$\beta = 112.704 \ (9)^{\circ}$

 $V = 9003 (5) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.30 \times 0.22 \times 0.20$ mm

50211 measured reflections

8729 independent reflections

6521 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.42 \text{ mm}^{-1}$

T = 294 K

 $R_{\rm int} = 0.054$

582 parameters

 $\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[4-(4-pyridyl)pyridinium] *u*-4,4'-bipyridine-bis[tetraaqua(4.4'-bipvridine)manganese(II)] bis(5-sulfonatobenzene-1,3-dicarboxylate) 4,4'-bipyridine solvate pentadecahydrate

Bing-Yu Zhang, ling-ling Nie and Duan-lun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China Correspondence e-mail: xudj@mail.hz.zj.cn

Received 16 July 2009; accepted 17 July 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.053; wR factor = 0.157; data-to-parameter ratio = 15.0.

The crystal structure of the title compound, $(C_{10}H_9N_2)_2$ - $[Mn_2(C_{10}H_8N_2)_3(H_2O)_8](C_8H_3O_7S)_2 \cdot C_{10}H_8N_2 \cdot 15H_2O$, consists of dinuclear Mn^{II} complex cations, sulfonatobenzenedicarboxylate trianions, 4-(4-pyridyl)pyridinium cations, uncoordinated 4,4'-bipyridine and uncoordinated water molecules. One 4.4'-bipyridine molecule bridges two Mn atoms. forming a centrosymmetric dinuclear complex; the mid-point of the C-C bond linking the pyridine rings of the bridging ligand is located on an inversion center. Each Mn^{II} atom is coordinated by four water and two 4,4'-bipyridine molecules in a distorted octahedral geometry. The Mn^{II} atom deviates by 0.591 (5) and 0.209 (2) Å from the mean planes of the coordinated pyridine rings. In the 4-(4-pyridyl)pyridinium cation, the two pyridine rings are twisted with respect to each other, making dihedral angle of 34.78 (17)°. The uncoordinated bipyridine molecule is also centrosymmetric. One of uncoordinated water molecules has site symmetry 2, and the other uncoordinated water molecule is located close to an inversion center and its one H atom is disordered equally over two sites. Extensive $\pi - \pi$ stacking between pyridine rings is observed and an extensive hydrogen-bonding network of the types $N-H \cdots N$, $O-H \cdots N$ and $O-H \cdots O$ is present.

Related literature

For the nature of π - π stacking, see: Deisenhofer & Michel (1989); Xu et al. (2007); Li et al. (2005). For non-coplanar 4,4'bipyridine or 4,4'-bipyridinium, see: Bowes et al. (2003); Pedireddi & PrakashaReddy (2003); Charmant et al. (2003); Madhu & Das (2004).

Experimental

Crystal data

$(C_{10}H_9N_2)_2[Mn_2(C_{10}H_8N_2)_3-$
$(H_2O)_8](C_8H_3O_7S)_2$
$C_{10}H_8N_2 \cdot 15H_2O$
$M_r = 1949.70$
Monoclinic, $C2/c$
a = 45.393 (13)Å
b = 10.946 (3) Å
c = 19.641 (6) Å

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.84, T_{\max} = 0.92$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.157$ S = 1.038729 reflections

Table 1

Selected bond lengths (Å).

Mn-N1	2.323 (2)	Mn-O2	2.156 (2)
Mn-N3	2.311 (2)	Mn-O3	2.178 (2)
Mn-O1	2.158 (2)	Mn-O4	2.192 (2)

Table	2
Undro	an ha

Hydrogen-bond geo	ometry (A, °)).
-------------------	---------------	----

$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.96	1.79	2.725 (4)	163
0.95	1.86	2.809 (4)	173
0.95	1.81	2.731 (3)	165
0.81	1.95	2.735 (3)	163
0.89	1.81	2.691 (3)	169
0.90	1.86	2.742 (4)	168
0.95	1.81	2.754 (3)	169
0.95	1.88	2.805 (4)	164
0.87	1.85	2.706 (3)	166
0.94	1.87	2.815 (3)	177
0.97	1.77	2.719 (3)	166
0.95	2.07	2.822 (6)	135
0.92	1.99	2.903 (4)	175
0.95	1.79	2.694 (5)	157
0.96	1.88	2.831 (4)	170
0.89	2.15	2.946 (5)	148
0.94	2.02	2.900 (8)	156
0.94	1.92	2.772 (6)	149
	D-H 0.96 0.95 0.95 0.81 0.89 0.90 0.95 0.95 0.95 0.94 0.97 0.95 0.92 0.95 0.92 0.95 0.96 0.89 0.94 0.94	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.96 & 1.79 \\ 0.95 & 1.86 \\ 0.95 & 1.81 \\ 0.81 & 1.95 \\ 0.89 & 1.81 \\ 0.90 & 1.86 \\ 0.95 & 1.81 \\ 0.95 & 1.88 \\ 0.87 & 1.85 \\ 0.94 & 1.87 \\ 0.97 & 1.77 \\ 0.95 & 2.07 \\ 0.92 & 1.99 \\ 0.95 & 1.79 \\ 0.96 & 1.88 \\ 0.89 & 2.15 \\ 0.94 & 2.02 \\ 0.94 & 1.92 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

metal-organic compounds

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O5W-H5B\cdots O6W^{viii}$	0.93	1.94	2.771 (9)	147
$O6W-H6A\cdots O6$	0.99	1.81	2.768 (6)	162
$O6W - H6B \cdot \cdot \cdot O7W^{viii}$	0.94	1.73	2.358 (12)	121
$O7W-H7A\cdots O5$	0.91	2.23	3.124 (10)	166
$O7W - H7B \cdots O5W^{ix}$	0.90	1.76	2.291 (11)	115
O8W−H8A···O9	0.91	2.00	2.871 (7)	159
	1 2		. 1	1

