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1  |  INTRODUC TION

Pain is “an unpleasant sensory and emotional experience associated 
with actual or potential tissue damage, or described in terms of such 
damage.”1 Pain, and specifically its treatment, is a major issue fac-
ing healthcare systems globally. In the US, the average annual cost 
associated with pain is $600 billion.2 Chronic pain is undertreated 
in 80% of cases.3 Opioids are the most effective compounds for al-
leviating severe pain across a wide range of conditions, for exam-
ple, acute pain in response to injury or chronic pain in response to 
inflammatory disease or cancer. However, opioid use is associated 

with side effects that become more severe with increased use, for 
example, severe drowsiness and breathing difficulties. Furthermore, 
decreasing analgesic efficacy is observed clinically with prolonged 
use of any strong opioid; this is a combination of tolerance to their 
analgesic effect and the development of opioid-induced hypersen-
sitivity (OIH) within pain signaling pathways. Tolerance is defined as 
a decreased efficacy following repeated administration,4 whereas 
OIH is a state of increased pain sensitivity.5 These can be overcome 
by increased dosage; however, this increases the risk of more severe 
side effects (e.g., respiratory depression). Thus, a vicious circle ex-
ists, and patients are often faced with a choice between side effects 
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or inadequate analgesia. In addition, opioid-tolerant patients require 
significantly longer lengths of stay in hospital and have higher read-
mission rates compared with patients not on opioids,6 contributing 
to opioids’ economic burden. Therefore, there is an unmet clinical 
need to address tolerance.

Non-opioid painkillers currently available either do not offer 
sufficient analgesia (e.g., non-steroidal anti-inflammatory drugs 
[NSAIDs]) or are only efficacious in specific pain condition (e.g., ga-
bapentinoids in neuropathic pain), and are also limited by their own 
adverse side-effects (e.g., gastrointestinal bleeding with NSAIDs). 
An alternative approach is improving opioids by reducing the de-
velopment of opioid tolerance and OIH, increasing their long-term 
efficacy.

This review will explore the proposed mechanisms of OIH and 
tolerance and identify areas of therapeutic potential that may im-
prove the use of currently available opioids. Furthermore, it will 
discuss mechanistic similarities between the development of opi-
oid tolerance/OIH and certain neuropathic pain conditions which 
may provide an explanation for opioids’ lack of efficacy in some 
conditions.

2  |  OPIOID SIGNALING

The analgesic properties of opium, an extract from the Papaver som-
niferum poppy, and from which modern opiates (such as morphine) 
are derived, have been recognized for centuries. This beneficial ef-
fect is offset by a variety of side-effects including constipation, res-
piratory depression, dependence, addiction, hypersensitivity, and 
tolerance.

Opioids exert their action through interaction with the superfam-
ily of heterotrimeric opioid G-protein-coupled receptors (GPCRs); 
the mu (MOR), delta (DOR), and kappa (KOR) opioid receptors. The 
most clinically relevant are MORs; it is through these receptors that 
both natural opiates and synthetic opioids, such as fentanyl, exert 
analgesia and their side-effects. This is confirmed by numerous 
studies using MOR-knockout mice which no longer respond to mor-
phine to produce analgesia or its side-effects.7 In contrast, DOR-
knockouts retain full morphine analgesia,8 and more recent studies 
have suggested that while activation of KOR can cause analgesia, 
extremely high opioid doses were required for mild analgesia, and 
further increase in dosage was not possible due to the paradoxical 
pain hypersensitivity observed.9

Attempting to improve opioid analgesia is not a novel idea. 
Strategies to reduce side-effects associated with prolonged opi-
oid use, such as the use of KOR and DOR agonists or peripheral 
MOR antagonists, have been trialed but with limited success. 
DOR and KOR agonists produce limited analgesia in only specific 
inflammatory conditions, and KOR agonists may be specific for 
visceral pain.10–12 Also, KOR agonists have distinct central ner-
vous system (CNS) side-effects, such as dysphoria, sedation, and 
psychosis, when compared to those traditionally associated with 
opioids.13 Peripheral MOR antagonism acts on the gastrointestinal 

(GI) system, only reducing constipation and preserving centrally 
mediated side-effects.14 This highlights an unmet clinical need to 
reduce the critical CNS-mediated side effects of opioids (tolerance 
and OIH).

3  |  PAIN SIGNALING PATHWAYS

Pain processing is initiated by the activation of nociceptive affer-
ent neurons (C and Aδ fibers). The afferents terminate in the dorsal 
horn (DH) of the spinal cord, where they synapse with second-order 
neurons, either projecting neurons that carry the signal to supraspi-
nal regions, or interneurons within the DH which later synapse onto 
projecting neurons. This synapse is the first possible point of regula-
tion of pain signaling, occurring through inhibitory interneurons and 
descending control. Regulation is through inhibitory neurotransmit-
ters (NTs) such as gamma-aminobutyric acid (GABA) or endogenous 
opioids which create a “gate” for incoming pain signals.15 Therefore, 
opioid receptors are present on primary afferent and in the DH, 
and local administration of opioids into the spinal cord induces 
analgesia.16

Projection neurons exit the DH toward supraspinal regions im-
portant for the conscious sensation of pain. For example, the so-
matosensory cortex for localization and intensity and the cingulate 
cortex, insula, and amygdala for the cognitive and emotional com-
ponents associated with painful stimuli. This ascending system also 
makes a crucial connection with regions of the midbrain and brain-
stem that feed into the descending inhibitory pathways (Figure 1).

