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Abstract

Sweet potato production is constrained by Fusarium wilt, which is caused by Fusarium oxy-

sporum f. sp. batatas (Fob). The identification of genes related to disease resistance and

the underlying mechanisms will contribute to improving disease resistance via sweet potato

breeding programs. In the present study, we performed de novo transcriptome assembly

and digital gene expression (DGE) profiling of sweet potato challenged with Fob using Illu-

mina HiSeq technology. In total, 89,944,188 clean reads were generated from 12 samples

and assembled into 101,988 unigenes with an average length of 666 bp; of these unigenes,

62,605 (61.38%) were functionally annotated in the NCBI non-redundant protein database

by BLASTX with a cutoff E-value of 10−5. Clusters of Orthologous Groups (COG), Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were

examined to explore the unigenes’ functions. We constructed four DGE libraries for the

sweet potato cultivars JinShan57 (JS57, highly resistant) and XinZhongHua (XZH, highly

susceptible), which were challenged with pathogenic Fob. Genes that were differentially

expressed in the four libraries were identified by comparing the transcriptomes. Various

genes that were differentially expressed during defense, including chitin elicitor receptor

kinase 1 (CERK), mitogen-activated protein kinase (MAPK), WRKY, NAC, MYB, and ethyl-

ene-responsive transcription factor (ERF), as well as resistance genes, pathogenesis-

related genes, and genes involved in salicylic acid (SA) and jasmonic acid (JA) signaling

pathways, were identified. These data represent a sequence resource for genetic and geno-

mic studies of sweet potato that will enhance the understanding of the mechanism of dis-

ease resistance.
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Introduction

Sweet potato is the 7th most important crop globally, with an annual area harvest of 8.0 million

ha and a total global production of 104.5 million tons. Sweet potato is planted primarily in

developing areas in Asia and Africa [1, 2]. In the past two decades, sweet potato production

has decreased in Asia and greatly increased in Africa [2]. In the USA, the harvest area has

increased from 33.3 kha in 2002 to 54.7 kha in 2014, and this increase has resulted in a corre-

sponding increase in sweet potato production from 580.5 kilotons to 1.34 million tons [2].

Fusarium oxysporum, a soil-borne pathogenic fungus, is classified into more than 120 for-
mae speciales and races, each of which infects one specific crop, such as sweet potato, tomato,

banana, watermelon or pepper. The severity of the damage caused by these infections depends

on the interaction between the pathogen and the host crop [3]. The production of sweet potato

is constrained by Fusarium wilt, which is caused by Fusarium oxysporum f. sp. batatas (Fob)

[4]. Sweet potato growth was limited in the Southeastern United States prior to the 1950s and

South China prior to the 1980s, when resistant cultivars were bred and applied [5, 6]. Fusarium

wilt has spread across many provinces in Central China and threatens sweet potato production

[7].

During Fob infections, sweet potato secretes tyloses, cell wall material or brown matter into

xylem vessels as a physiological response to impede Fob infection, leading to blockade of the

vascular bundle [8, 9] and stem split and rot [5]. Colonization by Fob can induce the defense

system in sweet potato. The susceptibility or resistance of sweet potato to Fusarium wilt

depends on the interaction with Fob, consistent with the gene-for-gene hypothesis proposed

by Flor [10] and the mode of co-evolution proposed by Jones [11]. The pathogen-associated

molecular patterns (PAMPs), such as chitin, glucan, or glycoprotein, of fungal cells are recog-

nized by pattern recognition receptors (PRRs) in plants, resulting in PAMP-triggered immu-

nity (PTI) to prevent pathogen colonization. Successful pathogens release effector proteins to

suppress PTI [11]. In response, plants have evolved resistance (R) proteins to recognize these

effectors and trigger a secondary response, i.e., effector-triggered immunity (ETI), which

induces the expression of downstream defense-related genes [12]. This model was elucidated

based on the interaction between tomato and its pathogenic Fusarium oxysporum f. sp. lycoper-
sici (Fol) [13]. Many R genes with identified functions have been isolated from Arabidopsis,

rice, tomato, and other host plants [14–17].

Sweet potato is hexaploid with a complex genome that has not been sequenced [18]. High-

throughput RNA sequencing based on next-generation sequencing technology (Illumina) has

recently been applied in analyses of gene expression profiling and for the discovery of impor-

tant genes involved in disease resistance and related pathways [19, 20]. Transcriptome

sequencing offers a rapid approach to obtain expressed gene sequence information for sweet

potato [21] and has been used to mine gene-based microsatellite markers [22, 23], elucidate

the mechanism of development and metabolism in the purple tuberous roots of sweet potato

[18], reveal gene expression patterns associated with tuberous root formation and develop-

ment [24], and identify related genes involved in lignin and starch biosynthesis [21].

In the present study, transcriptome sequencing technology was used to perform RNA

sequencing (RNA-Seq) of sweet potato cultivars inoculated with pathogenic F. oxysporum. We

constructed a sufficiently large library using equally mixed total RNA. In total, 89,944,188

high-quality reads were retained and assembled into 62,605 unigenes. The unigenes were then

annotated and assigned putative functions, classifications or pathways by alignment with pub-

lic databases. The transcriptome data provide a global view of the gene expression in sweet

potato during Fob infection, generating a resource for discovering candidate defense-related

genes. Based on the transcriptome data, we constructed cDNA libraries and performed four

Transcriptome profiling of sweet potato and identification of defense related genes against Fob
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digital gene expression (DGE) analyses using sequencing reads from the libraries to compare

the gene expression profiles of a sweet potato cultivar challenged with pathogenic Fob and

identify a set of genes involved in the defense response to Fob. The comparisons will provide a

better understanding of the molecular mechanisms underlying the defense response of sweet

potato to Fob.