 $\begin{array}{ll} \text{Symmetry codes: (i)} & -x+\frac{1}{2}, -y+\frac{3}{2}, -z+1; \text{ (ii) } x, -y+1, z-\frac{1}{2}; \text{ (iii) } x, -y, z-\frac{1}{2}; \text{ (iv) } \\ -x, -y+1, -z; & (v) & x, y+1, z; & (vi) & x, y-1, z; & (vii) & -x, y, -z+\frac{1}{2}; \\ -x+\frac{1}{2}, y-\frac{1}{2}, -z+\frac{3}{2}; \text{ (ix)} -x+\frac{1}{2}, y+\frac{1}{2}, -z+\frac{3}{2}. \end{array}$

Table 3

A summary of the distances and angles between partially overlapped pyridine rings (Å, $^\circ).$

Ring (I)	Ring (J)	Angle	Perp(I)	$\operatorname{Perp}(J)$	Cg–Cg
N1-pyridine	N2 ⁱ -pyridine	8.29	3.404	3.491	3.691 (2)
N2-pyridine	N6 ⁿ -pyridine	5.33	3.403	3.391	3.794 (2)
N3-pyridine	N5 ^m -pyridine	10.91	3.260	3.477	3.751 (2)
N5-pyridine	N5 ⁱ -pyridine	0.00	3.544	3.544	3.547 (2)

Symmetry codes: (i) -x, 1-y, -z; (ii) -x, 2-y, -z; (iii) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$. Notes: Angle: dihedral angle between ring (*I*) and ring (*J*). Perp(*I*) is the perpendicular distance of centroid of ring (*I*) on ring (*J*). Perp(*J*) is the perpendicular distance of centroid of ring (*J*) on ring (*I*). *Cg*-*Cg* is the distance between centroids of ring (I) and ring (J).

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The work was supported by the ZIJIN project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2741).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 277–286.
- Charmant, J. P. H., Norman, N. C., Orpen, A. G. & Starbuck, J. (2003). Acta Cryst. E59, m1000–m1001.
- Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
- Madhu, V. & Das, S. K. (2004). Polyhedron, 23, 1235-1242.
- Pedireddi, V. R. & PrakashaReddy, J. (2003). Tetrahedron Lett. 44, 6679-6681.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, D.-J., Yang, Q., Ma, L.-J. & Nie, J.-J. (2007). Acta Cryst. C63, m476– m478.

Acta Cryst. (2009). E65, m975-m976 [doi:10.1107/S1600536809028359]

Bis[4-(4-pyridyl)pyridinium] #-4,4'-bipyridine-bis[tetraaqua(4,4'-bipyridine)manganese(II)] bis(5-sulfonatobenzene-1,3-dicarboxylate) 4,4'-bipyridine solvate pentadecahydrate

B.-Y. Zhang, J.-J. Nie and D.-J. Xu

Comment

The π - π stacking between aromatic rings has attracted our much attention because it is correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As a part of our ongoing investigation on the nature of π - π stacking (Xu *et al.*, 2007; Li *et al.*, 2005), the title compound incorporating 4–4'bipyridine was prepared in the laboratory and its crystal structure is reported here.

The crystal structure of the title compound consists of dinuclear Mn^{II} complex cations, sulfobenzendicarboxylate anions, 4-(4-pyridyl)pyridinium cations, uncoordinated 4,4'-bipyridine and lattice water molecules.

The dinuclear Mn^{II} complex cation is centrosymmetric. Each Mn atom is coordinated by four water and two bipyridine molecules with a distorted octahedral geometry (Table 1). The bridge bipyridine ligand links two Mn atoms to form the dinuclear complex. The mid-point of C—C bond linking pyridine rings of the bridge ligand is located on an inversion center. The Mn atom is not coplanar with the coordinated pyridine rings but deviated from the pyridine planes by -0.591 (5) and 0.209 (2) Å, respectively.

The sulfobenzendicarboxylate anion is not coordinated to the Mn atom but links with the complex *via* O—H···O hydrogen bonding (Table 1). A 4-(4-pyridyl)pyridinium cation occurs in the asymmetric unit of the crystal structure to balance the charge. In the pyridinium cation two pyridine rings are twisted to each other with a dihedral angle of 34.78 (17)°, similar to those found in the crystal structures containing 4,4'-bipyridine (Bowes *et al.*, 2003; Pedireddi & PrakashaReddy, 2003) or 4,4'-pyridinium cation (Charmant *et al.*, 2003; Madhu & Das, 2004).

In the crystal structure there are uncoordinated bipyridine and water molecules. The uncoordinated bipyridine molecule is centrosymmetric with the mid-point of C28—C28ⁱ bond located in an inversion center [symmetry code: (i) -*x*, 2 - *y*, -*z*]. One of lattice water molecules has site symmetry 2, and the other lattice water molecule is located close to an inversion center and its one H atom is equally disordered over two sites.

The extensive hydrogen bonding network is present in the crystal structure (Table 2). The partially overlapped arrangement between pyridine rings is observed in the crystal structure (Fig. 2). The shorter centroid-to-centroid distances (Table 3) suggest the existence of extensive π - π stacking between pyridine rings.

Experimental

Reagents and solvent were used as purchased without further purification. 4,4'-Bipyridine (0.16 g, 1 mmol), Na₂CO₃ (0.11 g, 1 mmol), sodium 1-sulfo-benzene-3,5-dicarboxylate (0.25 g, 1 mmol) and MnCl₂.4H₂O (0.20 g, 1 mmol) were dissolved in ethanol-water (10 ml, 1:4). The mixture was transferred into a Teflon-lined stainless steel vessel (25 ml). The autoclave

was sealed and heated at 403 K for 3 d. After cooling to room temperature the mixture was filtered. Single crystals of the title compound were obtained from the filtrate after one day.