The descending pain pathways are primarily antinociceptive, the 
most studied being the periaqueductal gray-rostroventral medulla-
dorsal horn (PAG-RVM-DH) circuit (Figure 2), but activation of cer-
tain supraspinal regions (e.g., the anterior cingulate cortex) can also 
give rise to descending facilitation which can counteract descending 
inhibition from the PAG and RVM, or contribute to pain hypersen-
sitivity in certain injury states.18,19 The PAG may also be involved in 
some forms of descending facilitation and two classes of nociceptive 
modulating neurons have been noted in this region.20

The RVM is the central hub for the descending systems (both 
facilitatory and inhibitory). Three populations of neurons projecting 
to the spinal cord from the RVM have been identified from animal 
electrophysiological experiments (ON-cells, OFF-cells, and neutral 
cells) on the basis of their pronociceptive/antinociceptive effects 
following stimulation.21 Prior to a tail-flick reflex, ON-cells show a 
burst in activity while the firing rate of OFF-cells is dramatically re-
duced.22 Signaling of painful stimuli is associated with increased ac-
tivity in ON-cells, necessary for the acute hypersensitivity observed 
in animals, and suppression of antinociceptive OFF-cells.23 Opioid 
receptors are also located throughout the PAG-RVM-DH descend-
ing system and can be activated endogenously to induce analgesia, 
for example, during the phenomena of stress-induced analgesia.24 
Therefore, opioid receptors are expressed consistently in the pain 
processing pathways (ascending and descending), perhaps explain-
ing their high efficacy as analgesic targets.
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4  |  SITES OF OPIOID - INDUCED 
ANALGESIA

There is compelling evidence suggesting the supraspinal action of 
exogenous opioids is primarily responsible for their antinociceptive 
effect. Direct administration of the MOR antagonist, naloxone, into 
the ventrolateral PAG (vlPAG) blocks the antinociceptive effect of 
systemically administered morphine,25 and administration of a MOR 
agonist into the vlPAG produces analgesia in rats that is blocked by 
systemically administered naloxone.26 These data suggest the vlPAG 
is an essential site for exogenous opioid-mediated analgesia.

The mechanism of action in the PAG involves disinhibition of PAG 
output neurons to OFF-cells in the RVM, via inhibition of GABA re-
lease from GABAergic interneurons. Under normal conditions, these 
interneurons have tonic activity. Upon agonist binding to MORs, the 
activity of these neurons is decreased.27,28 Microdialysis of the PAG 
following acute morphine administration showed decreased GABA 
levels.29 More recent studies using chemogenetic manipulation of 
vlPAG neural activity provide further support for this crucial mech-
anism toward opioid-induced analgesia.30 The selective inhibition of 
GABAergic neurons or selectively activating glutamatergic (output) 
neurons in the vlPAG mimicked the antinociceptive effects of opioids.

The OFF-cell population of RVM neurons appears to primarily 
consist of Glycine/GABAergic neurons that act diffusely in the dor-
sal horn to decrease excitability.31,32 Some OFF-cells may provide 
glutamatergic projections to endogenous opioid/GABA releasing 
inhibitory interneurons in the dorsal horn33 to provide a mechanism 
for precise inhibition of specific pain inputs.

Furthermore, microinjection of MOR agonists into the 
RVM directly inhibits ON-cells.34,35 This combination of indi-
rect disinhibition of OFF-cells and direct inhibition of ON-cells 
projecting to the dorsal horn appears to be the primary mech-
anism of opioid analgesia. Khalefa et al. attempted to quantify 
the relative contributions of peripheral, spinal, and supraspi-
nal MORs to the analgesic effects of systemic opioids in a rat 
model of inflammatory pain.16 In agreement with the previous 
experiments discussed, antagonism of the supraspinal effects 
of fentanyl and morphine with intracerebrovascular naloxone 
attenuated their antinociception by 70%–80% (compared with 
a 20%–30% attenuation following intrathecal administration). 
Therefore, the action of exogenous opioids at specific loci (PAG 
and RVM) in the descending pain modulatory system is crucial 
for opioid-induced analgesia, and it follows that tolerance to 
their analgesia is due to adaptations in this opiate-responsive 
neural circuit.

F I G U R E  1 Anatomy of the pain 
processing pathway (From Cellular 
and Molecular Mechanisms of Pain, 
Basbaum et al., Cell, 2009, 139:267–
284. With permission from Elsevier).17 
Primary afferent nociceptors convey 
noxious information to projecting 
neurons in the dorsal horn (DH) of the 
spinal cord. A subset of these projecting 
neurons transmits information to the 
somatosensory cortex via the thalamus 
providing physical information about the 
painful stimulus (the primary ascending 
pathway, in green). Other projection 
neurons (in blue) relay via brainstem 
structures to engage the insular and 
cingulate cortex, contributing to the 
affective and cognitive components of 
pain. The ascending information is also 
able to interact with several other brain/
brainstem areas, such as the rostral 
ventral medulla (RVM) and midbrain 
periaqueductal gray (PAG) to engage 
descending feedback systems that 
regulate the output of projecting neurons 
in the DH (in orange)
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5  |  MOLECUL AR MECHANISMS OF ACUTE 
OPIOID ANALGESIA

The PAG is an important region for opioid analgesia. MORs are 
located on GABAergic interneurons, and are Gi/o-coupled GPCRs. 
Following acute opioid binding, the Gβγ subunit dissociates from 
the Gαi subunit and both are involved in independent signaling 
cascades (Figure  3). Gαi inhibits adenylyl cyclase (AC) which de-
creases cyclic adenosine monophosphate (cAMP) levels resulting 
in a range of cellular effects, such as decreased protein kinase A 
(PKA) activation. Interestingly, acute morphine administration ap-
pears to rely on the actions of the Gβγ subunit to hyperpolarize 
GABAergic interneurons (via activation of potassium channels) 
and directly inhibit voltage-gated calcium channels (VGCCs) in a 
membrane-delimited mechanism. This involves the QXXER motif 
of the I-II loop, the intracellular N-terminus, and the β subunit of 
the VGCC.36–38 Inhibition of VGCCs by Gβγ reduces GABA release 
from the synaptic terminal.28 Reduced GABA release disinhibits 
PAG output to the RVM, increasing spontaneous firing of OFF-cells 
responsible for antinociception.

6  |  OPIOID TOLER ANCE AND OPIOID -
INDUCED HYPERSENSITIVIT Y ARE THE 
RESULTS OF ADAPTIVE CHANGES IN PAIN 
PROCESSING PATHWAYS

Tolerance and OIH develop with chronic opioid administration. Both 
are long-term adaptations that may persist after opioid usage has 
stopped. The net effect of tolerance and OIH is responsible for the 
reduction in opioid efficacy observed clinically. The sites and mecha-
nism of tolerance and OIH development must be understood before 
rational attempts at targeting them can be made.

