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Highlights Lay summary

� Biliary tract tumors are uncommon but highly

aggressive malignancies with poor survival
outcomes.

� Patient-derived xenografts preserve the unique
histology and genetic characteristics of the original
patient tumor.

� Successful engraftment is an independent predictor
for worse recurrence-free patient survival.

� Patients with tumors containing tetraploid ge-
nomes had worse overall survival.
https://doi.org/10.1016/j.jhepr.2020.100068
Patient biliary tract tumors grown in immunocom-
promised mice are an invaluable resource in the
treatment of biliary tract cancers. They can be used to
guide individualized cancer treatment in high-risk
patients.
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Background & Aims: Biliary tract tumors are uncommon but highly aggressive malignancies with poor survival outcomes.
Due to their low incidence, research into effective therapeutics has been limited. Novel research platforms for pre-clinical
studies are desperately needed. We sought to develop a patient-derived biliary tract cancer xenograft catalog.
Methods: With appropriate consent and approval, surplus malignant tissues were obtained from surgical resection or
radiographic biopsy and implanted into immunocompromised mice. Mice were monitored for xenograft growth. Established
xenografts were verified by a hepatobiliary pathologist. Xenograft characteristics were correlated with original patient/
tumor characteristics and oncologic outcomes. A subset of xenografts were then genomically characterized using Mate Pair
sequencing (MPseq).
Results: Between October 2013 and January 2018, 87 patients with histologically confirmed biliary tract carcinomas were
enrolled. Of the 87 patients, 47 validated PDX models were successfully generated. The majority of the PDX models were
created from surgical resection specimens (n = 44, 94%), which were more likely to successfully engraft when compared to
radiologic biopsies (p = 0.03). Histologic recapitulation of original patient tumor morphology was observed in all xenografts.
Successful engraftment was an independent predictor for worse recurrence-free survival. MPseq showed genetically diverse
tumors with frequent alterations of CDKN2A, SMAD4, NRG1, TP53. Sequencing also identified worse survival in patients with
tumors containing tetraploid genomes.
Conclusions: This is the largest series of biliary tract cancer xenografts reported to date. Histologic and genomic analysis of
patient-derived xenografts demonstrates accurate recapitulation of original tumor morphology with direct correlations to
patient outcomes. Successful development of biliary cancer tumografts is feasible and may be used to direct subsequent
therapy in high recurrence risk patients.
© 2020 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Biliary tract cancers, including cholangiocarcinoma and gall-
bladder carcinoma, are a diverse group of epithelial tumors that
are among the most lethal of malignancies.1 In the majority of
cases, patients present with incurable locally advanced or
metastatic disease with an overall 5-year survival of only
5–10%.2,3 A small fraction of patients will present with disease
amenable to surgical resection, however, these operations are
associated with significant morbidity and mortality risk.4,5

Furthermore, those patients able to undergo curative intent
resection can expect a high rate of post-resection recurrence
Keywords: Patient-derived xenografts; biliary tract; cholangiocarcinoma; gall-
bladder carcinoma; MatePair sequencing.
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with limited subsequent overall survival.6,7 Chemotherapy op-
tions are limited as traditional cytotoxic agents have shown only
modest overall efficacy and targeted approaches have yet to be
proven effective.8–10

The use of established cell lines and cell line-derived xeno-
graft models has been the mainstay of basic and translational
research into the mechanisms of disease for biliary cancers
because they are convenient, reliable, and reproducible.11 How-
ever, their translational value is of limited clinical value.12 It is
known that in vitro models are subject to significant pheno-
and genotypic deviation from their tumor of origin.13,14 The
interactions between tumor cells and surrounding stromal
components including extracellular matrix (ECM) are known to
influence key cell cycle triggers of proliferation, migration, and
apoptosis and these interactions are not recapitulated in such
models.15,16 Additionally, cell line and in vitro models have
limited ability to recapitulate cell-cell signaling and tumor
microenvironment effects including the influence of hypoxia on
tumor growth, which further alter gene expression and behavior
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Fig. 1. Patient-derived xenograft implantation and passage. The process for
implantation and engraftment of patient-derived xenograft models (A) and
the passage of verified tissue into subsequent generations (B).
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of tumor cells.17,18 Cell lines in particular have been found to have
more resemblance to cell lines derived from other tumor types
than to the original clinical sample they were derived from, and
previous work has shown little to no correlation with clinical
therapeutic efficacy.19 These limitations restrict the translational
value of studies performed with traditional cell line models.