Refinement

H atom bonded to N atom was located in a difference Fourier map and refined as riding in as-found relative position, $U_{iso}(H) = 1.5U_{eq}(N)$. Water H atoms were placed in chemical sensible positions and refined in riding mode, among which the H4B was equally disordered over two sites, $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids for non-H atoms (arbitrary spheres for H atoms) [symmetry codes: (i) -x, 2 - y, -z; (ii) 1/2 - x, 1/2 - y, 1 - z].

Fig. 2. The unit cell packing diagram showing the partially overlapped arrangement between pyridine rings. H atoms have been omitted for clarity.

Bis[4-(4-pyridyl)pyridinium] µ-4,4'-bipyridine-bis[tetraaqua(4,4'-bipyridine)manganese(II)] bis(5-sulfonatobenzene-1,3-dicarboxylate) 4,4'-bipyridine solvate pentadecahydrate

Crystal data

$(C_{10}H_9N_2)_2[Mn_2(C_{10}H_8N_2)_3(H_2O_1)_8](C_8H_3O_7S)_2 \cdot C_{10}$	0H8082=1 50B2 0
$M_r = 1949.70$	$D_{\rm x} = 1.438 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 9036 reflections
a = 45.393 (13) Å	$\theta = 1.8 - 25.0^{\circ}$
b = 10.946 (3) Å	$\mu = 0.42 \text{ mm}^{-1}$
c = 19.641 (6) Å	T = 294 K
$\beta = 112.704 \ (9)^{\circ}$	Prism, yellow
$V = 9003 (5) Å^3$	$0.30 \times 0.22 \times 0.20 \text{ mm}$
Z = 4	
Data collection	

Rigaku R-AXIS RAPID IP

8729 independent reflections

diffractometer

Radiation source: fine-focus sealed tube	6521 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.054$
T = 294 K	$\theta_{\text{max}} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 1.0^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -55 \rightarrow 54$
$T_{\min} = 0.84, \ T_{\max} = 0.92$	$k = -13 \rightarrow 12$
50211 measured reflections	$l = -24 \rightarrow 24$

Re	finement	f
ne	mement	٢

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.157$	$w = 1/[\sigma^2(F_o^2) + (0.0798P)^2 + 12.578P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.003$
8729 reflections	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
582 parameters	$\Delta \rho_{min} = -0.70 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Mn	0.138711 (10)	0.44260 (4)	0.25751 (2)	0.03510 (14)	
S1	0.077589 (19)	0.17856 (7)	0.36556 (4)	0.0411 (2)	
N1	0.09707 (6)	0.5538 (2)	0.17267 (14)	0.0435 (6)	
N2	-0.05514 (7)	0.7148 (3)	-0.09856 (16)	0.0534 (7)	
N3	0.18000 (6)	0.3382 (2)	0.34637 (13)	0.0385 (6)	
N4	0.13043 (7)	0.9442 (3)	0.27057 (15)	0.0543 (7)	
H4N	0.1125	0.9505	0.2243	0.081*	
N5	0.27811 (7)	0.8985 (3)	0.57216 (17)	0.0593 (8)	
N6	0.07271 (6)	0.9608 (3)	0.15572 (15)	0.0510 (7)	

01	0.16744 (5)	0.60471 (19)	0.29572 (11)	0.0489 (5)	
H1C	0.1850	0.6081	0.3420	0.073*	
H1D	0.1735	0.6465	0.2610	0.073*	
O2	0.15987 (5)	0.41069 (19)	0.17792 (11)	0.0442 (5)	
H2C	0.1660	0.4671	0.1603	0.066*	
H2D	0.1584	0.3426	0.1524	0.066*	
O3	0.11111 (5)	0.27534 (19)	0.22073 (11)	0.0457 (5)	
H3C	0.0932	0.2677	0.1802	0.069*	
H3D	0.1041	0.2381	0.2557	0.069*	
O4	0.11748 (5)	0.4668 (2)	0.33971 (11)	0.0485 (5)	
H4C	0.1000	0.4218	0.3420	0.073*	
H4D	0.1242	0.5011	0.3831	0.073*	
O5	0.16741 (6)	0.38646 (19)	0.60499 (12)	0.0535 (6)	
O6	0.17704 (6)	0.2475 (2)	0.69415 (12)	0.0604 (6)	
O7	0.12394 (6)	-0.2362 (2)	0.50527 (14)	0.0624 (7)	
O8	0.15990 (6)	-0.1909 (2)	0.61660 (14)	0.0616 (7)	
09	0.04841 (6)	0.1151 (2)	0.35750 (13)	0.0613 (7)	
O10	0.09064 (6)	0.1395 (2)	0.31214 (12)	0.0592 (6)	
011	0.07449 (6)	0.3107 (2)	0.36789 (13)	0.0566 (6)	
O1W	0.14542 (7)	0.5424 (2)	0.48152 (13)	0.0640 (7)	
H1A	0.1522	0.4881	0.5219	0.096*	
H1B	0.1400	0.6198	0.4980	0.096*	
O2W	0.07443 (8)	-0.2903 (3)	0.36216 (18)	0.0979 (10)	
H2A	0.0661	-0.3634	0.3735	0.147*	
H2B	0.0898	-0.2683	0.4068	0.147*	
O3W	0.02684 (10)	-0.1253 (3)	0.3116 (2)	0.1214 (13)	
H3A	0.0437	-0.1809	0.3167	0.182*	
H3B	0.0338	-0.0454	0.3323	0.182*	
O4W	0.02979 (10)	0.5171 (3)	0.3142 (3)	0.1261 (14)	
H4A	0.0372	0.4416	0.3155	0.189*	
H4B1	0.0090	0.5344	0.2805	0.189*	0.50
H4B2	0.0307	0.5587	0.2779	0.189*	0.50
O5W	0.22098 (10)	-0.1454 (6)	0.7192 (3)	0.184 (3)	
H5A	0.2045	-0.1664	0.6739	0.276*	
H5B	0.2303	-0.2172	0.7111	0.276*	
O6W	0.23851 (10)	0.1545 (6)	0.7469 (3)	0.176 (2)	
H6A	0.2159	0.1764	0.7353	0.264*	
H6B	0.2445	0.1076	0.7903	0.264*	
O7W	0.2369 (2)	0.4673 (9)	0.7033 (5)	0.304 (5)	
H7A	0.2183	0.4341	0.6714	0.456*	
H7B	0.2418	0.4293	0.7472	0.456*	
O8W	0.0000	0.2607 (10)	0.2500	0.248 (5)	
H8A	0.0160	0.2064	0.2737	0.371*	
C1	0.07441 (9)	0.6011 (4)	0.19136 (18)	0.0611 (10)	
H1	0.0783	0.6077	0.2413	0.073*	
C2	0.04520 (9)	0.6413 (4)	0.14079 (18)	0.0620 (10)	
H2	0.0302	0.6736	0.1574	0.074*	
C3	0.03820 (7)	0.6338 (3)	0.06573 (16)	0.0399 (7)	
C4	0.06260 (8)	0.5909 (3)	0.04616 (18)	0.0530 (9)	
			· · ·		