6.1  |  Sites of tolerance development

Similar levels of analgesic tolerance develop following repeated sys-
temic or local administration of morphine into the vlPAG. Specific acti-
vation of vlPAG output neurons by microinjecting bicuculline (a GABA 
antagonist) and kainite (an excitatory amino acid) did not produce tol-
erance in rats,42 suggesting that repeated activation of output neurons 

F I G U R E  2 The PAG-RVM descending 
system under normal conditions. In the 
naïve state, GABAergic interneurons 
are tonically active, thus both PAG 
output neurons and OFF-cells have low 
spontaneous firing rates. Activity in 
OFF-cells causes antinociception, and 
activity in ON-cells represents descending 
facilitation of pain. The normal activity of 
ON-cells is also low, such that the overall 
balance between ON-cell and OFF-cell 
output to the dorsal horn (DH) is equal 
and there is no net hypersensitive or 
antinociceptive state in the individual
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is not sufficient to induce tolerance. Therefore, in the vlPAG, opioids 
likely induce tolerance via changes in GABAergic interneurons, not the 
output neurons. This is supported by an observable increase in GABA 
release in the vlPAG with repeated morphine administration.43,44

The development of tolerance within the PAG has downstream effects 
as activity in RVM OFF-cells is intrinsically linked to PAG output neuron 
activity. Acute opioid administration disrupts the activity of ON- and OFF-
cells in response to painful stimuli. However, due to tolerance associated 
with chronic opioid administration, these ON- and OFF- cells respond as if 
there was no opioid stimulation.45 An increase in ON-cell activity also oc-
curs following chronic opioid use which appears to counteract opioid anal-
gesia. Nevertheless, this may be associated more with OIH than analgesic 
tolerance per se. Repeated microinjection of opioids into the RVM results in 
antinociception (albeit less than that induced by the PAG) but substantially 
less tolerance,46 perhaps because the opioids bypasses the PAG circuitry. 
Therefore, tolerance develops in numerous sites of the descending system, 
but the most significant involves GABAergic interneurons in the PAG.

6.2  |  Mechanisms of tolerance in the PAG

When considering potential homeostatic adaptations involved in tol-
erance, counteracting the direct downstream signaling pathways of 
MOR activation would lead to decreased responsiveness of the sys-
tem. Following this, there is strong evidence that “superactivation” 
of AC occurs in the PAG.

6.2.1  |  Intracellular changes following chronic 
opioid use

Chronic morphine use produces adaptations contributing to opioid-
tolerance within MORs’ downstream signaling pathways (Figure 4). 
For example, whereas acute morphine inhibits AC, reducing 
cAMP levels, chronic morphine upregulates cAMP via “superac-
tivation” of AC. Compensatory activation of AC increases cAMP 

F I G U R E  3 Intracellular signaling in naïve PAG GABAergic interneurons, and following acute morphine administration (reproduced 
with permission from Lueptow et al. 201839). In the naïve state. GABAergic interneurons are tonically active and release the inhibitory 
neurotransmitter GABA. GABA acts through GABAA receptors on PAG output neurons. GABAA receptors are inhibitory by causing an influx 
of chloride ions which hyperpolarizes and therefore inhibits the PAG output neurons. Following acute morphine administration. MORs initiate 
a variety of downstream signaling cascades in the interneurons. Postsynaptically, MORs activate G-protein-coupled inwardly rectifying 
potassium ion channels (GIRKs), hyperpolarizing the neuron. Both Gαi and Gβγ are important in regulating the activity of GIRK. Gαi directly 
binds to the GIRK channel, stabilizing it and priming it for Gβγ activation.40Presynaptically, MORs inhibit voltage-gated calcium channels 
(VGCCs) via the Gβγ subunit. Inhibition by Gβγ is voltage-dependent and large or repeated depolarizations of the presynaptic terminal could 
overcome the inhibition.41 Gβγ also activates voltage-gated potassium channels (Kv's) via a mechanism involving phospholipase A (PLA). 
The overall effect of decrease calcium ion influx and increased potassium ion efflux is hyperpolarization and inhibition of neurotransmitter 
release, therefore decreasing GABA-mediated inhibition of output neurons
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concentrations in the neurons, which has a variety of cellular ef-
fects. Of significance, phosphorylation of VGCCs by PKA causes 
a leftward shift in their activation curve (Figure  5). Heightened 
calcium conductance increases inhibition of PAG output neurons 
via GABAA receptor activation. Supporting this, potassium chan-
nel blockers abolished acute opioid presynaptic inhibition of GABA 
release in the PAG but had no effect on the increased inhibitory 
synaptic currents observed with chronic opioids, whereas PKA in-
hibitors did block this.47 Therefore, acute opioid antinociception 
involves Gβγ-dependent pathways, but signaling in presynaptic 
terminals becomes increasingly dependent on AC after continuous 
administration of morphine. This switch to dependence on the AC-
cAMP-PKA pathway is not specific to the PAG and in other regions 
contributes to withdrawal behaviors.48

6.2.2  |  Inhibition of adenylyl cyclase as a method to 
reduce tolerance

AC seems to be a promising target to attenuate tolerance without ef-
fecting acute opioid efficacy, based on animal studies. A recent ex-
periment demonstrated that repeated activation of AC in the vlPAG by 
forskolin mimics morphine tolerance, and blocking AC with an inhibitor 
reverses morphine tolerance.53 In theory, inhibition of AC would pre-
vent the left-ward shift of VGCCs caused by AC superactivation with-
out effecting antinociception via Gβγ-dependent signaling pathways. 
Furthermore, AC inhibition may provide the added benefit of reversing 
many of the withdrawal symptoms associated with cessation of chronic 
opioid use.53 Thus, AC may be a good target to reduce tolerance devel-
opment. A major limitation of this method is the inability to specifically 

