
20: Lcur/Lnew

21: end if
22: until BEST does not change
23: until BEST does not change
24: Output: BEST: Optimized feature subset
As explained in the introduction, we are interested in a solution

that combines high predictive performance, very small size (i.e., a

very low number of useful genes), admits visualization and

interpretation, and hopefully may bear biological relevance.

To this end, we explicit now how the methods previously

described glue together. The performance measure L to be

maximized in Algorithm 1 is the accuracy rate of LDA. This

recognition rate is resampled using 5 times 5-fold cross validation

(565 cv for short), following common practices in the literature

[31].

Due to the low number of samples, ties among the performance

measure can happen easily. As a consequence, the gene subset

selection process will end up in different final solutions, something

that is not desirable in general [32]. How these ties are broken is

non-trivial and should be addressed specifically and explicitly.

However, the literature does not seem to offer any formal solution

or procedure. Univariate methods as entropy-based measures

[33,34], the Fisher Score [35], or some other statistical measures

could be those preferred for their simplicity –see e.g. [36,37].

Instead, a multivariate feature ranking method seems much more

adequate to measure the relevance of a group of tied features.

As explained above, linear support vector machines (SVMs) can

be seen as linear discriminant classifiers. Indeed, the numbers

(w�i )2 in eq. (2) have been used as a surrogate for the relevance of

the i-th gene since the pioneering work of [38]. Notice that our
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approach is different in that predictive performance is the main

criterion for optimization. Only in case of ties is the magnitude of

the SVM weight vector being used. This is because the relation

between this magnitude and final performance is rather indirect.

This margin-based tie-breaking procedure has been incorporated

into the feature selection algorithm. It is used every time an

evaluation of the performance measure may incur on one or more

ties –lines 2,7 and 16 in Algorithm 1.

Other Methods
Prediction analysis for microarrays. PAMR (Prediction

Analysis for Microarrays) performs sample classification from gene

expression data, via the nearest shrunken centroid method [39].

Similarly to the proposed method, PAMR estimates prediction

error via cross-validation and provides a list of significant genes

whose expression characterizes each diagnostic class.
Support vector machine for recursive feature

elimination. SVM-RFE (Support Vector Machine - Recursive

Feature Elimination) [38] has been used widely with great success

in microarray data analysis, particularly for disease gene finding. It

largely eliminates redundant genes and usually yields very

compact gene subsets. The genes are eliminated according to a

ranking related to weight magnitude in the SVM solution. This is

the same criterion for tie-breaking described in the previous

section.

Software Implementation
Algorithm 1 was implemented entirely in MATLAB language,

version 2012a. The computer codes were run on an Ubuntu Linux

server version 11.10 with an Intel(R) Xeon(R) CPU E5620 @

2.40 GHz and 8 cores. The deployed solution to Algorithm 1
takes advantage of the possibility to parallelize parts of the code,

particularly lines 2, 7 and 16. In an 8-core scenario, eight genes or

features can be evaluated at the same time. The complete software

and instructions to reproduce the experiments described in this

paper (or to conduct new ones) is available at http://nova.mxl.

uabc.mx/fernando/PO/for the interested reader.

The LDA classification algorithm and the resampling methods

implied in Algorithm 1 are developed using already existing

MATLAB functions. The only part that uses an external toolbox is

in the tie-breaking procedure –eq. (2). The well-known Steve

Gunn’s MATLAB Support Vector Machine Toolbox [40] was

used for this purpose. Full specification of parameters is described

in the url link given above.

It is important to clarify that the data sets were used without any

pre-processing step. The learning algorithms and the complete

experimental setting were fed with the original downloaded E-

GEOD-3307 and GSE36398 data. Complete details about the E-

GEOD-3307 data set can be found at http://www.ebi.ac.uk/

arrayexpress/experiments/E-GEOD-3307/and for GSE36398

data set, the location is http://0-www.ncbi.nlm.nih.gov.elis.tmu.

edu.tw/sites/GDSbrowser?acc = GDS4404. The two datasets

differ in the number of columns given that they correspond to

different technologies or gene chip versions. Although it is possible

to map genes from one technology to another, this process requires

a considerable effort that goes beyond the scope of this paper.

The PAMR experiments were conducted through a specific R

implementation [39] and run on the same Ubuntu Linux server

described above. Specifically, the Nearest Shrunken Centroid

classification algorithm works by shrinking each of the class

centroids toward the overall centroid by a certain amount called

the threshold. We used an adaptive computation of this value as

provided in the PAMR package.

The SVM-RFE experiments were implemented with the Spider

v1.7 software, a MATLAB Machine Learning package popular for

feature selection tasks –see http://people.kyb.tuebingen.mpg.de/

spider/main.html.
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