H4	0.0600	0.5881	-0.0032	0.064*
C5	0.09091 (8)	0.5522 (3)	0.10067 (18)	0.0543 (9)
Н5	0.1068	0.5230	0.0860	0.065*
C6	-0.03092 (9)	0.6860 (4)	-0.11693 (19)	0.0635 (10)
Н6	-0.0345	0.6819	-0.1668	0.076*
C7	-0.00038 (9)	0.6614 (4)	-0.06589 (19)	0.0623 (10)
H7	0.0158	0.6422	-0.0820	0.075*
C8	0.00604 (7)	0.6654 (3)	0.00895 (16)	0.0402 (7)
С9	-0.01918 (8)	0.6976 (3)	0.02817 (18)	0.0525 (8)
Н9	-0.0163	0.7032	0.0776	0.063*
C10	-0.04883 (8)	0.7212 (4)	-0.0266 (2)	0.0589 (9)
H10	-0.0654	0.7430	-0.0122	0.071*
C11	0.20872 (7)	0.3379 (3)	0.34306 (16)	0.0423 (7)
H11	0.2103	0.3628	0.2993	0.051*
C12	0.23632 (7)	0.3028 (3)	0.40062 (16)	0.0425 (7)
H12	0.2557	0.3038	0.3947	0.051*
C13	0.23533 (7)	0.2660 (3)	0.46751 (15)	0.0350 (6)
C14	0.20507 (7)	0.2620 (3)	0.47004 (17)	0.0495 (8)
H14	0.2027	0.2352	0.5126	0.059*
C15	0.17869 (7)	0.2977 (3)	0.40957 (17)	0.0477 (8)
H15	0.1588	0.2935	0.4128	0.057*
C16	0.13366 (8)	0.8674 (4)	0.3250 (2)	0.0559 (9)
H16	0.1164	0.8195	0.3230	0.067*
C17	0.16217 (8)	0.8577 (3)	0.38458 (18)	0.0500 (8)
H17	0.1642	0.8032	0.4224	0.060*
C18	0.18801 (7)	0.9292 (3)	0.38830 (16)	0.0406 (7)
C19	0.18382 (8)	1.0080 (3)	0.32978 (17)	0.0478 (8)
H19	0.2008	1.0560	0.3301	0.057*
C20	0.15476 (8)	1.0156 (3)	0.27148 (18)	0.0531 (8)
H20	0.1519	1.0696	0.2329	0.064*
C21	0.27635 (8)	0.9214 (3)	0.5038 (2)	0.0579 (9)
H21	0.2953	0.9296	0.4964	0.069*
C22	0.24774 (8)	0.9335 (3)	0.44329 (19)	0.0513 (8)
H22	0.2478	0.9501	0.3969	0.062*
C23	0.21924 (7)	0.9207 (3)	0.45215 (17)	0.0420 (7)
C24	0.22095 (9)	0.8982 (3)	0.52304 (18)	0.0562 (9)
H24	0.2024	0.8897	0.5321	0.067*
C25	0.25060 (10)	0.8885 (4)	0.5803 (2)	0.0650 (10)
H25	0.2512	0.8740	0.6275	0.078*
C26	0.07059 (8)	0.9386 (3)	0.08743 (18)	0.0535 (9)
H26	0.0888	0.9120	0.0811	0.064*
C27	0.04305 (8)	0.9528 (3)	0.02553 (18)	0.0511 (8)
H27	0.0431	0.9365	-0.0209	0.061*
C28	0.01528 (7)	0.9915 (3)	0.03266 (15)	0.0375 (6)
C29	0.01739 (8)	1.0117 (4)	0.10414 (18)	0.0573 (9)
H29	-0.0006	1.0358	0.1123	0.069*
C30	0.04590 (8)	0.9965 (4)	0.16272 (19)	0.0641 (10)
H30	0.0466	1.0118	0.2099	0.077*
C31	0.10688 (7)	0.1346 (3)	0.45289 (15)	0.0353 (6)