F I G U R E  4 Intracellular adaptations 
produced by chronic morphine use in 
GABAergic interneuron in the PAG 
(reproduced with permission from 
Lueptow et al.39). Postsynaptically, there 
may be some uncoupling between the 
G proteins and MORs, a process distinct 
from acute homologous desensitization 
(Melief et al.49; Bruchas et al.50), 
therefore decreased activation of GIRKs. 
Presynaptically, superactivation of AC 
results in PKA-mediated phosphorylation 
of VGCCs, and therefore increased 
calcium conductance. The overall effect 
is increased GABA release and therefore 
stronger inhibition of PAG output neurons
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target AC inhibitors to important brain regions such as the PAG in hu-
mans. Systemic administration would result in too many side-effects and 
would interfere with many other drugs on the market. Microinjections 
are used in animal studies, but this is not viable in humans requiring long-
term opioid use. Targeted drug delivery systems are currently not reli-
able, but the significant amount of modern research into new delivery 
vehicles for active targeting makes the potential use of AC inhibitors a 
very real possibility in the future.54 Alternative methods to reduce AC 
levels also exist, for example, targeting other Gi/o-receptors expressed 
on the same MOR-responsive GABAergic interneurons. GABAB recep-
tors are a potential target; they are Gi/o-coupled and are expressed in al-
most all PAG neurons.55 Likewise, cannabinoid receptors (CB1 receptors) 
are Gi/o-coupled and are expressed in PAG GABAergic interneurons.

56

6.2.3  |  Coadministration of cannabinoids to 
increase vlPAG output

Another potential method of improving clinical opioid efficacy and 
reducing tolerance development is through drugs that activate PAG 

output neurons via distinct mechanisms from opioids. As discussed, 
this could be achieved by targeting other Gi/o-coupled receptors on 
MOR-expressing GABAergic interneurons. Manipulating the en-
docannabinoid system appears an ideal candidate. CB1 receptors 
are expressed in many of the same regions as MORs, and there is 
strong evidence to show that CB1 receptor agonists are capable of 
producing analgesia.57 Like the opioid system, endocannabinoids are 
released as a neurotransmitter from specific neurons under certain 
stressful conditions.58 Targeting this system with exogenous can-
nabinoids overcomes the requirement for these specific conditions.

Like opioid receptors, CB1 receptors are Gi/o-coupled GPCRs. 
They also presynaptically inhibit GABAergic synaptic transmission 
to disinhibit PAG antinociceptive output neurons. However, while 
MORs directly inhibit tonically active GABAergic interneurons in 
the PAG,59 cannabinoid-induced increases in PAG output appears 
to be dependent on metabotropic glutamate receptor 5 (mGlu5R) 
activity. A selective mGlu5R antagonist microinjected into the PAG 
completely blocked the effect of exogenous cannabinoid agonists 
on PAG cell activity.60 This is consistent with previous findings that 
glutamate can produce antinociception in the PAG via postsynaptic 

F I G U R E  5 Calcium conductance through VGCCs in naïve, acute, and chronic morphine/withdrawal GABAergic interneurons in the PAG. 
The average resting membrane potential in PAG interneurons is −60 mV.51 A, the naïve neuron in blue. A modest level of calcium conductance 
(arbitrary units, AU) is present. The calcium influx triggers calcium-dependent exocytosis and neurotransmitter release. Hence naïve PAG 
interneurons tonically release GABA. B, acute morphine in red. Following acute activation of MOR, inhibition of AC-cAMP-PKA signaling 
results in dephosphorylation of VGCCs and direct binding of Gβγ causes a right-ward shift in the activation of VGCCs. Furthermore, the 
opening of potassium channels by morphine hyperpolarizes the interneurons (approximately −70 mV). The combination of these two 
factors results in very low conductance through the VGCCs and inhibition of GABA release. C, chronic morphine in green. Superactivation 
of AC causes overactivation of PKA that can phosphorylate VGCCs. Phosphorylation by PKA increases the probability of channel opening, 
allowing for calcium influx even in hyperpolarized neurons52
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mGlu5Rs on output neurons.61 The source of this glutamate may be 
from excitatory glutamatergic interneurons in the PAG. Activation 
of the second population of GABAergic interneurons expressing CB1 
receptors (distinct from MOR containing GABAergic interneurons 
in the PAG) disinhibits the glutamatergic interneurons, thus increas-
ing the activity of the PAG output neurons. Supporting this, a re-
cent experiment found chemogenetic inhibition of CB1 expressing 
GABAergic neurons in the vlPAG activated glutamatergic interneu-
rons in the vlPAG, producing antinociception.62 Confirmation of this 
mechanism requires receptor expression studies to identify if CB1 
receptors and MORs are co-expressed in PAG GABAergic interneu-
rons, or if they are found in distinct populations.

Cannabinoids also act directly in the RVM, shifting the balance 
between ON- and OFF-cells in the RVM in the direction of the ant-
inociceptive OFF-cells. Systemic administration of cannabinoids in-
hibits RVM ON-cell activity and increases OFF-cell activity.63 This 
mechanism appears to be via direct action in the RVM. CB1 receptor 
agonists increase the spontaneous activity of OFF-cells following 
microinjection into the RVM.64 This is distinct from the action of 
MOR agonists in the RVM. Microinjection of morphine to the RVM 
only depressed ON-cell activity, without effecting OFF-cell firing,34 
suggesting only ON-cells expressed MORs.33 As such, even though 
the end result of CB1 agonists on the PAG-RVM system is similar to 
that of opioids (i.e., increased activity of OFF-cells and decreased ac-
tivity of ON-cells), cannabinoids may offer complementary analgesia 
when co-administered with opioids by shifting the balance between 
the state of ON- and OFF-cell firing at both the level of the PAG and 
RVM, through mechanisms independent of MORs and bypassing 
opioid tolerance mechanisms in the PAG.33

6.2.4  |  Cannabinoids may improve the efficacy of 
opioids in certain neuropathic pain conditions

A linear circuit involved in the development of neuropathic pain has 
recently been described by Huang et al.65 (Figure 6).