Materials and methods

Plant and pathogen materials, treatment and RNA extraction

Two sweet potato cultivars were used as the plant materials: Jinshan57 (JS57, highly resistant

to Fusarium wilt) and XinZhongHua (XZH, highly susceptible to Fusarium wilt). JS57 was

used as a highly resistant control (disease index of 14.7), whereas XZH was used as a highly

susceptible control (disease index of 100) to identify resistance to Fusarium wilt [4].

The virulent pathogen fungus Fusarium oxysporum f. sp. batatas07 (F07) was used. F07 was

isolated from sweet potato with Fusarium wilt and stored at -20˚C.

Seedlings of sweet potato were inoculated with F07 or water (as a control). Four samples

were prepared as follows: (1) JS57 inoculated with F07 (JS57-F07); (2) JS57 in water (JS57-CK);

(3) XZH inoculated with F07 (XZH-F07); and (4) XZH in water (XZH-CK).

The conidia solutions were prepared as follows: F07 was grown on potato sugar agar (PSA)

medium in a Petri dish for 8 d at 28˚C until the mycelia grew over the surface of the medium.

The PSA medium with mycelia was cut into small pieces and transferred into 250-mL conical

flasks containing 100 mL of liquid Czapek medium. Each flask containing eight pieces of PSA

medium with mycelia was incubated at 28˚C for 8 d on a rotary shaker. The liquid medium

containing the conidia and mycelia was strained through cheesecloth, and the conidia were

collected into clean empty flasks. The conidia concentration of the solution in the flask was

determined using a hemocytometer. Prior to incubation, the conidia suspensions were diluted

in sterilized distilled water to a concentration of 1 × 107 conidia/mL.

Healthy sweet potato seedlings that were field grown for at least 28 d and had no obvious

disease symptoms were freshly cut to a length of 20 cm and cultivated in glass bottles contain-

ing conidial solutions of 1 × 107 conidia/mL. Seedlings were cultivated in water as a control.

The seedlings were cultivated in growth chambers at 28˚C for 24 h, and the basic stems of

seedlings with a length of 2 cm were collected as samples. Three independent biological repli-

cates of each treatment were collected and immediately frozen in liquid nitrogen. Total RNA

was isolated from each sample using the RNAprepPure Plant Kit (Tianen Biotech, Beijing,

China), according to the manufacturer’s instructions. RNA degradation was detected by elec-

trophoresis on 1% agarose gels, and the RNA purity was measured by a NanoPhotometer spec-

trophotometer (IMPLEN, CA, USA). We used the Qubit RNA Assay Kit with a Qubit2.0

Fluorometer (Life Technologies, CA, USA) to determine the RNA concentration. The RNA

integrity was confirmed using an RNA Nano 6000 Assay Kit on the Agilent Bioanalyzer 2100

system (Agilent Technologies, CA, USA).

Library preparation and transcriptome sequencing

The sequencing library was prepared using 3 μg of RNA from each sample and the NEBNex-

tUltra™ RNA Library Prep Kit for Illumina (NEB, USA) according to the manual. Index codes

were added to sequences from each sample. In brief, poly-T oligo-attached magnetic beads

were applied to purify mRNA from total RNA. Then, fragmentation was conducted in the

presence of divalent cations and at higher temperature in NEBNext, First Strand Synthesis

Reaction Buffer (5X). We utilized random hexamer primers and M-MuLV Reverse Transcrip-

tase to perform first-strand cDNA synthesis and DNA Polymerase I and RNase H for the

Transcriptome profiling of sweet potato and identification of defense related genes against Fob
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second-strand cDNA synthesis. The overhangs were filled to blunt ends by exonuclease/poly-

merase activity. Then, the 3’ ends of the DNA fragments were adenylated, and NEBNext,

Adaptors with hairpin loop structures were ligated to the DNA fragments. cDNA fragments

with a size of 150–200 bp were purified with the AMPure XP system (Beckman Coulter, Bev-

erly, USA). The cDNA was then incubated with the USER Enzyme (NEB, USA) at 37˚C for 15

min and 95˚C for 5min. PCR was performed using Phusion High-Fidelity DNA polymerase

with Universal PCR primers and Index (X) Primer. The PCR products were purified with an

AMPure XP system. The library quality was evaluated with the Agilent Bioanalyzer 2100 sys-

tem. The index-coded samples were clustered using the cBot Cluster Generation System with

the TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to the manual. The library prepa-

rations were then sequenced on an Illumina HiSeq 2500 platform. The resultant datasets are

available in the NCBI Gene Expression Omnibus repository under GEO Series accession num-

ber GSE89290 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89290).

Quality control and de novo assembly

The data produced using the Illumina HiSeq 2500 platform were transferred into raw reads

(raw data) using base calling. The raw reads were initially processed via in-house Perl scripts

[25], and the reads containing adapters or N (indefinite base) higher than 10%as well as low-

quality reads were then removed. The remaining high-quality clean reads were used to deter-

mine the error rate, Q20, Q30, GC content and sequence duplication level. The clean data

were also used to perform the following bioinformatics analyses. According to Haas et al. [25],

the clean reads were concatenated into two files. The left files (read1 files) from all libraries/

samples were pooled into a large left.fq file, and the right files (read2 files) were pooled into a

large right.fq file. The transcriptome assembly was obtained based on the left.fq and right.fq

using Trinity [26] for de novo assembly, with a minimum kmer coverage of two and default

setting for all other parameters.

