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A genetic risk score (GRS) was developed for predicting fracture risk based on the prevalence of vertebral
fractures in 441 Japanese females with osteoporosis. A total of 979 (858 nonsynonymous and 121 silent)
single-nucleotide polymorphisms (SNPs) located in 74 osteoporosis-susceptibility genes were genotyped
and evaluated for their association with fracture prevalence. Four SNPs (protein kinase domain containing,
cytoplasmic [PKDCC; rs4952590], CDK5-regulatory subunit-associated protein 1-like 1 [CDKAL1; rs4712556],
wingless-type MMTV-integration site family member 16 [WNT16; rs2707466], and G-patch domain-containing
gene 1 [GPATCH1; rs10416265]) showed a significant association (p b 0.05) with the fracture, in which the
minor allele of the former two SNPs was the protective allele and that of the latter two SNPs was the risk allele.
Applying a dominant-genetic model, we allotted−1 point each to the protective-allele carriers and 1 point each
to the risk-allele carriers, and GRS values were calculated as the sum of the points. The receiver-operating
characteristic curves showed that GRS adequately predicted vertebral fracture. For the model predicted by the
GRS with and without the effect of age, areas under the curves were 0.788 (95% confidence interval [CI]:
0.736–0.840) and 0.667 (95% CI: 0.599–0.735), respectively. Multiple logistic regression analysis revealed that
the odds ratio for the association between fracture prevalence and GRS was 3.27 (95% CI: 1.36–7.87, p =
0.008) for scores of −1 to 0 (n = 303) and 12.12 (95% CI: 4.19–35.07, p b 0.001) for scores of 1 to 2 (n = 35)
relative to a score of −2 (n = 103). The GRS based on the four SNPs could help identify at-risk individuals and
enable implementation of preventive measures for vertebral fracture.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Osteoporosis is among the most common skeletal diseases and
affects N200 million individuals worldwide, a figure that continues to
increase as populations in developed countries live longer than previous
generations (Reginster and Burlet, 2006). Osteoporosis is clinically
characterized by reduced bone mass and compromised bone strength,
which leads to an increased risk of fracture (Soen et al., 2013).

Fragility fractures, such as vertebral and femoral fractures, are
among the most serious complications in elderly patients with
osteoporosis. Several important factors, including age, past history of
fragility fractures, family history of femoral fracture, bone mineral den-
sity (BMD), and history of falls, increase the risk of fracture in a clinical
setting. In addition to these factors, genetic variations also determine
predisposition to low-trauma fractures as demonstrated by genetic–
epidemiological studies (Peacock et al., 2002; Ralston and Uitterlinden,
2010). Recent large-scale meta-analyses of genome-wide association
studies (GWAS) identified a number of single-nucleotide polymorphisms
(SNPs) associatedwith lowBMDor increased fracture risk (Styrkarsdottir
et al., 2008; Rivadeneira et al., 2009; Estrada et al., 2012).

Risk scores have been developed to predict the risk of coronary heart
disease (ERICA Research Group, 1991; Tunstall-Pedoe, 1991), diabetes
mellitus (Lindström and Tuomilehto, 2003), and dementia (Ngandu et
al., 2006), and typically encompass multiple factors that affect disease
onset or progression. A risk score can therefore improve the ability to
predict common polygenic diseases, such as osteoporosis, by including
multiple SNP profiles. Accordingly, we previously performed a study
to develop a genetic risk sore (GRS) for predicting lifetime femoral frac-
ture risk using data from consecutive, elderly Japanese autopsy cases at
a community-based geriatric hospital (Zhou et al., 2015). The aim of this
study was to develop a GRS for predicting vertebral fracture risk in
Japanese women with osteoporosis using data registered in Biobank
Japan (Nakamura, 2007).