This linear circuit interacts with the opioid-sensitive descending 
system. PAG projection neurons to the RVM receive excitatory input 
from the medial prefrontal cortex (mPFC) and inhibitory input from 
GABAergic interneurons in the PAG. The balance of these two in-
puts dictates the level of descending pain modulation. Opioid action 
in the PAG disinhibits output neurons. However, in some cases of 
neuropathic pain, decreased excitatory connections between the 
mPFC and vlPAG means the action of opioids alone on PAG inter-
neurons cannot cause substantial activation of the descending pain 
system. Essentially, the neuropathic condition itself has reduced the 
effectiveness of the PAG-RVM-DH antinociceptive system. This 
model suggested by Huang et al. outlines a potential synergistic role 
of cannabinoids and opioids in treating patients suffering from cer-
tain neuropathic conditions who do not receive adequate analgesia 
from opioids alone, by allowing for a greater level of descending pain 
inhibition. However, the current research in this area does not go be-
yond in-vitro studies and, moreover, specific neuropathic conditions 

which might be modulated by this circuit are unknown. Thus, more 
active research into this area is needed.

A recent meta-analysis found a significant reduction in neu-
ropathic pain in patients receiving cannabinoid treatment.66 
Additionally, the use of cannabis as an adjunct to opioids may pro-
vide greater cumulative relief of pain and allow for a reduction in 
opioid dose, decreasing opioid-related side-effects.67 Further clini-
cal trials are required to fully profile the side-effects of cannabinoid 
treatment and identify the types of pain they may be useful for. The 
recent legalization of cannabis in many countries and widespread 
availability make targeting the endocannabinoid system a compel-
ling avenue to pursue.

6.3  |  Sites of OIH development

Hyperalgesia has been reported in several laboratories following 
systemic opioid administration.68,69 Clinical data support this ex-
perimental evidence, for example, in patients detoxing from high 
opioid doses.70 A prospective trial in which participants were given 
morphine for lower back pain also demonstrated measurable hyper-
algesia within one month.71 Therefore, OIH is a well-documented 
phenomenon, distinct from opioid tolerance, and unrelated to 
changes in underlying pain pathology. Often, the development of 
OIH is only observed following withdrawal from opioids, as high opi-
oid doses can mask the hyperalgesia.

The development of OIH involves a variety of independent 
adaptive changes in the opioid-responsive pain processing path-
ways. Chronic morphine administration increases the number of 
active ON-cells in the RVM, likely causing pain hypersensitivity.72 
Furthermore, OIH also incorporates sensitization of the ascending 
pro-nociceptive pathway; for example, increased activity of primary 
afferents within dorsal root ganglia and sensitization of spinal neu-
rons in the DH.73,74 Many of the mechanisms leading to OIH appear 
to alter synaptic plasticity between neurons, leading to a more pro-
nociceptive state in the body.

6.4  |  Mechanisms of OIH development in the RVM

Descending facilitation from the RVM to the spinal cord is important 
for the manifestation of OIH. Continuous morphine administration 
results in a hypersensitive state which can be reversed by lidocaine 
injection into the RVM.75 The mechanism of OIH in RVM appears to 
involve a range of pronociceptive neuropeptides which act through 
similar mechanisms.

6.4.1  |  Cholecystokinin is a pronociceptive peptide 
that drives descending facilitation from the RVM

Microdialysis of rat RVMs following continuous systemic mor-
phine showed a fivefold increase in cholecystokinin (CCK) levels 
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compared with controls, suggesting that CCK release is one of 
the long-term signaling outcomes of morphine administration.76 
Furthermore, activation of CCK receptors in the RVM promoted 
mechanical and thermal hypersensitivity,76 whereas CCK antise-
rum or administration of receptor antagonists prevented this.77 
Therefore, activation of the CCK system by opioids may play a role 
in the development of OIH, and animal studies have shown the 
potential of CCK antagonists in attenuating this phenomenon. The 
source of CCK output to the RVM appears to involve inputs to 
the RVM, rather than a direct release from RVM interneurons, as 
local administration of morphine into the RVM did not cause CCK 
release.76

CCK in the RVM modulates ON-  and OFF-cell firing. CCK re-
ceptors are a group of Gi/o-coupled GPCRs, and activation hyperpo-
larizes neurons, reducing neurotransmitter release.78 Activation of 
CCK receptors in the RVM prevents the morphine-induced increase 
in OFF-cells activity.79 A more recent study found CCK microinjec-
tion into the RVM activated ON-cells, perhaps mediating descend-
ing pain facilitation.80 Activation of ON-cells may be mediated 
through an excitatory Gq-coupled CCK receptor. The reliability of 
CCK-mediated activation of ON-cell firing has been questioned as 
many studies have failed to repeat this finding. One hypothesis is 
that higher doses of CCK activate ON-cells; Heinricher & Neubert 
(2004) used a concentration 3x higher than Heinricher et al. (2001).

Preliminary human evidence suggests that CCK is a viable target 
to improve opioids, with increased opioid efficacy being recognized 
as a novel side effect of proglumide (a non-selective CCK antago-
nist) in human volunteers.81 However, little progress has been made 
over the last 30 years in regard to clinical trials of CCK antagonists 
for this purpose. This lack of progress may be the consequence of 

insignificant results in humans due to redundancy within the “anti-
opioid” system. Other neuropeptides, such as neuropeptide FF 
(NPFF), are also able to induce OIH and targeting only one anti-opioid 
may not significantly impact hypersensitivity in non-experimental 
models.82 Rather than targeting the neuropeptides directly, it may 
be useful to identify the MOR signaling cascades responsible for 
activating the anti-opioid systems with the hopes of discovering a 
common targetable pathway.