C32	0.12452 (7)	0.2216 (2)	0.50320 (15)	0.0357 (6)
H32	0.1210	0.3042	0.4919	0.043*
C33	0.14755 (7)	0.1851 (2)	0.57097 (15)	0.0351 (6)
C34	0.15267 (7)	0.0610 (3)	0.58662 (16)	0.0370 (6)
H34	0.1680	0.0365	0.6317	0.044*
C35	0.13527 (7)	-0.0271 (2)	0.53592 (15)	0.0350 (6)
C36	0.11214 (7)	0.0109 (3)	0.46826 (15)	0.0377 (6)
H36	0.1003	-0.0467	0.4337	0.045*
C37	0.16561 (7)	0.2811 (3)	0.62790 (17)	0.0413 (7)
C38	0.14015 (8)	-0.1624 (3)	0.55409 (17)	0.0418 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Mn	0.0311 (3)	0.0407 (3)	0.0270 (2)	0.00423 (18)	0.00411 (19)	0.00406 (17)
S1	0.0453 (5)	0.0417 (4)	0.0313 (4)	-0.0020 (3)	0.0092 (3)	0.0049 (3)
N1	0.0369 (14)	0.0462 (15)	0.0363 (14)	0.0040 (11)	0.0020 (11)	0.0056 (11)
N2	0.0395 (16)	0.0569 (17)	0.0469 (17)	-0.0001 (13)	-0.0020 (13)	0.0070 (13)
N3	0.0332 (13)	0.0431 (14)	0.0318 (13)	0.0051 (10)	0.0042 (11)	0.0060 (10)
N4	0.0392 (16)	0.071 (2)	0.0411 (16)	0.0109 (14)	0.0028 (13)	-0.0122 (14)
N5	0.0526 (19)	0.0516 (17)	0.0507 (18)	0.0002 (14)	-0.0053 (15)	-0.0014 (14)
N6	0.0371 (15)	0.0639 (18)	0.0423 (15)	-0.0018 (13)	0.0047 (13)	-0.0041 (13)
01	0.0510 (13)	0.0471 (12)	0.0346 (11)	-0.0066 (10)	0.0011 (10)	0.0019 (9)
O2	0.0596 (14)	0.0369 (11)	0.0387 (11)	0.0034 (10)	0.0218 (10)	0.0017 (9)
O3	0.0364 (12)	0.0540 (13)	0.0362 (11)	-0.0062 (9)	0.0025 (9)	0.0061 (9)
O4	0.0464 (13)	0.0640 (14)	0.0360 (11)	0.0061 (11)	0.0170 (10)	0.0026 (10)
O5	0.0730 (16)	0.0342 (12)	0.0452 (13)	-0.0066 (11)	0.0140 (12)	-0.0056 (10)
O6	0.0799 (18)	0.0473 (13)	0.0360 (13)	0.0062 (12)	0.0025 (12)	-0.0052 (10)
07	0.0805 (18)	0.0325 (12)	0.0585 (15)	-0.0010 (11)	0.0095 (13)	-0.0051 (11)
08	0.0707 (17)	0.0367 (12)	0.0575 (15)	0.0002 (11)	0.0028 (13)	0.0124 (11)
09	0.0461 (14)	0.0736 (17)	0.0518 (14)	-0.0143 (12)	0.0051 (11)	0.0143 (12)
O10	0.0767 (17)	0.0676 (16)	0.0357 (12)	0.0012 (13)	0.0242 (12)	0.0035 (11)
011	0.0618 (15)	0.0436 (13)	0.0531 (14)	0.0059 (11)	0.0098 (12)	0.0089 (10)
O1W	0.093 (2)	0.0526 (14)	0.0434 (13)	0.0145 (13)	0.0225 (13)	-0.0021 (11)
O2W	0.099 (2)	0.102 (2)	0.081 (2)	0.014 (2)	0.0209 (19)	-0.0076 (18)
O3W	0.120 (3)	0.082 (2)	0.138 (3)	0.006 (2)	0.024 (3)	-0.013 (2)
O4W	0.127 (3)	0.082 (2)	0.181 (4)	0.018 (2)	0.073 (3)	0.013 (3)
O5W	0.078 (3)	0.310 (8)	0.134 (4)	-0.028 (4)	0.007 (3)	0.086 (5)
O6W	0.075 (3)	0.310 (8)	0.136 (4)	0.028 (4)	0.032 (3)	0.044 (4)
O7W	0.242 (8)	0.326 (11)	0.304 (10)	-0.131 (8)	0.061 (8)	0.011 (9)
O8W	0.200 (9)	0.213 (10)	0.249 (12)	0.000	-0.003 (8)	0.000
C1	0.060 (2)	0.078 (3)	0.0308 (17)	0.0277 (19)	0.0012 (16)	-0.0017 (16)
C2	0.051 (2)	0.085 (3)	0.0391 (18)	0.0325 (19)	0.0055 (16)	-0.0021 (17)
C3	0.0355 (16)	0.0371 (16)	0.0384 (16)	0.0034 (12)	0.0046 (13)	0.0047 (12)
C4	0.0399 (19)	0.077 (2)	0.0371 (17)	0.0061 (16)	0.0096 (15)	0.0162 (16)
C5	0.0356 (18)	0.081 (3)	0.0416 (18)	0.0125 (16)	0.0102 (15)	0.0181 (17)
C6	0.054 (2)	0.085 (3)	0.0347 (18)	0.010 (2)	-0.0013 (16)	0.0057 (17)
C7	0.049 (2)	0.087 (3)	0.0408 (19)	0.0163 (19)	0.0059 (16)	0.0024 (18)