2. Methods

2.1. Subjects

The osteoporosis-case subjects were collected under the support of
the BioBank Japan Projects (Nakamura, 2007), and all participants pro-
vided written informed consent as approved by the ethics committees
of the BioBank Japan Project (Nakamura, 2007) and the University of
Tokyo. Osteoporosis was diagnosed based on the Japanese diagnostic
criteria for primary osteoporosis (Soen et al., 2013). Patientswithmalig-
nant neoplasms, liver cirrhosis, nephrotic syndrome, diabetes mellitus,
rheumatoid arthritis, cerebral infarction, chronic obstructive pulmonary
disease, hyperthyroidism, renal failure, and history of steroid-drug use
were excluded from the assessment. Finally, 441 unrelated females
with a mean age of 69.6 years were selected for this study. The preva-
lence ofmorphological vertebral fracture in all study subjectswas deter-
mined by examination of lateral thoracolumbar (T4–L4) radiographs.
The assessment of vertebral fracture was made in accordance with the
semi-quantitativemethod (Genant et al., 1993), and a vertebral fracture
was defined as a deformity of more than grade 1 in any of themeasured
vertebrae. Of the 441 subjects, 72 individuals sustained vertebral
fractures, with mean age and age distributions (standard deviation
and min–max, respectively) of 74.5 years (7.1 and 53–88) for subjects
with fractures and 68.0 years (8.2 and 28–88) for those without.

2.2. SNP selection and genotyping

A large-scale meta-analysis of previous GWASs identified 56 BMD
loci and revealed 14 loci associated with fracture risk (Estrada et al.,
2012). To select SNPs for this study, those within or close to the 56
BMD lociwere evaluated, aswell as those on the IlluminaHumanExome
BeadChip (Grove et al., 2013) (Illumina, Inc., SanDiego, CA, USA). A total
of 979 (858 nonsynonymous and 121 silent) SNPs in 74 genes were
identified (Supplementary Table 1) and evaluated for their association
with the incidence of vertebral fracture among the 441 cases. The
genotyping data for the 979 SNPs of the study subjects were provided
from the Biobank Japan genotyping database generated using Illumina
OmniExpressExome BeadChip version 1.2 (Illumina, Inc.) with call
rates of N0.99 during the process of genotyping.

2.3. Calculation of GRS

GRSwas calculated as reported previously (Zhou et al., 2015). In this
study, we applied a dominant-genetic model and allotted −1 point
each to the protective-allele carriers and 1 point each to the risk-allele
carriers, and unweighted GRS values were calculated as the sum of the
points. We also standardized scores using coefficients obtained from
the logistic regression analyses (weighted GRS) to ensure that the
lowest absolute value of the coefficient was assigned a value of 1
(Zhou et al., 2015). The association of the GRS with vertebral fracture
was evaluated by multiple logistic regression analysis.

2.4. Statistical analysis

All statistical analyses were carried out using PLINK 1.07 software
(http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al., 2007) or
SPSS for Windows version 20 (SPSS Inc., Chicago, IL, USA). Allelic fre-
quencies of the selected SNPs were calculated using a gene-counting
method. Hardy-Weinberg equilibrium for each SNP was assessed by
the χ2 test. The Cochran-Armitage proportion trend test was used to
identify changes in fracture incidence with respect to the number of
risk or protective alleles. Multiple logistic regression analysis, including
age, genotypes of each SNP, or GRS as independent variables, was per-
formed to estimate the odds ratio (OR) and 95% confidence interval
(CI) for the associationwith risk of vertebral fracture. Receiver-operating
characteristic (ROC) curves were plotted, and the area under the curve
(AUC) was calculated to assess the discriminative power of the GRS
models (Ngandu et al., 2006). All reported p-values are two-sided, with
p b 0.05 regarded as statistically significant.

3. Results

After genotyping 979 SNPs located in 74 previously reported osteo-
porosis-susceptibility genes (Estrada et al., 2012), SNPs thatmet the fol-
lowing criteria were selected: 1) a statistically significant association
(p b 0.05) with the prevalence of vertebral fracture according to the
Cochran-Armitage trend test, and (2) a minor-allele frequency of
N 0.01 in the study population. Finally, four SNPs [protein kinase domain
containing, cytoplasmic (PKDCC; rs4952590), CDK5-regulatory subunit-
associated protein 1-like 1 (CDKAL1; rs4712556),wingless-typeMMTV-
integration site family member 16 (WNT16; rs2707466), and G-patch
domain-containing gene 1 (GPATCH1; rs10416265)] were selected for
this study (Table 1). Their allele and genotype frequencies were in
Hardy-Weinberg equilibrium, and the prevalence of vertebral fracture
was calculated for each genotype to identify risk or protective alleles.
As shown in Table 1, the T allele of rs4952590 and the A allele of
rs4712556 significantly protected vertebral fracture (protective allele),
while the T allele of rs2707466 and the A allele of rs10416265 contrib-
uted significantly to fracture morbidity (risk allele).