6.5  |  OIH in the spinal cord and peripheral 
nervous system

Numerous mechanisms for OIH have also been identified in the spi-
nal cord and peripheral nervous system including sensitization of 
primary afferents and enhanced glutamate release from these af-
ferents, hyperexcitability of second-order neurons, and increased 
descending facilitation.83

6.5.1  |  The role of spinal neuroinflammatory cells 
in OIH

Opioids can trigger pro-inflammatory cascades in astrocytes and 
microglia in the spinal cord, where they may contribute to OIH. 
Following opioid binding to the MOR, various intracellular signal 
pathways are activated leading to pro-inflammatory cytokine re-
lease and a shift in chloride activity from inhibitory to excitatory.84 
These adaptive changes mimic the development of hyperalgesia 
in various inflammatory and neuropathic pain conditions.85 Acute 

F I G U R E  6 Linear circuit involved 
in the development of neuropathic 
pain (as described by Huang et al.65). 
Peripheral nerve injury augments 
basolateral amygdala (BLA) inputs onto 
GABAergic interneurons located in the 
medial prefrontal cortex (mPFC). This 
augmentation is the result of weakened 
endocannabinoid signaling. Decreased 
CB1 receptor density was observed in 
BLA-originating presynaptic terminals. 
Increased activity in mPFC inhibitory 
interneurons leads to an overall inhibition 
of excitatory pyramidal cell output toward 
vlPAG output neurons. The net effect is 
decreased descending inhibition via the 
RVM to the spinal cord
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opioid administration is not sufficient, and chronic opioid use is re-
quired, for the activation of astrocytes and microglia.86,87

The contribution of neuroinflammatory cells has been demon-
strated using inhibitors of glial cell activity - either glial cell block-
ers or antagonists of the mediator's released (e.g., proinflammatory 
cytokine antagonists). Furthermore, cytokines and chemokines re-
leased may contribute to OIH. Chronic morphine upregulated C-X-C 
chemokine receptor type 4 (CXCR4) in nociceptors, and blockade 
with antagonists reversed OIH in rats.88 These neuroinflammatory 
molecules create ideal targets as many drugs targeting them are al-
ready available for use in the clinic.

6.5.2  | Microglia activation shifts the neuronal 
anion gradient making previously inhibitory 
synapses excitatory

Brain-derived neurotrophic factor (BDNF) is released from microglia fol-
lowing opioid binding and activates tropomyosin receptor kinase B (TrkB) 
on DH neurons, inverting the polarity of current activated by GABA.89,90 
Normally, influx of chloride through GABA receptors is inhibitory. 
However, morphine disrupts neuronal chloride homeostasis and instead, 
chloride exits through activated GABA receptors to cause depolariza-
tion. Gene-targeted mice in which BDNF was deleted from microglia did 
not develop hyperalgesia to morphine, but still developed tolerance, dis-
sociating the two phenomena.90 The mechanism of microglia-mediated 
OIH involves a pathway beginning with P2X-purinoceptor 4 (P2X4) re-
ceptors in microglia, and ends with downregulation of the potassium-
chloride co-transporter (KCC2) in DH lamina I neurons (Figure 7). The 
loss of chloride homeostasis may also have implications on the outcome 
of the descending pain system. A large proportion of OFF-cells activated 
in the RVM are GABAergic and act directly at synapses of ascending 
neurons in the DH. As such, what little descending inhibition from the 
RVM remains due to tolerance, is not as effective.32

Understanding the P2X4-BDNF-KCC2 pathway creates numer-
ous novel pharmacological targets to improve opioids by attenuating 
OIH. Importantly, the goal is to restore Cl− extrusion to allow GABA 
receptors to function normally. Furthermore, BDNF-TrkB signaling 
also appears important for the development of inflammatory and 
neuropathic pain conditions, so targeting this pathway may provide 
a dual role by acting as an opioid adjuvant to reduce OIH and improv-
ing the chronic pain condition itself.91,92

6.5.3  |  Activation of the central glutaminergic 
system through NMDA receptors plays a crucial role 
in OIH

The glutamatergic system in the DH is crucial for OIH by increasing 
the strength of synaptic transmission between neurons. Glutamate 
N-methyl-D-aspartate receptors (NMDARs) are located presynapti-
cally on primary afferents and postsynaptically on spinal DH neu-
rons, so are well placed to induce long-term potentiation (LTP) in the 
ascending pain processing pathway.93 LTP produces a long-lasting 
increase in signal transmission between two neurons.94 Opioids can 
activate this central glutaminergic system via sustained NMDAR ac-
tivity, inducing LTP and sensitizing DH neurons.95 Supporting this, 
LTP has been shown to occur between primary afferent C-fibers and 
neurons from the superficial layers of the DH.96

Administration of ketamine (a NMDAR antagonist) diminishes 
OIH in both rats and mice,68,97 supporting the role of glutamate 
in OIH. Electrophysiology recordings showed significantly in-
creased amplitude and frequency of excitatory postsynaptic cur-
rents evoked from primary afferents following chronic morphine, 
and this was attenuated by blocking protein kinase C (PKC) or with 
NMDAR antagonism.98 They hypothesized that chronic morphine 
administration induced PKC-mediated phosphorylation of NMDARs. 
Phosphorylation of NMDARs overcomes their characteristic Mg2+ 

F I G U R E  7 The P2X4-BDNF-KCC2 pathway involved in OIH (reproduced with permission from Trang et al. 2015). The binding of 
morphine (or other MOR agonists) to MORs on spinal microglia activates pro-inflammatory cascades in the microglia. Microglia activation 
induces P2X4 receptor upregulation, and morphine causes the release of BDNF through ATP-mediated stimulation of P2X4 receptors. BDNF 
acts through TrkB on dorsal horn lamina I neurons to downregulate the expression of KCC2. This disrupts chloride homeostasis in the DH by 
preventing chloride efflux via KCC2. The increased intracellular chloride concentration in lamina I neurons shifts GABA receptor activation 
from inhibitory to excitatory90
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block, surpassing the need for depolarization, to allow Ca2+ conduc-
tance. PKC also promotes NMDAR trafficking to the plasma mem-
brane.99 Increased Ca2+ flux through NMDAR causes activation of 
Ca2+/calmodulin-dependent protein kinase II, PKA and neuronal 
nitric oxide synthase (nNOS), and further activation of PKC. While 
the effects of these specifically for analgesia are not clear, their 
effects in other neuronal circuits may provide an insight into their 
functions. For example, activation of nNOS increases the synthe-
sis of nitric oxide (NO) from L-arginine. NO in presynaptic terminals 
increases glutamate neurotransmitter release.100 This supports a 
potential role of PKC inhibitors and NMDAR antagonists in reduc-
ing OIH. Furthermore, chronic morphine decreases the glutamate 
transporters glutamate aspartate transporter EAAT1 (GLAST-1) and 
glutamate transporter EAAT2 (GLT-1) activity in neurons, sustaining 
the increased synaptic glutamate concentration and further enhanc-
ing glutamate signaling in the DH.101