Gene functional annotation

The functions of the assembled transcripts were annotated by searching their sequences

against the following databases:

NR (NCBI non-redundant protein sequences, http://www.ncbi.nlm.nih.gov) with an E-

value cutoff of 1e-5;

Nt (NCBI non-redundant nucleotide sequences, http://www.ncbi.nlm.nih.gov) with an E-

value cutoff of 1e-5;

PFAM (Protein family, http://pfam.sanger.ac.uk/) with an E-value cutoff of 1e-2;

KOG/COG (Clusters of Orthologous Groups of proteins, http://www.ncbi.nlm.nih.gov/

COG/) with an E-value cutoff of 1e-3; and

Swiss-Prot (A manually annotated and reviewed protein sequence database, http://www.

ebi.ac.uk/uniprot/) with an E-value cutoff of 1e-5.

Based on the annotations in NR and PFAM, Blast2GO (v2.5) was used to obtain the GO

annotations (http://www.geneontology.org) according to the molecular function, biological

process and cellular component ontologies [27]. The Automatic Annotation Server and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database (http://www.genome.

jp/kegg) were used to generate pathway assignments with an E-value cutoff of 1e-5.

Differential expression analysis

The analysis of differential expression between the four groups was performed with the DESeq

R package (1.10.1). The resulting P-values were adjusted according to Benjamini and
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Hochberg’s approach for controlling the false discovery rate. Genes with an adjusted P-value

<0.05, as determined by DESeq, were regarded as differentially expressed.

Experimental validation

Five genes were examined using real-time quantitative PCR (Q-PCR) to confirm their expres-

sion levels using FPKM, and the primers (Table 1) were designed using software Primer 5 and

synthesized by Invitrogen. The primer sequences are listed in Table 1. A total of 1 μg of total

RNA was used to synthesize the cDNA using the Prime Script RT Reagent Kit (Takara,

DaLian, China) in a 20-μL reaction mixture. qRT-PCR was performed on a StepOnePlus™
Real-Time PCR System (Thermo Fisher Scientific), and the sweet potato GAPDH gene [28]

was used as the endogenous reference control. All reference and selected genes were measured

in triplicate.

Each reaction had a total volume of 20 μL and contained 2 μL of cDNA, 0.2 μL (10 μmol L-1)

of gene-specific primers and 0.1 μL of CXR SYBR Green Master Mix. The real-time quantitative

PCR program was 95˚C for 10 min followed by 40 cycles of95˚C for 15 s, 55˚C for 20 s and

72˚C for 30 s. The data were processed with Excel 2007(Microsoft, WA, USA).

Results

RNA-Seq and de novo transcriptome assembly

To comprehensively generate the transcriptome and obtain insights into the molecular mecha-

nisms involved in the resistance of sweet potato to Fusarium wilt, the total RNA from the

stems of the highly resistant cultivar JS57 and highly susceptible cultivar XZH was isolated.

The RNAs were equally mixed to create an RNA pool for the cDNA library, and a database of

the sweet potato stem transcriptome was then generated through Illumina HiSeqTM 2500

sequencing. The deep sequencing produced 91,366,006 sequence reads with a length of 100 bp

each and an average GC content of 45.10%. After removing adaptors, primer sequences, poly-

A tails and short and low-quality sequences, 89,944,188 (98.44%, 11.24 Gbp) high-quality

reads with Q�20 were retained and used for the assembly.

Due to the absence of a sequenced genome, all trimmed and cleaned reads were aligned

and assembled using Trinity [29], yielding a set of 146,859 transcript sequences that were lon-

ger than 201 bp with an N50 length of 1371 bp and 101,988 unigenes with an average length of

666 bp and an N50 length of 1079 bp. The length of the assembled unigenes varied from 201 to

Table 1. Sequences of primers used in the qRT-PCR analysis.

Sample Gene ID Primers Primer sequences

JS57 C52297 F CCCTTCATTCCCTTTCCACC

R CGAGTTCTTCGTCGCCGTTA

C51550 F TTTGTTTCTTCCACCTCTGT

R ATGCACGAATATCGCCTTAG

C47391 F TGTTGGGTCTGATAGTATTG

R CTCTTCCCTTTATTCTTCTG

XZH C55420 F CAGCCCAATAATCCAAGCAC

R GCATCACATCGGACCCTAAC

C56184 F TACCAATCAAAGGCTCACAA

R CCACCTAAAGGCACCAAGAC

Reference GAPDH F GCAGGAACCCGGAAGAGATT

R GCAGCCTTGTCCTTGTCAGTG

https://doi.org/10.1371/journal.pone.0187838.t001
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15,576 bp, and more than 36.6% of these unigenes were longer than 501 bp, consistent with

previously reported transcriptome data from sweet potato (Tables 2 and 3, Fig 1) [24, 30, 31].

The lack of a reference sweet potato genome sequence is a barrier to identifying candidate

genes involved in disease resistance. The overview of the gene expression profile of sweet

potato challenged with Fob obtained in this study offers abundant sequence data for identify-

ing candidate genes associated with defense against Fusarium wilt.

Functional annotation

To annotate the obtained unigenes, we performed a BLASTX search against the NR NCBI pro-

tein databases with a cutoff E-value of 10−5 based on sequence similarity. In total, 62,605 uni-

genes were detected (Table 4) that had good comparability with known gene sequences in at

least one database, corresponding to approximately 61.38% of the total unigenes; 8,683

(8.51%) unigenes were annotated in all databases, including NR, NCBI non-redundant nucleo-

tide sequences (NT), KO, Swiss-Prot, Protein Family (PFAM), Gene Ontology (GO) and

Eukaryotic Ortholog Groups (KOG). As shown in Fig 2, the species that provided the best

BLASTX matches (first hit) was Nicotiana tomentosiformis (19.1%), with more than 10,000

genes having high homology, followed by Solanum lycopersicum, Naegleria gruberi, Coffea
canephora and Solanum tuberosum. However, more than half of the unigenes matched other

species.