Patient-derived xenografts (PDX) are preclinical models that
preserve the specific and unique histology and genetic charac-
teristics of the original patient tumor.20 They possess the bio-
logical heterogeneity and individual patient phenotype that is
not present in other preclinical models and can be used to assess
response to treatment regimens with high correlation and pos-
itive predictive value.21 PDX models can also be used to predict a
patient’s clinical course and likelihood for recurrence.22 While
there have been descriptions of the establishment of a limited
number of biliary tract cancer PDX models, here we describe the
largest biliary tract PDX library reported to date.23–27

Methods
Patient cohort
With Institutional Review Board and Institutional Animal Care
and Use Committee approval, patients presenting for resection
or biopsy of biliary tract cancers were informed regarding the
research study. Consent was obtained and patient information
was acquired by review of the electronic medical record. After
xenograft implantation, patient information including tumor
type, location, date of recurrence, adjunctive therapies, and
mortality were obtained periodically.

Acquisition of tissue
A pictoral representation of the tissue acquisition and implan-
tation process can be found in Fig. 1A. After initial rapid clinical
pathologic review of the resected tissue was complete and the
presence of surplus tumor tissue was verified, study personnel
obtained surplus tumor tissue and immediately placed it in ice-
cold Roswell Park Memorial Institute 1640 medium (Invitrogen,
Carlsbad, CA) with 10% FBS (Atlanta Biologicals, Flowery Branch,
GA) and 1% antibiotic-antimycotic 100× (ThermoFisher, Wal-
tham, MA). Tissue ischemic time was computed as the time of
specimen removal from the patient until the time of tissue
implantation into the mouse.

Implantation procedure
Upon arrival in the lab, tissue was removed from its medium
and cut into 1 mm3 pieces in a sterile petri dish maintained on
ice. Matrigel (Corning, Corning, NY) was added to the dissected
tissue pieces. Concurrently, 5 NOD/SCID mice (Department of
Comparative Medicine, Rochester, MN) were placed under
general anesthesia. Following sterile preparation with 70%
ethanol, one of the previously prepared pieces of tumor spec-
imen was implanted in the right flank and the same procedure
was followed on the left side for bilateral implantation. After
procedure completion, mice were returned to their storage
boxes and observed for complications.

Observation for xenograft growth
Tumor formation was monitored by direct palpation and growth
was recorded using digital calipers in a weekly-maintained
database using RedCap software.28 The date of first tumor for-
mation was recorded when a mass of approximately 8 mm3 was
palpable. The date of first tumor harvest was recorded when the
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tumors had reached a volume of 1,000 mm3. Time to tumor
formation (TTF) was calculated from the date of implantation to
the date of first tumor formation (days). Time to tumor harvest
(TTH) was calculated from the date of implantation to the date of
first tumor harvest (days) based on institutional policies on
maximal tumor size. Engraftment efficiency was calculated as
the number of mice per individual patient tumor that grew
successful xenografts/total number of mice implanted for that
patient tumor. Overall patient take rate (OPTR) is the number of
successful PDX models generated/number of patients enrolled.

Harvest and passage procedures
Once the decision to harvest a xenograft was made, the mouse
was brought to the laboratory and anesthesia was induced. The
mouse was then sacrificed and tumor tissue was obtained by
sharp dissection. A small piece of tumor was set aside and fixed
in formalin for histologic confirmation. Any tissue from the first
group of mice was considered first generation tissue, or F1 tis-
sue. A second set of 5 NOD/SCID mice were implanted to form
the second generation, or F2 generation (Fig. 1B), and any
remaining tissue was cryopreserved utilizing similar methods to
the original tumor as described above.

Histopathologic review
Tissue from all xenografts was reviewed by subspecialty trained
hepatobiliary pathologists. Lymphoproliferation has been
described to be a contamination problem in PDX series, and the
2vol. 2 j 100068
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Fig. 2. Histological recapitulation seen in patient-derived xenografts. H&E
staining of original patient tissue is recapitulated in the first generation of
patient-derived xenografts in each of the four tumor subtypes: gallbladder
carcinoma, intrahepatic cholangiocarcinoma, hilar cholangiocarcinoma, and
distal cholangiocarcinoma. PDX, patient-derived xenograft.
purpose of pathologic review was to ensure that all xenografts
were validated growths of biliary tract cancer and not lym-
phoproliferative tumors.29,30
Table 1. Xenograft growth metrics.