C8	0.0339 (16)	0.0402 (16)	0.0353 (16)	0.0029 (12)	0.0010 (13)	0.0039 (12)
C9	0.0409 (19)	0.069 (2)	0.0393 (18)	0.0041 (16)	0.0064 (15)	0.0067 (16)
C10	0.0368 (19)	0.077 (3)	0.055 (2)	0.0055 (17)	0.0086 (16)	0.0080 (18)
C11	0.0365 (17)	0.0562 (19)	0.0313 (15)	0.0081 (14)	0.0096 (13)	0.0088 (13)
C12	0.0342 (16)	0.0576 (19)	0.0346 (15)	0.0096 (14)	0.0118 (13)	0.0078 (13)
C13	0.0338 (15)	0.0343 (14)	0.0324 (14)	0.0055 (12)	0.0077 (12)	0.0052 (11)
C14	0.0361 (17)	0.071 (2)	0.0382 (17)	0.0099 (15)	0.0106 (14)	0.0234 (15)
C15	0.0283 (16)	0.067 (2)	0.0424 (17)	0.0057 (14)	0.0074 (14)	0.0182 (15)
C16	0.0390 (19)	0.070 (2)	0.052 (2)	-0.0057 (16)	0.0105 (16)	-0.0099 (18)
C17	0.0428 (19)	0.058 (2)	0.0432 (18)	-0.0046 (15)	0.0096 (15)	-0.0019 (15)
C18	0.0375 (17)	0.0429 (17)	0.0349 (16)	0.0026 (13)	0.0066 (13)	-0.0059 (12)
C19	0.0437 (19)	0.0511 (19)	0.0413 (17)	0.0028 (15)	0.0082 (15)	-0.0007 (14)
C20	0.051 (2)	0.060 (2)	0.0385 (18)	0.0099 (17)	0.0057 (16)	-0.0009 (15)
C21	0.0384 (19)	0.062 (2)	0.060 (2)	0.0014 (16)	0.0045 (17)	-0.0070 (17)
C22	0.0433 (19)	0.059 (2)	0.0431 (18)	0.0006 (15)	0.0078 (16)	-0.0035 (15)
C23	0.0374 (17)	0.0406 (16)	0.0375 (16)	0.0017 (13)	0.0029 (14)	-0.0038 (13)
C24	0.052 (2)	0.067 (2)	0.0419 (19)	-0.0088 (17)	0.0095 (16)	0.0017 (16)
C25	0.063 (3)	0.075 (3)	0.0391 (19)	-0.009 (2)	0.0002 (18)	0.0062 (17)
C26	0.0316 (17)	0.079 (2)	0.0457 (19)	0.0073 (16)	0.0097 (15)	-0.0011 (17)
C27	0.0361 (18)	0.076 (2)	0.0389 (17)	0.0055 (16)	0.0121 (15)	-0.0056 (16)
C28	0.0312 (15)	0.0409 (16)	0.0368 (15)	-0.0032 (12)	0.0094 (12)	-0.0058 (12)
C29	0.0354 (18)	0.094 (3)	0.0387 (18)	0.0029 (17)	0.0100 (15)	-0.0117 (18)
C30	0.041 (2)	0.109 (3)	0.0362 (18)	0.004 (2)	0.0088 (16)	-0.0102 (19)
C31	0.0356 (16)	0.0376 (15)	0.0325 (15)	-0.0010 (12)	0.0131 (13)	0.0007 (12)
C32	0.0435 (17)	0.0283 (14)	0.0356 (15)	0.0007 (12)	0.0154 (13)	0.0004 (11)
C33	0.0378 (16)	0.0342 (15)	0.0324 (14)	-0.0007 (12)	0.0127 (13)	-0.0017 (11)
C34	0.0385 (16)	0.0365 (15)	0.0335 (15)	0.0016 (12)	0.0112 (13)	0.0020 (12)
C35	0.0376 (16)	0.0293 (14)	0.0372 (15)	0.0003 (12)	0.0134 (13)	0.0007 (12)
C36	0.0441 (17)	0.0323 (15)	0.0347 (15)	-0.0042 (12)	0.0131 (13)	-0.0046 (12)
C37	0.0424 (18)	0.0372 (17)	0.0394 (17)	0.0018 (13)	0.0102 (14)	-0.0057 (13)
C38	0.0455 (18)	0.0336 (16)	0.0468 (18)	-0.0014 (13)	0.0183 (16)	0.0006 (13)

Geometric parameters (Å, °)

Mn—N1	2.323 (2)	C4—C5	1.384 (4)
Mn—N3	2.311 (2)	C4—H4	0.9300
Mn—O1	2.158 (2)	С5—Н5	0.9300
Mn—O2	2.156 (2)	C6—C7	1.388 (5)
Mn—O3	2.178 (2)	С6—Н6	0.9300
Mn—O4	2.192 (2)	C7—C8	1.384 (4)
S1—O9	1.449 (2)	С7—Н7	0.9300
S1—O10	1.454 (2)	C8—C9	1.382 (4)
S1—O11	1.455 (2)	C9—C10	1.385 (5)
S1—C31	1.784 (3)	С9—Н9	0.9300
N1—C1	1.324 (4)	C10—H10	0.9300
N1—C5	1.331 (4)	C11—C12	1.379 (4)
N2—C6	1.321 (5)	C11—H11	0.9300
N2—C10	1.331 (5)	C12—C13	1.391 (4)
N3—C11	1.330 (4)	С12—Н12	0.9300

N3—C15	1.341 (4)	C13—C14	1.395 (4)
N4—C16	1.323 (5)	C13—C13 ⁱ	1.487 (5)
N4—C20	1.348 (5)	C14—C15	1.378 (4)
N4—H4N	0.9591	C14—H14	0.9300
N5—C25	1.323 (5)	С15—Н15	0.9300
N5—C21	1.338 (5)	C16—C17	1.373 (5)
N6—C26	1.329 (4)	С16—Н16	0.9300
N6—C30	1.334 (4)	C17—C18	1.388 (4)
O1—H1C	0.9498	C17—H17	0.9300
O1—H1D	0.9449	C18—C19	1.391 (4)
O2—H2C	0.8083	C18—C23	1.489 (4)
O2—H2D	0.8864	C19—C20	1.376 (5)
O3—H3C	0.8966	С19—Н19	0.9300
O3—H3D	0.9540	C20—H20	0.9300
O4—H4C	0.9492	C21—C22	1.387 (5)
O4—H4D	0.8713	C21—H21	0.9300
O5—C37	1.253 (4)	C22—C23	1.378 (5)
06-C37	1.256 (4)	C22—H22	0.9300
07-C38	1.253 (4)	C23—C24	1.386 (5)
08-C38	1.248 (4)	C24—C25	1.385 (5)
O1W—H1A	0.9430	C24—H24	0.9300
OIW—HIB	0 9721	С25—Н25	0 9300
O2W—H2A	0.9482	C26—C27	1 375 (5)
O2W—H2B	0.9176	С26—Н26	0.9300
O3W—H3A	0.9515	C27—C28	1 387 (4)
O3W—H3B	0.9647	С27—Н27	0.9300
O4W—H4A	0.8889	C28—C29	1 388 (4)
O4W - H4B1	0.9379	$C_{28}^{28} C_{28}^{28}^{11}$	1 494 (6)
OAW HAB2	0.8505	$C_{28} = C_{28}$	1.131(6)
$O_4 W = \Pi_4 D_2$ $O_5 W = H_5 \Lambda$	0.0333	$C_{29} = C_{30}$	0.9300
OSW HSB	0.9454	$C_{29} = H_{29}$	0.9300
	0.0024	$C_{30} = 1130$	1.282(4)
O6W H6P	0.9924	$C_{31} = C_{32}$	1.383(4)
	0.9409	C_{22} C_{23}	1.306 (4)
07W H7P	0.9119	C32—C33	1.390 (4)
$O^{W} H^{A}$	0.9034	C32—F152	1.202(4)
$C_1 = C_2$	0.9147	C33—C34	1.392 (4)
$C_1 = C_2$	1.387 (3)	C_{33}	1.322 (4)
C1—H1	0.9300	C_{24} U_{24}	1.392 (4)
$C_2 = C_3$	1.383 (4)	C34—n34	0.9300
C2—H2	0.9300	C35—C36	1.402 (4)
$C_3 = C_4$	1.387 (4)	C35—C38	1.520 (4)
C3—C8	1.496 (4)	С36—Н36	0.9300
O2—Mn—O1	90.39 (8)	N3—C11—C12	123.9 (3)
O2—Mn—O3	89.06 (8)	N3—C11—H11	118.0
O1—Mn—O3	178.12 (9)	C12—C11—H11	118.0
O2—Mn—O4	177.57 (8)	C11—C12—C13	120.3 (3)
O1—Mn—O4	91.31 (9)	C11—C12—H12	119.8
O3—Mn—O4	89.19 (9)	C13—C12—H12	119.8