GO and KOG classifications

GO classifications offer an ontology of defined terms representing the properties of gene prod-

ucts [18]. According to the results of a BLASTX search against the NR protein database, 40,918

genes (40.1%) were assigned to at least one GO term and were categorized into 46 classes. To

better review the GO classifications involving these genes, each GO term was further clustered

into its parent term. Ultimately, the classes were clustered into 45 functional groups and three

major classifications (Fig 3), and the term “binding” (GO: 0005488) in molecular function rep-

resented the largest group (23,444 unigenes), followed by “cellular process” (GO: 0009987) in

biological process (23,339 unigenes), “metabolic process” (GO: 0008152) in biological process

(23,146 unigenes), and “catalytic” (GO: 0003824) in molecular function (19,536). The smallest

groups included the terms “hormone secretion” (GO: 0046879) in biological process (2), “sym-

plast” (GO: 0055044) in cellular component (5), “nucleoid” (GO: 0009295) in cellular compo-

nent (7) and “synapse” (GO: 0045202) in cellular component (11) (Fig 3).

A phylogenetic classification was performed using COG databases to classify the potential

functions. In total, 22,613 genes were aligned to 26 functional classes (Fig 4). The two largest

cluster groups were “general function prediction only” (3,374, 14.9%) and “posttranslational

Table 2. Frequency of the length distribution of the assembled transcripts and unigenes.

Transcript length interval 200–500 bp 500–1 kb 1–2 kb >2 kb Total

Number of transcripts 78031 30741 25195 12892 146859

Number of unigenes 64695 18719 12437 6137 101988

https://doi.org/10.1371/journal.pone.0187838.t002

Table 3. Length distribution of the assembled transcripts and unigenes.

Min Length Mean Length Median Length Max Length N50 N90 Total Nucleotides

Transcripts 201 812 459 15576 1371 314 119187574

Unigenes 201 666 367 15576 1079 267 67942174

https://doi.org/10.1371/journal.pone.0187838.t003
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modification, protein turnover, chaperones” (3,299, 14.6%). Interestingly, 122 genes were

aligned to the “defense mechanisms” cluster, which is helpful for understanding the mecha-

nisms of resistance to Fusarium wilt in sweet potato.

KEGG pathway mapping

The KEGG database is widely used as a reference database of pathway networks for the inte-

gration and interpretation of large-scale datasets generated using high-throughput sequencing

technology and is helpful for obtaining a better understanding of the functions of genes that

are up- or down-regulated in response to the Fusarium wilt pathogen [18]. A BLASTX search

Fig 1. Length distribution of the assembled transcripts and unigenes in sweet potato. The horizontal axis represents the length

intervals of the transcripts and unigenes, and the vertical axis represents the number of transcripts and unigenes.

https://doi.org/10.1371/journal.pone.0187838.g001
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against the KEGG protein database was performed using a cutoff E-value of e-5. In total,

19,578 distinct gene sequences were assigned to 276 KEGG pathways. The pathways most rep-

resented by unique sequences included translation (2,560 genes), signal transduction (2,089

genes) and carbohydrate metabolism (1,963 genes) (Fig 5). The KEGG annotations reveal the

specific enrichment of pathways and the mechanisms involved in the response to Fob infection

in sweet potato.

Gene expression profile of sweet potato in response to Fob

The library was prepared using 3 μg of RNA from each sample, and sequencing was performed

on an Illumina HiSeq 2500 platform. The number of unambiguous tags in each library was

normalized to the expected number of fragments per kilobase of transcript per million base

pairs sequenced (FPKM), and the differentially expressed genes were then compared between

different libraries. The DESeq R package (1.10.1) was used to analyze the differential expres-

sion between two groups using samples with three biological replicates [32]. DESeq provides a

statistical approach for determining differential expression of digital gene expression data

using a model based on the negative binomial distribution. Genes with an adjusted P-value

<0.05 were considered differentially expressed.

A comparison of the differentially expressed genes between the libraries revealed that many

genes were up- or down-regulated in both sweet potato cultivars after inoculation with Fob.

Notably, the number of up-regulated genes was higher than the number of down-regulated

genes. In the JS57 cultivar, the expression of 6,454 genes was affected by F07 inoculation

(JS57-F07 library); of these genes, 3,843 and 2,611 were up-regulated and down-regulated,

respectively, compared with the control (JS57-CK library). In the XZH cultivar, the expression

of 6,826 genes was affected by inoculation with F07 (XZH-F07 library); of these genes, 5,552

and 1,274 genes were up-regulated and down-regulated, respectively, compared with the con-

trol (XZH-CK).

Experimental validation by qRT-PCR

To confirm the reliability of the Illumina Solexa sequencing data and the differential DGE

results, five unigenes were selected for quantitative RT-PCR assays: c47391-g1, c51550-g2,

c52297-g1, c54420-g2 and c56184-g1. The results revealed the same expression tendency

observed in the DGE analysis in both cultivars (Fig 6). qRT-PCR indicated that c52297-g1,

c51550-g2, c54420-g2 and c56184-g1 were up-regulated by 4.88-, 2.30-, 3.85- and 2.12-fold

Table 4. Statistics of unigenesannotated in public databases.