All xeno

Overall Gallbladder

OPTR (%) 47/87 (54.0) 7/10 (70.0) 23/4

Successful x

Overall Gallbladder

n = 47 n = 7
TTF (days) 41 [26–84] 34 [25–97] 35
TTH (days) 130 [84–172] 169 [82–212] 115 [7
Engraftment
efficiency

0.6 [0.4–0.8] 0.5 [0.35–0.75] 0.6

OPTR: Number of successful PDX models/number of patients.
TTF: Number of days from implantation to palpation of first tumor (approximately 8 m
TTH: Number of days from implantation to harvest of first tumor (approximately 1,00
Engraftment efficiency: Number of mice with successful engraftment/number of total
CCA, cholangiocarcinoma; dCCA, distal cholangiocarcinoma; iCCA, intrahepatic chola
TTF, time to tumor formation; TTH, time to tumor harvest.
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Mate pair sequencing
Bulk resected tumor tissue was disrupted and the DNA was
extracted using the Qiagen DNeasy Blood and Tissue kit
(#69504) according to the manufacturer’s instructions. The
Mate Pair whole genome sequencing (MPseq) protocol was
utilized to detect structural variants at gene level resolution
through specialized larger 2–5 kb fragment tiling of the
genome.31–33 One microgram of DNA was applied to MPseq li-
brary preparation using the Nextera Mate-Pair Kit (Illumina, CA,
FC-132-1001) following the manufacturer’s instructions. Li-
braries were sequenced on the Illumina HiSeq4000 platform at
a depth of 4 libraries per lane. Sequencing statistics data are
presented in Fig. S1.

The binary indexing mapping algorithm developed by the
Biomarker Discovery Lab at Mayo Clinic specifically for MPseq
data, simultaneously maps both reads in a fragment to the
GRCh38 reference genome.34 Structural variants were detected
using SVAtools, a suite of algorithms also developed by the
Biomarker Discovery Lab at Mayo Clinic.32 SVAtools specifically
detects discordant fragments supporting a common junction
(supporting-fragments) with powerful masks and filters to
remove false-positive junctions. Copy number variant detection
is performed using the read count of concordant fragments
within non-overlapping bins.33 Chromosomal copy levels and
discordant mapping junctions are visualized on interactive
software for genome plots.31 Please see supplementary
materials for more detailed MPseq methods.

Statistical analysis
Continous variables are presented as mean and SD unless they
were not normally distributed, in which case they were pre-
sented as median and IQR. Categorical variables are presented as
absolute and percentage of the total. For statistical analysis,
Fisher’s exact test and Pearson’s chi squared were used for
categorical variables and a 2-tailed Student’s t test and ANOVA
were used for continuous variables.

The Kaplan-Meier method was used for unadjusted survival
analysis on patients who underwent curative-intent resections
only. Overall survival was defined as the time in months from
the date of surgery to the date of death and recurrence-free
survival was defined as the time in months from the date of
surgery to the date of recurrence. Patients alive or without
recurrence at their last follow-up were censored. Cox propor-
tional hazard regression was used to determine hazard ratios
grafts

iCCA pCCA dCCA p value

1 (56.1) 8/20 (40.0) 9/16 (56.3) 0.43

enografts

iCCA pCCA dCCA p value

n = 23 n = 8 n = 9
[23–82] 60 [22–103] 45 [40–107] 0.50
5–162] 168 [107–247] 131 [92–173] 0.36
[0.4–1] 0.6 [0.45–0.6] 0.7 [0.6–0.85] 0.50

m3).
0 mm3).
mice implanted.
ngiocarcinoma; OPTR, overall patient take rate; PDX, patient-derived xenograft;
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(HRs) and 95% CIs. A p value of less than 0.05 was considered
significant. All analyses were performed using JMP software
(JMP Pro, Version 13.0.0, SAS Institute Inc, Cary, NC, USA).

Results
Patient and PDX characteristics
Between October 2013 and January 2018, 87 patients with his-
tologically confirmed associated biliary tract malignancies were
enrolled (Fig. S2). The most common tumor subtype implanted
was intrahepatic cholangiocarcinoma (iCCA) with 41 (47.1%),
followed by 20 perihilar cholangiocarcinomas (pCCA, 23.0%), 16
Table 2. Patient and tumor characteristics.