O2—Mn—N3	90.52 (8)	C12—C13—C14	115.7 (3)
O1—Mn—N3	86.50 (9)	C12—C13—C13 ⁱ	122.3 (3)
O3—Mn—N3	91.70 (8)	$C14-C13-C13^{i}$	122.0 (3)
04—Mn—N3	87 85 (8)	C15-C14-C13	120.0 (3)
O2—Mn—N1	91.81 (9)	C15-C14-H14	120.0
O1-Mn-N1	91.94 (9)	C13-C14-H14	120.0
O3-Mn-N1	89 87 (9)	N3-C15-C14	123.9(3)
04 Mn N1	89.87 (9)	N3_C15_H15	118.1
N3N1	177 21 (9)	C14—C15—H15	118.1
09 - 51 - 010	112.96 (16)	N4-C16-C17	120.8 (3)
09-51-011	112.50 (16)	N4_C16_H16	119.6
010-\$1-011	112.39 (10)	C_{17} C_{16} H_{16}	119.6
09-51-031	106.63 (13)	C_{16} C_{17} C_{18}	120.1 (3)
$0_{-51} - 0_{-51}$	100.03(13) 104.74(14)	C16-C17-H17	120.1 (3)
010-51-051	104.74(14) 106.46(14)	C18-C17-H17	120.0
C1_N1_C5	100.40(14)	$C_{13} - C_{18} - C_{19}$	120.0
C1 = N1 = C3	113.0(3) 120.7(2)	$C_{17} = C_{18} = C_{13}$	117.0(3)
$C_1 = N_1 = N_{111}$	120.7(2)	$C_{1}^{-1} = C_{18}^{-18} = C_{23}^{-23}$	121.3(3)
C_{3} N1 $-$ MII	122.3(2)	C19 - C18 - C23	121.1(3)
$C_0 = N_2 = C_{10}$	110.2(3)	$C_{20} = C_{19} = C_{18}$	120.4 (5)
C11 = N3 = C13	110.0(2) 110.27(18)	C18 C10 U10	119.8
C_{11} N3 M_{π}	119.27 (10)	N4 C20 C10	119.6
C15 - N5 - MII	125.57(19)	N4 C20 U20	119.0 (3)
C16 N4 $U4N$	121.5 (3)	N4—C20—H20	120.2
C16—N4—H4N	126.9	C19—C20—H20	120.2
C20—N4—H4N	111.2	N5-C21-C22	123.4 (4)
C25—N5—C21	116.3 (3)	N5—C21—H21	118.3
C26—N6—C30	116.3 (3)	C22—C21—H21	118.3
Mn—OI—HIC	122.4	C23—C22—C21	119.8 (3)
Mn—OI—HID	116.8	C23—C22—H22	120.1
HIC—OI—HID	107.6	C21—C22—H22	120.1
Mn—O2—H2C	120.7	C22—C23—C24	117.0 (3)
Mn—O2—H2D	126.1	C22—C23—C18	121.5 (3)
H2C—O2—H2D	111.3	C24—C23—C18	121.5 (3)
Mn—O3—H3C	125.6	C25—C24—C23	119.3 (3)
Mn—O3—H3D	115.5	С25—С24—Н24	120.4
H3C—O3—H3D	99.0	C23—C24—H24	120.4
Mn—O4—H4C	125.8	N5—C25—C24	124.2 (3)
Mn—O4—H4D	133.2	N5—C25—H25	117.9
H4C—O4—H4D	99.3	С24—С25—Н25	117.9
H1A—O1W—H1B	108.1	N6—C26—C27	123.9 (3)
H2A—O2W—H2B	102.8	N6—C26—H26	118.0
H3A—O3W—H3B	114.7	С27—С26—Н26	118.0
H4A—O4W—H4B1	118.4	C26—C27—C28	119.8 (3)
H4A—O4W—H4B2	112.1	C26—C27—H27	120.1
H4B1—O4W—H4B2	70.4	C28—C27—H27	120.1
H5A—O5W—H5B	83.2	C27—C28—C29	116.1 (3)
H6A—O6W—H6B	104.5	C27—C28—C28 ⁱⁱ	122.0 (3)
H7A—O7W—H7B	107.1	C29—C28—C28 ⁱⁱ	121.8 (3)