Search item Number of unigenes Percentage

(%)

Annotated in NR 56,362 55.26

Annotated in NT 32,361 31.73

Annotated in KO 19,578 19.19

Annotated in Swiss-Prot 38,491 37.74

Annotated in PFAM 38,592 37.83

Annotated in GO 40,918 40.12

Annotated in KOG 22,613 22.17

Annotated in all databases 8,683 8.51

Annotated in at least one database 62,605 61.38

Total unigenes 101,988 100

https://doi.org/10.1371/journal.pone.0187838.t004
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Fig 2. Species distribution of the BLASTX matches of the transcriptome unigenes. This figure shows the

species distribution of the unigene BLASTX matches against the NR protein database (cutoff E-value of E<10−5) and

the proportions of each species.

https://doi.org/10.1371/journal.pone.0187838.g002

Fig 3. Histogram of GO classifications. The percentages indicate the proportion of unigenes with the GO annotations.

https://doi.org/10.1371/journal.pone.0187838.g003

Transcriptome profiling of sweet potato and identification of defense related genes against Fob

PLOS ONE | https://doi.org/10.1371/journal.pone.0187838 November 13, 2017 9 / 21

https://doi.org/10.1371/journal.pone.0187838.g002
https://doi.org/10.1371/journal.pone.0187838.g003
https://doi.org/10.1371/journal.pone.0187838


Fig 4. Histogram of the COG classification in sweet potato. The horizontal axis represents the names of the COGs, and the

vertical axis represents the proportion of the group of the total number. In total, 22,613 sequences had COG classifications

across 25 categories.

https://doi.org/10.1371/journal.pone.0187838.g004
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after infection with Fob, respectively, whereas these were found to be up-regulation by 1.40-,

1.62-, 1.71- and 3.1-fold according to the DGE results, respectively. The unigene c47391-g1

was down-regulated 33.19-fold according to the qRT-PCR results but by 1.93-fold according

to the DGE results.

Identification of related genes involved in the defense response

We identified a set of differentially expressed genes involved in the defense response by com-

paring the commonalities and differences in the libraries of the highly resistant and highly sus-

ceptible cultivars upon Fob infection. These genes, include chitin elicitor receptor kinase 1

(CERK), mitogen-activated protein kinase (MAPK), WRKY, NAC, MYB, and ethylene-

Fig 5. Histogram of KEGG clusters in sweet potato.

https://doi.org/10.1371/journal.pone.0187838.g005
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responsive transcription factor (ERF), as well as resistance (R) genes, pathogenesis-related

(PR) genes and genes involved in the salicylic acid (SA) and jasmonic acid (JA) signaling path-

ways, and the total number of defense-related genes and the differentially expressed genes are

shown in Table 5.

CERK 1 genes. CERk1 is a PRR in host plants that plays a crucial role in chitin perception

in the immune response against fungal pathogens [33]. We identified two differentially expressed

CERK1 genes (Table 6): c60044-g1 (putative CERK1-like) and c62516-g1 (putative CERK1).

c60044-g1 was up-regulated in both JS57-F07 and XZH-F07. Interestingly, c62516-g1 was

down-regulated in the highly resistant cultivar JS57-F07, suggesting a complicated interaction

between sweet potato and Fob.

MAPK signaling genes. MAPK signaling cascades comprise an MAP kinase kinase kinase

(MPKKK), an MAP kinase kinase (MPKK or MAP2K), and an MAP kinase(MPK) that are

Fig 6. qRT-PCR validation of the Fob-induced fold-changes detected using RNA-Seq. Standard error

bars are shown for the fold-changes determined by qRT-PCR.

https://doi.org/10.1371/journal.pone.0187838.g006

Table 5. Number of defense-related and differentially expressed genes identified in the response to Fob infection.

Related genes Gene numbers involved Significant differential expression Ratio of differentially expressed genes to total (%)

CERK 1 5 2 40.0

MAPK 66 6 9.1

JA signaling 14 2 14.3

SA signaling 25 4 16.0

ERF 40 14 35.0

WRKY 123 8 6.5

NAC 20 2 10.0

MYB 22 1 4.5

R genes 94 3 3.2

PR genes 57 7 12.3

https://doi.org/10.1371/journal.pone.0187838.t005
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transduced from the receptor to downstream targets as a signal to sequentially activate the

expression of defense-related genes [34]. We identified 66 MAPK-related genes, of which six

were differentially expressed. MAPKs have attracted much attention because these genes are

involved in the induction and coordination of hormone-dependent and hormone-indepen-

dent plant responses against necrotrophic fungal pathogens [34].

Genes associated with the SA and JA signaling pathways. The plant hormones SA and

JA are major defensive players in the regulation of signaling networks underlying resistance to

pathogens [35]. SA plays an extensive signaling role in plants, particularly in the defense

against biotrophic/hemibiotrophic pathogens, by inducing cell death, activating the expression

of defense-related genes, and provoking systemic acquired resistance (SAR) [36, 37]. We iden-

tified 20 genes that were associated with the SA pathway (Table 5), and four of these genes

were differentially expressed. Two unigenes, c21763-g1 and c39777-g1, were up-regulated in

XZH-F07, and both were annotated as S-adenosyl-L-methioninesalicylic acid carboxyl methyl-

transferase (SAMT), which has been implicated in disease resistance responses in rice [38].

The unigene c58625-g1 was down-regulated in XZH-F07 and annotated as UDP-glycosyl-

transferase (UDPG), which might influence the accumulation of free SA, leading to changes in

the resistance of the host plant [39].