While NMDAR antagonist have been shown effective at increas-
ing opioid potency in animal models, they have not passed clinical 
trials for this purpose due to major side-effects such as hallucina-
tions and drowsiness,102 the result of excessive NMDAR blockage. 
Hypothetically, an NMDAR antagonist that maintains activity at 
normal physiological levels would prevent side effect while also at-
tenuating OIH. The endocannabinoid system has recently emerged 
as an endogenous regulator of NMDAR activity and studies have ob-
served CB1 receptors directly interacting with NMDARs, reducing 
their activity.103 Furthermore, CB1 receptors are expressed in the 
DH.104 Therefore, cannabinoids may also be beneficial for reducing 
OIH. Alternatively, EAAT2 activators may have a role in reversing 
OIH. The β-lactam antibiotic ceftriaxone upregulates spinal EAAT2 
in an animal model of multiple sclerosis, and reverses the associated 
hyperalgesia.105 Further experiments to confirm these findings in 
animal models of OIH are required. Nonetheless, EAAT2 also ap-
pears a promising target for therapeutic intervention.

7  |  RECEPTOR AND CELLUL AR 
SIGNALING OF TOLER ANCE/OPIOID -
INDUCED HYPERSENSIT VIT Y

MOR activation leads to a variety of signaling cascades and recep-
tor adaptations and some may be good pharmacological targets 
(Figure  8, Table  1 and 2) to improve the opioid side-effect profile 
and attenuate the development of tolerance and OIH.

A remaining mystery in the development of analgesic tolerance 
and OIH is the link between acute opioid signaling outcomes and 
the establishment of neuronal adaptations observed chronically. 
The development of many novel experimental drugs relies heavily 
on observed empirical data, with little mechanistic insight into why 
they work. For example, the role of B-arrestin-dependent signaling 
pathways is not clear (Table 2). Bohn et al. found attenuated analge-
sic tolerance to morphine in β-arrestin2 knockout mice, but similar 
knockouts did not alter tolerance to fentanyl.119 Similar differences 
have been observed for the respiratory depression and GI symptoms 
in arrestin knockout mice.120,121 The mechanisms underlying these 
discrepancies are still not clear, but it is becoming increasingly appar-
ent that attributing the adverse effects of MOR ligands to arrestin 
signaling may represent an oversimplification of the pathways.122,123 
Instead, recent evidence supports a role of G-proteins and arrestin 
signaling pathways in both the antinociceptive and the major side 
effects associated with MORs.

7.1  |  Development of novel biased opioid receptor 
ligands to improve opioids

The two most prescribed “strong opioids” in the UK are morphine 
and fentanyl. Fentanyl was synthetically developed with a higher 
affinity for MOR, with the intention that it would make for an 

F I G U R E  8 The various signaling outcomes following MOR activation. G-protein-dependent signaling following MOR activation involves 
the G-protein subunits pre-bound to the receptor, in the case of MOR, this is usually the Gαi and Gβγ subunits. Acutely, MOR activation 
inhibits adenylyl cyclase (AC) through Gαi, but chronic MOR activation appears to over-activate AC. Desensitization, internalization, 
recycling, and downregulation involve agonist-induced receptor phosphorylation, for example, through GRK. β-arrestin is recruited by 
phosphorylated residues of MOR. β-arrestin binding can trigger clathrin-mediated internalization of the receptor. MORs in endosomes 
can either be recycled to the plasma membrane or broken down (downregulation). β-arrestin can act as a scaffold to activate G-protein-
independent signaling cascades (in red), for example, extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), Src, and 
PKC106



12 of 18  |     KHAN and MEHAN

improved opioid. However, clinical evidence has not supported this, 
suggesting similar analgesic efficacies and tolerance development 
between the two opioids. More recently, a range of experimental G-
protein/βarr2 biased MOR agonists has been developed and tested 
in mouse models, with the hope that there may be an optimum ratio 
of G-protein:B-arrestin signaling that would result in an “improved” 
opioid.124 Bias is related to different conformational states of the 
receptor, triggered by structural variations of the ligand and the 
transducers present.125 Agonists highly biased toward G-proteins 
with poor recruitment of B-arrestin2 appear to have more favorable 
properties, including higher antinociceptive potential and attenu-
ated development of tolerance.

One such MOR G-protein-biased ligand, TRV130, was shown 
to cause less GI dysfunction and respiratory depression than 
morphine at equianalgesic doses in rats.121 Preclinical data of 
TRV130 suggested it may be a safer and less tolerant prone opi-
oid for treating chronic pain. Despite promising preclinical data, 

TRV130 completed phase III clinical trials with underwhelming 
results, demonstrating only a trend toward reduced side ef-
fects but no significant difference compared with morphine.126 
Therefore, optimizing bias factor alone may not be enough to 
improve opioids.

7.2  |  Peripheral/central site of action alters the 
side-effect profile of opioids

The distribution of opioids in the body following systemic admin-
istration impacts its outcomes. Peripherally restricted opioids that 
have a poor affinity for crossing the blood-brain barrier would be 
expected to develop less analgesic tolerance and respiratory depres-
sion as these are largely centrally mediated side-effects. However, 
peripherally restricted opioids do not appear to offer the same 
level of analgesic coverage for painful conditions as centrally acting 

Protein 
implicated Role in analgesia Role in tolerance/OIH

Suitable pharmacological 
target?

Adenylyl cyclase 
(AC)

Refer to Section 6.2.2

Gi/Gs Naïve and acute 
MORs are 
coupled to Gi. 
The Gi signaling 
cascade is 
essential for 
opioid-induced 
analgesia.

Switch of the MOR-
coupled G-protein 
from Gi to Gs in 
some spinal dorsal 
horn neurons, 
reversing the 
effect of opioids 
(tolerance) 
and inducing 
hyperalgesia107

Targeting Gs itself will 
be associated with 
too many side effects 
not related to MOR. 
Enhanced activity of 
the pronociceptive 
adrenomedullin (AM) 
can induce the switch 
from Gi to Gs-coupled 
MORs108 and this 
represents a more 
specific target to 
attenuate tolerance.