Unsuccessful engraftm

Female
Median age at surgery [IQR] 64.
Pathologic subtype

Gallbladder adenocarcinoma
Intrahepatic cholangiocarcinoma
Hilar cholangiocarcinoma
Distal cholangiocarcinoma

Neoadjuvant therapy
None
Chemotherapy
Radiation
Chemotherapy and radiation

Median initial CA19-9 [IQR] 9
Median pre-op CA19-9 [IQR]± 3
Procedure

Hepatectomy
Biopsy (radiographic or in OR)
Pancreatectomy
Other

Source of specimen
Operating room
Radiographic biopsy

Xenograft tissue obtained
Primary tumor
Primary biopsy
Metastatic lesion

Median ischemic time [IQR]
Summary stage

0 – II
III – IV

Resected tumors only
(Biopsies and metastatic lesions excluded)

Positive margins
Yes
No

Lymphovascular invasion
Yes
No

Perineural invasion
Yes
No

Tumor differentiation
Well
Moderate/Poor

Mean positive node ratio (SD)
Median tumor size [IQR]

Values in bold denote significance.
OR, operating room.
± Values for patients who underwent neoadjuvant therapy only (n = 14).
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distal cholangiocarcinomas (dCCA, 18.4%), and 11 gallbladder
cancers (GBCA, 11.5%). The median ischemic time for the spec-
imens obtained from the operating roomwas longer than that of
the specimens obtained from a radiographic biopsy (56 minutes
vs. 30 minutes, p <0.01). Histologic recapitulation of original
patient tumor morphology was observed consistently in all
successfully validated xenografts (Fig. 2).

Of the 87 patients, 47 had successful PDX models for an OPTR
of 54% (Table 1). Of these, 44 were obtained from surgery (94%)
and only 3 were obtained by radiographic biopsy (7%) with a
higher proportion of successful engraftment from surgical
resection specimens compared to radiologic biopsy samples
ent (n = 40) Successful engraftment (n = 47)
p value

n (%) n (%)

21 (52.5) 22 (46.8) 0.60
4 [53.3–73.4] 54 [55.3–69] 0.58

0.43
3 (7.5) 7 (14.9)

18 (45.0) 23 (48.9)
12 (30.0) 8 (17.0)
7 (17.5) 9 (19.2)

0.22
33 (82.5) 39 (83.0)
5 (12.5) 7 (14.9)
0 (0.0) 1 (2.1)
2 (5.0) 0 (0.0)

0.5 [26–210] 53.5 [11.8–240.8] 0.41
8.0 [19–132] 46.5 [24.0–97.3] 0.50

0.36
18 (45.0) 24 (51.2)
10 (25.0) 5 (10.6)
4 (10.0) 6 (12.8)
8 (20.0) 12 (25.6)

0.03
31 (77.5) 44 (93.6)
9 (22.5) 3 (6.4)

0.09
28 (70.0) 39 (83.0)
9 (22.5) 3 (6.4)
3 (7.5) 5 (10.6)

41 [31–66] 61 [42–75] 0.01
0.23

19 (48.7) 29 (61.7)
20 (51.3) 18 (38.3)

(n = 28) (n = 39) p value

0.06
6 (21.4) 2 (5.1)

25 (78.6) 37 (94.9)
0.75

4 (14.3) 7 (18.0)
24 (85.7) 32 (82.0)

0.06
15 (53.6) 11 (28.2)
13 (46.4) 28 (71.8)

0.95
3 (10.7) 4 (10.3)

25 (89.3) 35 (89.7)
0.12 (0.23) 0.14 (0.23) 0.79

4.5 [2.7–7.3] 3.9 [2.5–5.6] 0.41

4vol. 2 j 100068



(59% vs. 25%, p = 0.03). No tumor growth (34/40, 85%) or
development of lymphoproliferative tumors (6/40, 15%)
accounted for the remaining failed tumor engraftments. Char-
acteristics of successful engraftments compared to engraftment
failures are listed in Table 2. Other than source of primary tumor
samples (surgical specimen vs. radiologic biopsy), the only sig-
nificant difference between the 2 groups was median ischemic
time with the successfully engrafted xenografts having a longer
ischemic time than the unsuccessful xenografts (61 minutes vs.
41 minutes, p = 0.01), however longer ischemic times were most
often found in surgical specimens. There was no difference in
pathologic tumor subtype, neoadjuvant status, initial or pre-
operative CA19-9, tumor differentiation, or clinical tumor stage.

Among the successfully engrafted tumors, the median TTF,
TTH, and engraftment efficiency were 41 days, 130 days and
60%, respectively (Table 1). Of the 4 histologic subtypes, pCCAs
had the longest median TTF at 60 days while GBCA had the
longest median TTH at 169 days. There was no significant dif-
ference in TTF or TTH between the tumor subtypes.