JA-dependent signaling is effective against necrotrophic pathogens [35], and we identified

two differentially expressed JA metabolism-related genes that were annotated as jasmonic acid

2 and jasmonate O-methyltransferase. These genes might play an important role in defense

against the necrotrophic phase of Fob infection.

WRKY transcription factor genes. In total, 123 WRKY genes were identified. Of these

123 WRKY genes, ten (8.1%) were significantly differentially expressed in at least one compari-

son (Tables 4 and 5). The WRKY transcription factors belong to a large family of transcrip-

tional regulators that are almost exclusively expressed in plants. These transcription factors

have diverse biological functions and play important roles in the defense response and hor-

mone-controlled processes by acting as transcriptional activators or repressors that regulate

major changes in plants during the early phases of root colonization with fungi [40–42].

Five unigenes (c54420-g2, c56135-g1, c57247-g1, c60589-g1, and c64728-g1) were exclu-

sively up-regulated in XZH-F07 and were identified as putative WRKY61, WRKY75, WRKY

22, WRKY71 and WRKY6, respectively, all of which are related to the defense response. In

Arabidopsis, the WRKY61 gene plays a role in reducing the symptom severity of turnip crinkle

virus disease and is associated with plant immunity pathways [43]. WRKY 75 plays a role in

decreasing the severity of bacterial soft rot disease and activates a subset of defense-related

genes in Chinese cabbage, similar to Arabidopsis [44]. WRKY22, WRKY71 and WRKY6 are all

involved in rice defense responses. WRKY22 also plays a role in the resistance response to

blast [45], and WRKY 71 functions as a transcriptional regulator upstream of OsNPR1 and

OsPR1b in defense signaling pathways [46]. WRKY6 positively regulates defense responses by

increasing SA concentrations through activation of the SA biosynthesis-related gene OsICS1

[47]. The unigene c46250-g1 was annotated as putative WRKY56 and was exclusively down-

regulated in XZH-F07; however, the function of the WRKY56 gene remains unclear. The uni-

gene c50623-g1 was annotated as a putative WRKY48-like gene, and its expression level was

significantly lower in JS57-CK than in XZH-CK. WRKY48 was identified as a negative regula-

tor of PR gene expression and basal resistance against the bacterial pathogen P. syringae in

Arabidopsis [48]. The unigene c33599-g2 was annotated as a putative WRKY gene because its

coding protein contains a WRKY-binding domain, and the expression level of WRKY in

JS57-F07 was 3.4-fold higher than that in ZXH-F07, indicating an important role in the

defense response.
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Table 6. Differentially expressed genes involved in the defense response against Fob infection.