GRK/β-arrestin N/A In theory, 
desensitization of 
MOR (uncoupling 
of G-proteins to 
the receptor) and 
downregulation 
in key regions 
associated with 
analgesia could 
result in tolerance.

Desensitization is an 
acute phenomenon 
and occurs as 
part of the normal 
physiological response 
to GPCR activation. 
It is unlikely to 
contribute to the 
level of chronic opioid 
tolerance observed 
in the clinic. Also, 
downregulation 
of MOR has not 
been observed in 
regions important for 
analgesia.

Morphine tolerance is 
associated with a 
decrease in opioid-
mediated inhibition of 
GABA release that is 
not a result of MOR 
desensitization.109

TA B L E  1 Summary of the proteins 
involved in G-protein-dependent signaling 
and desensitization, internalization and 
downregulation, and their suitability 
as pharmacological targets to improve 
opioids
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opioids. Therefore, peripherally acting opioids may only be useful in 
pain-causing conditions lacking central sensitization.127 Herkinorin, 
a novel MOR selective G-protein-biased ligand, has a reduced toler-
ance profile and remains efficacious in rats made tolerant to chronic 
morphine, but its effects are peripherally restricted to the site of 
injection.128

7.3  |  Opioid kinetics

Bias is not the only factor that can alter the signaling outcome of 
a GPCR ligand. The kinetics of the drug, for example, its residual 
time (the time the drugs spends bound to the receptor), also ap-
pear important; buprenorphine and TRV130 both have similar G/
Barr-biases, but buprenorphine dissociates significantly slower from 
MORs and has an 18x higher residence time compared to TRV130.129 
This difference could potentially lead to significantly different clini-
cal effects, such as the lower respiratory depression reported with 
buprenorphine.130 The effect of residual time on opioid efficacy has 
not yet been researched but this may be another parameter that re-
quires fine optimization.

Taken together, optimizing the bias, the residual time and the 
degree of central/peripheral action may be the next step in devel-
oping the “perfect” opioid agonist. The development of novel opi-
oids, such as endorphin derivatives that induce less tolerance with 

no significant OIH or glial activation,131 and biased-MOR agonists, 
indicates that opioids possessing good analgesic properties with re-
duced OIH and tolerance is possible.

8  |  CONCLUSION

Chronic pain is not merely prolonged activation of normal pain path-
ways, but instead reflects plasticity in both peripheral and central 
neuronal circuits. Likewise, long-term opioid signaling is not simply 
inhibition of afferent pain signaling but involves adaptive changes in 
all the major pain processing pathways, some of which resemble the 
changes that occur in chronic pain.

As a result of the severe side-effect associated with opioids, much 
of pain research over the last decades has attempted to replace opi-
oids, mostly with little fruition. Perhaps it is time to take a step back 
and look at improving opioids, harnessing their undeniable analgesic 
efficacy of the opioid-responsive system. A variety of novel targets 
have been discussed that, when co-administered with an opioid, may 
allow suffers of chronic pain to achieve effective long-term pain relief. 
Furthermore, the development of new opioid agonists with more de-
sirable properties is also a possibility. Tolerance and OIH are just two 
of the factors that plague opioid usage. Research must also be done 
into minimizing opioid addiction and physical dependence. Addiction 
involves of elements of biology but also behavioral, societal, and 

TA B L E  2 Summary of the proteins involved in G-protein-independent signaling their suitability as pharmacological targets to improve 
opioids

Protein implicated Role in analgesia Role in tolerance/OIH Suitable pharmacological target?

β-arrestin N/A N/A Provides a scaffolding role and is not 
a signaling molecule in its own 
right, therefore unlikely to be a 
good pharmacological target.110

Mitogen-activated protein 
kinase pathways (ERK and 
JNK)

Contribution toward 
antinociception appears to 
my both agonist and location 
dependent.111

Similar to their role in 
antinociception, ERK and 
JNK’s role in tolerance is 
agonist and cell location 
dependent.111,112

Differential functions of ERK and JNK 
make this a poor pharmacological 
target based on our current 
molecular understanding of their 
signaling pathways.

Src Src activation appears to have 
no effect on antinociceptive 
effect113

The MOR-B-arrestin-Src 
complex can phosphorylate 
AC isoforms (contributing 
to AC overactivation) and 
other proteins (e.g., MAPK, 
GRK2/3) implicated in 
tolerance and OIH114,115

Src kinase inhibition attenuates 
morphine tolerance.113 Inhibitors 
of Src (e.g., Dasatinib) are already 
used clinically for leukemia, so 
their safety in humans is already 
established.

PKC N/A PKC has been implicated in 
acute desensitization of 
MOR in response to specific 
opioid agonists, analogous 
to GRK116; PKC activation by 
MORs may sensitize NMDAR 
receptors co-expressed on 
postsynaptic DH neurons, 
increasing NMDAR 
activation.117

Acute desensitization does not 
appear significant toward 
chronic opioid tolerance. While 
there may be some potential 
in directly targeting PKC to 
reduce activation of downstream 
effectors (e.g., NMDAR), no PKC 
inhibitor has been approved 
for clinical use.118 Targeting the 
downstream effectors directly 
may be more successful
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other social factors such as education, so any improved opioid para-
digm must involve more than just pharmacological improvements.132 
For instance, a greater involvement of healthcare professionals, in-
cluding psychiatrists, may be beneficial in long-term opioid users.133 
By championing multiple avenues of investigation such as improving 
opioids by minimizing OIH and tolerance as discussed in this review, 
improving opioid addiction and physical dependence, and continuing 
work on non-opioid alternatives, the likelihood of improving analgesic 
treatment becomes ever greater.

MOR variants within individuals result in varying responses to 
opioids, and differing mechanisms and propensities to tolerance and 
OIH.134 As such, it is likely that improving opioid treatment will vary 
on a case by case basis. In the future, trialing each patient on a spe-
cific “improved” opioid agonist with an adjuvant (e.g., AC inhibitors, 
cannabinoids, CCK receptor antagonists, or NMDAR antagonists), 
and refining this combination over time, will likely result in the best 
combination for the individual.
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