The independent association of eachminor allelewith vertebral frac-
ture was evaluated by multiple logistic regression analysis. A minor
allele-dominant genetic model was used for these four SNPs, because
the fracture prevalence was quite similar between heterozygous and
homozygous carriers (Table 1). As shown in Table 2, T-allele carriers
of rs4952590 and A-allele carriers of rs4712556 showed significantly
lower ORs for risk of vertebral fracture, whereas T-allele carriers of
rs2707466 and A-allele carriers of rs10416265 showed significantly
higher ORs for the risk. In order to calculate GRS values, we allotted
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Table 1
SNPs selected to calculate GRS for 441 female subjects with osteoporosis and the preva-
lence of vertebral fracture for each genotype.

Gene SNP Genotype n Vertebral fracture, n (%) p

PKDCC rs4952590 CC 144 32 (22.2) 0.042⁎

CT 221 30 (13.6)
TT 76 10 (13.2)

CDKAL1 rs4712556 GG 150 35 (23.2) 0.035⁎

AG 219 26 (11.9)
AA 72 11 (15.3)

WNT16 rs2707466 CC 339 47 (13.9) 0.012⁎

CT 98 24 (24.5)
TT 4 1 (25.0)

GPATCH1 rs10416265 GG 302 42 (13.9) 0.042⁎

AG 127 27 (21.3)
AA 12 3 (25.0)

CDKAL1, CDK5-regulatory subunit-associated protein 1-like 1;GPATCH1, G-patch domain-
containing gene 1; GRS, genetic risk score; PKDCC, protein kinase domain containing,
cytoplasmic; SNP, single-nucleotide polymorphism; WNT16, wingless-type MMTV
integration-site family member 16.
⁎ Significant (p b 0.05) according to the Cochran-Armitage trend test.

Table 3
Risk of vertebral fracture based on unweighted GRS.

GRS n
Vertebral fracture
n (%) OR (95% CI) p

−2 103 6 (5.8) 1 (reference)
−1 180 26 (14.4) 2.73 (1.08–6.87) 0.033⁎

0 123 25 (20.3) 4.12 (1.62–10.50) 0.003⁎

1 31 14 (45.2) 13.31 (4.49–39.46) b0.001⁎

2 4 1 (25.0) 5.39 (0.48–59.92) 0.171
−1 to 0 303 51 (16.8) 3.27 (1.36–7.87) 0.008⁎

1 to 2 35 15 (42.9) 12.12 (4.19–35.07) b0.001⁎

CI, confidence interval; GRS, genetic risk score; OR, odds ratio.
⁎ Significant (p b 0.05) according to multiple logistic regression analysis after adjusting

for age.
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−1 point each to the protective-allele carriers and 1 point each to the
risk-allele carriers (unweighted-risk score). We also standardized
scores using coefficients obtained from logistic regression analyses to
ensure that the lowest absolute value of the coefficient was assigned a
value of 1 (weighted-risk score) and found that the unweighted- and
weighted-risk scores were quite similar (Table 2). Therefore, the
unweighted-risk score was used for subsequent analyses.

Table 3 shows the prevalence of vertebral fracture based on the un-
weighted GRS, which was calculated as the sum of the unweighted-risk
scores. The OR for the risk of vertebral fracture tended to increase with
the number of the GRS, but was apparently influenced by the uneven
distribution of the number of subjects. When the subjects were divided
into three groups according to the GRS, namely those with GRS of −2,
−1 to 0, and 1 to 2, the ORs were 3.27 and 12.12 for the groups with
GRS of −1 to 0 and 1 to 2, respectively, relative to the group with GRS
of −2 (Table 3). The ROC curves showed that the GRS adequately
predicted vertebral fracture (Fig. 1). For the model predicted by the
GRS with and without the effect of age, AUCs were 0.788 (95% CI:
0.736–0.840) and 0.667 (95% CI: 0.599–0.735), respectively.