Gene ID Blast annotation JS57-F07 vs JS57-CK XZH-F07 vs XZH-CK

CERK c60044-g1 CERK1 [A. thaliana] 3.2 1.4

c62516-g1 CERK1-like [N. tomentosiformis] -4.1

MAPK c51382-g1 Wound-induced MAPK [N. glutinosa] 0.9

c54598-g1 MAPK 20 isoform X1 [N. tomentosiformis] 0.7

c58290-g1 MAPK [I. batatas] 1.3

c58750-g5 MAPK 9 [N. tomentosiformis] 0.8 1.1

c65078-g2 MAPK 6 isoform X1 [N. tomentosiformis] -1.2

c66053-g1 Receptor protein kinase [R. communis] -1.8

JA signaling c43470-g1 Jasmonic acid 2 [S. lycopersicum] 3.0

c52478-g1 Jasmonate O-methyltransferase [B. rapa] -0.9

SA signaling c56489-g2 Salicylic acid-binding protein 2 [N. benthamiana] -1.3

c57992-g1 Salicylic acid-binding protein 2-like [N. tomentosiformis] -3.2

c58625-g1 UDP-glycosyltransferase 74F2-like [N. tomentosiformis] -2.0

c65549-g1 UDP-glycosyltransferase 74F2-like [N. tomentosiformis] 1.3 -0.7

ERF c33996-g1 Ethylene-responsive-element-binding protein [S. lycopersicum] 2.6

c45744-g1 Ethylene response factor 3 [S. lycopersicum] 0.8

c51416-g2 Ethylene response factor 4 [S. lycopersicum] 1.2

c52634-g1 Ethylene response factor 2 [N. tomentosiformis] 1.3

c53488-g1 Ethylene response factor 13 [A. thaliana] 1.2 0.9

c55705-g1 Ethylene response 2 [A. thaliana] 2.2

c57791-g1 Ethylene-responsive factor [C. chinense] 3.6 0.6

c58358-g1 Ethylene response factor 13 [C. arabica] 1.9

c58425-g1 Ethylene receptor homolog [N. tabacum] 2.0

c60985-g1 Ethylene-responsive transcription factor ERF027 [A. thaliana] 1.6

c61066-g1 Ethylene-responsive-element-binding factor 5 [P. hybrida] -1.0

c61066-g2 Ethylene response factor 14 [A. deliciosa] 2.6

c64410-g1 Ethylene response factor 1 [I. batatas] 0.7

c65518-g1 Ethylene-insensitive protein 3 [N. tabacum] 0.7 0.5

WRKY c54420-g2 WRKY61 [N. tomentosiformis] 1.7

c56135-g1 WRKY75 [N. tomentosiformis] 1.6

c57247-g1 WRKY22 [C. roseus] 1.8 1.6

c60589-g1 WRKY71 [A. thaliana] 1.3

c64728-g1 WRKY6 [A. thaliana] 1.1

c46250-g1 WRKY56 [A. thaliana] -2.1

c50623-g1 WRKY48-like [S. tuberosum] -1.4

c33599-g2 Protein containing a WRKY-binding domain 3.4

NAC c51550-g2 NAC29 [A. thaliana] 2.1

c52292-g3 NAC7-like [M. acuminata] -3.7

MYB c5221-g1 Ipomoea batatas IbMYB1-2b 4.6

PR protein c35430-g1 PR-1 type-like [P. dactylifera] 2.1

c40413-g1 PR class 4 [Prunus dulcis] 3.5

c42566-g1 PR-4 [P. mume] 3.2

c47344-g1 PR-4A-like isoform X1 [C. arietinum] -1.5

c54564-g1 PR-1 [N. tomentosiformis] -1.5

c55964-g1 PR-10 [N. benthamiana] 5.9 2.6

c58341-g1 PR-1 type-like [P. dactylifera] 0.8

(Continued )
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NAC transcription factor genes. NAC transcription factors are a large family of tran-

scriptional regulators that play crucial roles in plant immune responses, basal defense, and

SAR [49]. We identified 20 NAC transcription factor genes, and only two (10%) of these genes

were significantly differentially expressed in at least one comparison (Table 5). The unigene

c51550-g2 was annotated AS NAC29, and its expression level increased in XZH-F07. NAC29

plays important roles in senescence processes and responses to salt and drought stresses in

wheat [50]; however, there are no studies of the function of this gene in disease resistance. The

other unigene, c52292-g3, was annotated as a NAC7-like gene, and its expression level was

3.7-fold lower in JS57-CK than in XZH-CK, indicating that this gene is also a negative regula-

tor of the defense response.

ERF genes. ERFs are responsible for generating tolerance to stress in plants. Most ERFs

are transcriptional activators, although some act as transcriptional repressors [51]. We identi-

fied 40 ERFs, of which 14 were differentially expressed. These were all up-regulated, except

forc61066-g1 (putative ERF 5), indicating that most ERFs are activated in response to Fob

invasion. The gene c61066-g1 was annotated as ERF5 and was down-regulated in XZH-F07,

indicating that this gene may be a negative regulator of disease resistance in sweet potato. This

finding is consistent with results in Arabidopsis indicating that ERF5 negatively regulates chitin

signaling and plant defense against the fungal pathogen Alternaria brassicicola [52].

MYB transcription factor genes. The transcription factor MYB family of proteins is large

and functionally diverse in all eukaryotes and plays crucial roles in the interaction of regulatory

networks that control development, metabolism and the response to biotic or abiotic stresses

[53]. The unigene c5221-g1 was annotated as IbMYB1 and was expressed at a 4.6-fold higher

level in Js57-CK than in XZH-CK, indicating its important potential function in the defense

response. In sweet potato, MYB1 (IbMYB1) stimulates the accumulation of anthocyanin pig-

mentation in the tuberous roots of sweet potato and the leaves of tobacco and arabidopsis [54–

56]. IbMYB1 also improves tolerance and enhances secondary metabolism in transgenic pota-

toes [57].

PR genes. PR proteins are induced in plants upon attack by various pathogens and

stresses and perform diverse functions, including plant defense, disease resistance, and anti-

fungal activity [58]. PR proteins play important roles in hypersensitive responses and most

likely contribute to SAR [59]. We identified 57 PR genes, of which seven were differentially

expressed in at least one comparison and were annotated as PR-1-, PR-4- and PR-10-type pro-

teins (Table 5). PR-1-type proteins appear to be hallmarks of activation of the hypersensitive

response and SA-dependent SAR pathways [60]. The PR-4 protein is one of the less well-stud-

ied of the 17 PR protein groups and is considered an endochitinase with chitinase activity [61]

and a bifunctional enzyme with both RNase and DNase activities [62]. We identified three

genes that were annotated as PR-4 type proteins, but further studies are required to better

understand their functions. The gene c55964-g1 was annotated as PR-10 and was up-regulated

5.9-foldin JS57-F07, which is markedly higher than the 2.6-fold increase in expression

Table 6. (Continued)

Gene ID Blast annotation JS57-F07 vs JS57-CK XZH-F07 vs XZH-CK

R gene c56584-g1 NBS-coding resistance protein [A. thaliana] 9.8

c66373-g2 Late blight resistance protein homolog R1B-14 [N. tomentosiformis] -1.8

c56383-g1 Resistance gene analog [I. batatas] 2.4

Note: Significant differences (FDR�0.001) in relative levels and |log2.Fold-change|�1 are shown in boldface. FDR, false discovery rate. log2.Fold-change,

log2-fold-changes using the ratio base 2 logarithm.INF, the adjusted read count of the gene was 0 in the control sample.

https://doi.org/10.1371/journal.pone.0187838.t006
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observed in XZH-F07, indicating its important function in the defense against Fob in sweet

potato and consistent with its function in peanut [63].

R genes. According to the gene-for-gene hypothesis, R proteins recognize and interact

with effectors and trigger ETI [12]. We identified 94 R genes in the transcriptome, most of

which contain a highly conserved domain characterized by an NBS-LRR structure (data not

shown). However, only three of these genes were differentially expressed (Table 5). Interest-

ingly, the unigene c56584-g1 was identified as a putative NBS-coding R protein that was up-

regulated 9.8-fold in JS57-F07, indicating a crucial role in the defense response.

Discussion

Sweet potato is an important crop worldwide and represents a non-model plant with a large,

complex genome [18]. The lack of a reference genome sequence is a barrier to the identifica-

tion of candidate genes involved in disease resistance. The application of high-throughput

sequencing technology can generate a large amount of transcriptome data, which is helpful for

gaining an understanding of the mechanism of resistance and identifying related genes.