H8A—O8W—H8A ⁱⁱⁱ	98.91	C30—C29—C28	120.3 (3)
N1—C1—C2	123.8 (3)	С30—С29—Н29	119.9
N1—C1—H1	118.1	C28—C29—H29	119.9
С2—С1—Н1	118.1	N6-C30-C29	123.5 (3)
C3—C2—C1	120.4 (3)	N6-C30-H30	118.2
С3—С2—Н2	119.8	С29—С30—Н30	118.2
C1—C2—H2	119.8	C32—C31—C36	120.8 (3)
C2—C3—C4	115.8 (3)	C32—C31—S1	120.8 (2)
C2—C3—C8	122.4 (3)	C36—C31—S1	118.3 (2)
C4—C3—C8	121.7 (3)	C31—C32—C33	119.9 (3)
C5—C4—C3	119.4 (3)	C31—C32—H32	120.1
С5—С4—Н4	120.3	С33—С32—Н32	120.1
C3—C4—H4	120.3	C34—C33—C32	119.3 (3)
N1—C5—C4	124.7 (3)	C34—C33—C37	121.0 (3)
N1—C5—H5	117.7	C32—C33—C37	119.7 (3)
С4—С5—Н5	117.7	C35—C34—C33	121.2 (3)
N2—C6—C7	123.6 (3)	C35—C34—H34	119.4
N2—C6—H6	118.2	С33—С34—Н34	119.4
С7—С6—Н6	118.2	C34—C35—C36	118.9 (3)
C8—C7—C6	120.2 (3)	C34—C35—C38	121.1 (3)
С8—С7—Н7	119.9	C36—C35—C38	120.0 (3)
С6—С7—Н7	119.9	C31—C36—C35	119.9 (3)
C9—C8—C7	116.2 (3)	С31—С36—Н36	120.0
C9—C8—C3	121.9 (3)	С35—С36—Н36	120.0
C7—C8—C3	121.9 (3)	O5—C37—O6	125.7 (3)
C8—C9—C10	119.6 (3)	O5—C37—C33	117.6 (3)
С8—С9—Н9	120.2	O6—C37—C33	116.7 (3)
С10—С9—Н9	120.2	O8—C38—O7	125.4 (3)
N2-C10-C9	124.1 (3)	O8—C38—C35	117.3 (3)
N2-C10-H10	117.9	O7—C38—C35	117.4 (3)
С9—С10—Н10	117.9		

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*+1; (ii) -*x*, -*y*+2, -*z*; (iii) -*x*, *y*, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N4—H4N…N6	0.96	1.79	2.725 (4)	163
O1—H1C···N5 ^{iv}	0.95	1.86	2.809 (4)	173
O1—H1D···O6 ^v	0.95	1.81	2.731 (3)	165
O2—H2C···O5 ^v	0.81	1.95	2.735 (3)	163
O2—H2D···O8 ^{vi}	0.89	1.81	2.691 (3)	169
O3—H3C···N2 ^{vii}	0.90	1.86	2.742 (4)	168
O3—H3D…O10	0.95	1.81	2.754 (3)	169
O4—H4C…O11	0.95	1.88	2.805 (4)	164
O4—H4D···O1W	0.87	1.85	2.706 (3)	166
O1W—H1A···O5	0.94	1.87	2.815 (3)	177
O1W—H1B···O7 ^{viii}	0.97	1.77	2.719 (3)	166

O2W—H2A····O4W ^{ix}	0.95	2.07	2.822 (6)	135	
O2W—H2B···O7	0.92	1.99	2.903 (4)	175	
O3W—H3A···O2W	0.95	1.79	2.694 (5)	157	
O3W—H3B…O9	0.96	1.88	2.831 (4)	170	
O4W—H4A…O11	0.89	2.15	2.946 (5)	148	
O4W—H4B1···O4W ^x	0.94	2.02	2.900 (8)	156	
O5W—H5A···O8	0.94	1.92	2.772 (6)	149	
O5W—H5B…O6W ^{xi}	0.93	1.94	2.771 (9)	147	
O6W—H6A···O6	0.99	1.81	2.768 (6)	162	
O6W—H6B···O7W ^{xi}	0.94	1.73	2.358 (12)	121	
O7W—H7A···O5	0.91	2.23	3.124 (10)	166	
O7W—H7B···O5W ^{xii}	0.90	1.76	2.291 (11)	115	
O8W—H8A…O9	0.91	2.00	2.871 (7)	159	

Symmetry codes: (iv) -x+1/2, -y+3/2, -z+1; (v) x, -y+1, z-1/2; (vi) x, -y, z-1/2; (vii) -x, -y+1, -z; (viii) x, y+1, z; (ix) x, y-1, z; (x) -x, y, -z+1/2; (xi) -x+1/2, y-1/2, -z+3/2; (xi) -x+1/2, y+1/2, -z+3/2.

Table 3

Table 3. A summar of the distances and angles between partially overlapped pyridine rings (Å, °)

Ring (I)	Ring (J)	Angle	Perp (I)	Perp (J)	Cg–Cg
N1-pyridine	N2 ⁱ -pyridine	8.29	3.404	3.491	3.691 (2)
N2-pyridine	N6 ⁱⁱ -pyridine	5.33	3.403	3.391	3.794 (2)
N3-pyridine	N5 ⁱⁱⁱ -pyridine	10.91	3.260	3.477	3.751 (2)
N5-pyridine	N5 ⁱ -pyridine	0.00	3.544	3.544	3.547 (2)

Symmetry codes: (i) -x, 1-y, -z; (ii) -x, 2-y, -z; (iii) 1/2-x, 3/2-y, 1-z. Notes: Angle: dihedral angle between ring (I) and ring (J). Perp(I) is the perpendicular distance of centroid of ring (I) on ring (J). Perp(J) is the perpendicular distance of centroid of ring (J) on ring (I). Cg–Cg is the distance between centroids of ring (I) and ring (J).

Fig. 2