4. Discussion

The main finding of this study was that the prevalence of vertebral
fracture in 441 female patients with osteoporosis increased in propor-
tion to the increase in the GRS, which was calculated based on the risk
or protective-allele profiles of four SNPs (PKDCC rs4952590, CDKAL1
rs4712556, WNT16 rs2707466, and GPATCH1 rs10416265). The ROC
curves showed that GRS adequately predicted the fracture risk, with
AUCs with and without the effect of age of 0.788 (95% CI: 0.736–
0.840) and 0.667 (95% CI: 0.599–0.735), respectively. The prevalence
of vertebral fracture in the group with GRS of −1 to 0 was 16.8%
(Table 3), which was almost identical to that of all subjects enrolled in
Table 2
Multiple logistic regression analysis of the association between vertebral fracture prevalence a

Coefficient p OR

rs4952590, CC 0 (reference) 1
rs4952590, CT/TT −2.024 0.043⁎ 0.57
rs4712556, GG 0 (reference) 1
rs4712556, AG/AA −2.611 0.009⁎ 0.49
rs2707466, CC 0 (reference) 1
rs2707466, CT/TT 2.092 0.036⁎ 1.86
rs10416265, GG 0 (reference) 1
rs10416265, AG/AA 2.517 0.012⁎ 2.05

CI, confidence interval; OR, odds ratio.
⁎ Significant (p b 0.05) according to multiple logistic regression analysis after adjusting for a
this study (72/441, 16.3%), indicating that the group with GRS of −1
to 0 (n=303) represented the ordinary risk group, whereas the groups
with GRS of −2 (n = 103) and 1 to 2 (n = 35) represented low- and
high-risk groups, respectively.

Here, the T allele of WNT16 rs2707466 was found to be a risk allele
for vertebral fracture. WNT proteins belong to a family of secreted
cysteine-rich glycoproteins that transmit signals through both the
WNT–β-catenin pathway, also termed the canonical WNT pathway,
and noncanonical WNT pathways (Kohn and Moon, 2005). Within the
components of WNT signaling, the gene encoding WNT16, one of the
19 WNT ligands in the human genome, is strongly associated with spe-
cific bone traits, such as cortical bone thickness, cortical porosity, and
fracture risk (Baron and Kneissel, 2013; Movérare-Skrtic et al., 2014).
Zheng et al. (2012) identified a novel missense SNP (C N T; Thr N Ile;
rs2707466) located in the WNT16 gene and associated with cortical
bone thickness by performing two separate GWAS meta-analyses in
three cohorts comprising 5878 European subjects. Niu et al. (2016) con-
ducted a three-stage meta-analysis targeting phosphorylation-related
SNPs for femoral neck-BMD, total hip-BMD, and lumbar spine-BMD
phenotypes, and found that WNT16 rs2707466 was associated with
BMDphenotypes in each respective stage and in three stages combined,
achieving genome-wide significance for both femoral neck- and total
hip-BMD. In silico analyses predicted that rs2707466 directly abolishes
a phosphorylation site, which could cause a deleterious effect on the
WNT16 protein (Niu et al., 2016). WNT16 rs2707466 also influences
heel-bone properties in a population of young adults as measured by
quantitative-ultrasound techniques, which revealed aspects of bone
fragility distinct from BMD (Correa-Rodríguez et al., 2016).

GPATCH1 is a gene of unknown function; however, the SNP selected
for this study, GPATCH1 rs10416265, is a genetic determinant of heel-
bone properties as determined by broadband-ultrasound attenuation
and velocity of sound according to a GWAS meta-analysis (Moayyeri
et al., 2014). PKDCC encodes a protein kinase belonging to a category
of secretory pathway kinases that phosphorylate proteins and proteo-
glycans in the secretory pathway and appear to regulate various extra-
cellular processes (Sreelatha et al., 2015); Imuta et al. (2009) used
gene-knockout techniques to show that a protein-kinase gene, Pkdcc
(AW548124), is required for longitudinal bone growth by promoting
nd genotype.

95% CI Unweighted-risk score Weighted-risk score

0 0
0.33–0.98 −1 −1

0 0
0.28–0.84 −1 −1.29

0 0
1.04–3.32 1 1.03

0 0
1.17–3.59 1 1.24

ge.



Fig. 1. ROC curves of unweighted GRS with and without the effect of age, for predicting
vertebral fracture risk.
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the appropriate differentiation of chondrocytes. A CDKAL1 gene variant,
rs7756992, which is different from CDKAL1 rs4712556 selected in this
study, influences insulin response and risk of type 2 diabetes
(Steinthorsdottir et al., 2007). However, given the limited knowledge
of the roles of these genes in bone biology, it is difficult to completely
exclude the possibility that they are not causal and are in linkage
disequilibrium with other bona fide osteoporosis-susceptibility genes.