In the present study, we first characterized the transcriptome profile of sweet potato chal-

lenged with Fob. Illumina sequencing generated 89,944,188 clean, high-quality reads that were

assembled into 101,988 unigenes with an average length of 666 bp, and 61.38% of these were

functionally annotated in the NR protein database. Undoubtedly, the results of our study pro-

vide an overview of the gene expression profile of sweet potato challenged with Fob and offer

abundant sequence data for the discovery of candidate genes involved in the resistance to

Fusarium wilt. A large proportion of the unigenes (18,574 unigenes, 18.2%) are longer than 1

kb, facilitating the discovery of defense-related genes.

Many genes were up- and down-regulated in sweet potato when challenged with Fob. A

Venn diagram illustrating the overlap in the differentially expressed genes in the comparisons

of JS57-F07 with JS57-CK and XZH-F07 with XZH-CK is shown in Fig 7. There were more

up-regulated than down-regulated genes, with 5,552 up-regulated and 1,274 down-regulated

genes in XZH and 3,843 up-regulated and 2,611 down-regulated genes in JS57. In contrast, in

banana infected with Foc TR4, the numbers of up-regulated and down-regulated genes were

almost the same [64]. In the two comparisons, 2,438 overlapping differentially expressed up-

regulated genes were identified, accounting for 43.91% (2438/5552) and 63.44% (2438/3843)

Fig 7. Venn diagram showing overlapping differentially expressed genes in the comparisons of JS57-F07 with

JS57-CK and XZH-F07 with XZH-CK.

https://doi.org/10.1371/journal.pone.0187838.g007
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in each comparison. However, only 290 differentially expressed down-regulated genes were

detected, accounting for 11.10% (290/2611) and 22.76% (290/1274) in each comparison.

Plants thrive in certain environments and are continuously challenged by various forms of

biotic stresses; thus, plants have evolved sophisticated mechanisms to sense biotic aggressors,

activate complex phytohormones signaling networks, stimulate plant immune system

responses, and regulate the expression of defense-related genes [34]. We identified a set of

defense-related genes, including transcription factors, PR genes, R genes, and genes involved

in the SA and JA signaling pathways, in the transcriptome.

PAMPs of fungal pathogens, such as chitin, chitosan and endopolygalacturonase, are per-

ceived by PRRs in host plants and activate PTI [34]. CERK1 is an important PRR that plays a

crucial role in chitin perception in Arabidopsis thaliana in the immune response against fungal

pathogens [33]. We identified two CERK1 genes that were differentially expressed in the exam-

ined libraries. Intriguingly, c62516-g1 (putative CERK1-like) was down-regulated 4.1-fold in

JS57-F07, indicating that effectors of Fob might suppress the expression of c62516-g1 during

colonization, thereby restraining PTI in host plants. However, because JS57 is highly resistant

to Fob, this plant must have R genes that recognize the effector and trigger ETI to activate

defense responses.

The recognition of pathogens by PRRs in plants triggers MAPK cascades and activates SA,

JA or ET signaling pathways, facilitating the mounting of defense responses against invading

pathogens and inducing the expression of numerous defense-related genes [34]. SA plays a

crucial role in plant-pathogen interactions by activating defense responses and is also involved

in inducing SAR [65]. SA activates plant immune responses against biotrophic pathogens,

whereas JA activates plant immune responses against necrotrophic pathogens [35]. The JA

and SA signaling pathways might interact antagonistically [66] or positively [67]. The crosstalk

between SA and JA is controlled by a novel function of cytosolic NPR1 [68] and WRKY tran-

scription factors [69]. As a hemibiotrophic pathogen, the lifestyle of Fob includes an initial bio-

trophic phase (host cell remains alive) and a necrotrophic phase (host tissue is killed) [70]. The

crosstalk between the JA and SA signaling pathways might be more complicated in sweet

potato during Fob invasion, and further research is required to better understand the interac-

tions during signal transduction.

Effectors enable pathogens to overcome PTI in host plants, and these factors can be recog-

nized by the corresponding R genes of the host plants, leading to ETI [11]. R proteins play a

pivotal role in inducing ETI responses. Most R genes encode NB-LRR proteins [11]. We iden-

tified 94 R genes in the transcriptome, and three of these genes were differentially expressed.

Interestingly, c56584-g1 (putative NBS-coding resistance protein) was up-regulated 9.8-fold in

JS57-F07, indicating its important role in defense responses against Fob. Cloning of the R gene

from sweet potato and the effector gene from Fob and further studies of the interaction

between these genes are required to elucidate the defense mechanism of sweet potato.

Conclusions

In the present study, we de novo constructed and characterized the transcriptomes of sweet

potato challenged with Fob and identified 101,988 unigenes, generating a broad survey of

genes involved in disease resistance. We performed DGE profiling analyses of sweet potato

challenged with Fob and calculated the numbers of differentially expressed genes between

libraries, identifying several up- and down-regulated genes. A set of candidate genes in sweet

potato involved in the disease response to Fusarium wilt were identified, including WRKY and

NAC transcription factors, R genes, PR genes and SA pathway-related genes. Some of these

genes, such as c56584-g1 (putative R gene) and c55964-g1 (putative PR-10), were significantly
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up-regulated and implicated in the defense response against Fob. These data provide an under-

standing of the molecular mechanisms of disease resistance. This sequence resource will be

valuable for genetic and genomic studies and will accelerate breeding programs for sweet

potato with Fusarium wilt resistance.
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