Tran et al. (2011) first suggested that genetic profiling could
enhance the predictive accuracy of fracture prognosis based on the
clinical data obtained from the Dubbo Osteoporosis Epidemiology
Study as well as simulated genetic data of 50 independent genes with
allele frequencies ranging from 0.01 to 0.60 and relative risks ranging
from10.1 to 3.0. A recent large-scalemeta-analysis identified 63 autoso-
mal SNPs associated with BMD, of which 16 were also associated with
fracture risk (Estrada et al., 2012). Estrada et al. (2012) evaluated the
combined effect of the 63 BMD-associated SNPs to predict the risk for
osteoporosis and fracture based on genotyping data obtained in the
Prospective Epidemiological Risk Factor study, a prospective study of
postmenopausal Danish women (Bagger et al., 2007). This study repre-
sented an independent-validation setting and was excluded from the
overall meta-analysis for this reason. Despite serving as robust proof
of the relationship between BMD-decreasing alleles and the risk of
osteoporosis and fracture, prediction ability was modest. ROC analysis
showed a significant, but relatively small discrimination ability of the
genetic score alone, with AUCs of 0.59 and 0.57 for osteoporosis and
fracture, respectively. Eriksson et al. (2015) also developed two GRSs,
GRS63 and GRS16, based on the 63 BMD-associated and 16 fracture-
associated SNPs, respectively, in order to determine the clinical useful-
ness of these GRSs for the prediction of BMD and fracture risk in elderly
subjects. They studied two male and one female large prospective
cohort of older subjects and found that GRS63 was associated with
BMD and both GRS63 and GRS16 were associated with fractures.
However, after BMD adjustment, the effect sizes for these associations
were substantially reduced, and they concluded that, when BMD is
known, the clinical utility of the two GRSs for fracture prediction is
limited in elderly subjects. Lee et al. (2013) developed a GRS including
21 SNPs in 19 osteoporosis-susceptibility genes, and demonstrated
that adding the GRS to the prediction model consisting of clinical risk
factors and BMD could improve its predictive ability for non-vertebral
fracture in 1229 unrelated Korean postmenopausal women. Lee et al.
(2016) also calculated the Korean-specific GRS from 35 SNPs associated
with osteoporosis-related traits (GRS35), and found that integration of
the GRS35 into the current model further improved its predictability
for future osteoporotic fracture occurrence in a 6-year follow-up
observational study. The 979 SNPs genotyped in the present study
were located in the 74 genes previously reported as osteoporosis-
susceptibility genes (Estrada et al., 2012). However, it should be noted
that most of the 979 SNPs were not identical to the originally reported
marker SNPs used in the GWAS, which were located mainly in noncod-
ing regions. In fact, the four SNPs selected in this study were not found
in the 63 BMD-associated SNPs. Therefore, our GRS could not be directly
compared with previous GRSs. Furthermore, given that it was a
retrospective, patient-based study, the predictive value of our GRS for
vertebral fracture should also be investigated in a prospective, popula-
tion-based study.

Among the 979 SNPs tested, 133 SNPs were found to have a minor-
allele frequency of N 0.01 in the present study population, and thus the
p-values for the 4 SNPswere higher than the threshold significance level
of Bonferroni correction for multiple testing (α = 0.05/133 SNPs =
0.000376). We also calculated the q-value (false discovery rate) for
each SNP (Benjamini and Hochberg, 1995): 0.37 for rs10416265
(GPATCH1), 0.37 for rs2707466 (WNT16), 0.48 for rs4712556
(CDKAL1), and 0.48 for rs4952590 (PKDCC), whichwere not statistically
significant. Therefore, we could not completely rule out the possibility
of false positivity. However, it is also possible that the sample size of
441 subjects in the present study was relatively small and not sufficient
to eliminate statistical ambiguity. Further studies including larger study
samples are needed to elucidate the possibilities.

Vertebral fracture is among the most serious complications in
elderly osteoporosis patients. A few important factors, including age,
past history of fragility fractures, family history of femoral fracture,
BMD, and history of falls, increase the risk for vertebral fracture in a clin-
ical setting. Information regarding these factors along with a GRS based
on risk-allele profiles of the four SNPs could therefore help to identify
at-risk individuals to ensure that measures for preventing vertebral
fracture can be implemented.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bonr.2016.07.001.
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