Survival
Median follow-up for the entire patient cohort was 16 months
[IQR 7–27] with 75 (86%) being obtained from curative-intent
resections. Of these, 34 were iCCA (46%), 16 were pCCA (21%),
16 were dCCA (21%), and 9 were GBCA (12%). Median overall
survival (OS) for the entire cohort was 35 months. On
Unsuccessful
engraftment
Successful
engraftment

0

20

40

60

80

100

0 12 36 4824

31 16 9 3

44 18 11 3

2

0

p = 0.04
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100A
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2

Unsuccessful
engraftment
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engraftment

Successful Engraftment
Median RFS: not reached

Unsuccesful Engraftment
Median RFS: 12 m

Variable

C

Fig. 3. Outcomes in patients with successful xenografts compared to patients
unsuccessful engraftsments compared to successful engraftments using unadjus
model (C). dCCA, distal cholangiocarcinoma; GBCA, gallbladder carcinoma; iCCA
angiocarcinoma; Mod, moderate; RFS, recurrence free survival.
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unadjusted Kaplan-Meier survival analysis, overall patient sur-
vival was not different between the engraftment failures and
the successful engraftments (35 months vs. 32 months, p = 0.85)
(Fig. 3A). However, recurrence-free survival was significantly
different between the 2 groups, with engraftment failures
having a median RFS that was not reached compared to only 12
months in patients with successful engraftments (p = 0.04)
(Fig. 3B). This pattern remained on multivariable proportional
hazard modeling with successful PDX engraftment being an
independent predictor of worse RFS (HR 2.90; CI 1.27–6.60; p =
0.01) (Fig. 3C).

Genomic analysis
Of the 47 succesfully engrafted PDX models, 26 (55%) under-
went further genomic characterization via MPseq analysis. Of
these, all were obtained from curative-intent resections and 16
were iCCA (61%), 3 were pCCA (12%), 5 were dCCA (19%), and 2
were GBCA (8%). The genome profiles of 4 representative biliary
tract PDX models are presented in Fig. S3, which reveal exten-
sive aneuploid genomes, with gains and losses of distinct
chromosomes. PDX #8 presents with a loss of entire copies of
chromosomes 4, 6 and 21, with partial losses of 1p, 9p, and 18q
(Fig. S3A). There are also gains of 1q and parts of 3q and 18p.
DNA junctions reveal a complex chromoplectic rearrangement
event with multiple junctions linking the centromeric region of
chromosome 6 and 18q12. Chromothrypsis and chromplexy
GBCA 

ICCA 

HCCA 

DCCA 

No 
Yes

No 

Yes

Well 

Mod/Poor 

0-II

ype 

rapy 

aftment 

Reference 
2.66
3.85 
6.32 
2.83 
2.66 
3.53 

Reference 
0.91 
1.87 

Reference 
0.85 
2.90 

Reference 
0.83 
0.91 

Reference 
2.91 
4.43 

0.18
0.06
0.04
0.18
0.29
0.10 

0.89 
0.19 

0.71 
0.01 

0.78 
0.85 

0.04 
<0.01 

0.1 1 10

Overall survival
Recurrence free survival

Worse OS
or RFS 

Improved
OS or RFS

III-IV

HR p value

with unsuccessful xenografts. Overall and recurrence free survival analysis of
ted Kaplan-Meier analysis (A, B) and a multivariable Cox proportional hazard
, intrahepatic cholangiocarcinoma; OS, overall survival; pCCA, perihilar chol-
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126 [107-246] 75 [65-101]

75 [30-60] 0.01

<0.01

C

Fig. 4. Tumor composition and impact on PDX metrics. Predicted per-
centage of human and murine tissue in each biliary tract PDX tumor model
(A) with representative examples indicating predicted percentage of human
stroma in the lower right corner (B). Shorter TTF and TTH were associated
with tumors containing a high percentage of human tissue (> median) with
tumors containing a higher percentage of murine tissuer had slower growth
metrics (C). PDX, patient-derived xenograft; TTF, time to tumor formation;
TTH, time to harvest.
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were common in the biliary tract tumors but often impacted
distinct chromosomal regions. PDX #22 reveals an extensive
chromoplectic event linking multiple chromosomes, including
chromosomes 1, 3, 4, 10 and 13 (Fig. S3B). While PDX #17
contained a single chromplectic event linking the centromeric
adjacent regions of 1q and 8p (Fig. S3C), PDX #16 predicts a
tetraploid genome with extensive complex chromosomal shuf-
fling involving over 50% of chromosomes (Fig. S3D).

Human stroma is rapidly replaced by murine stroma in PDX
models within the first few generations of PDX propagation.35

The fraction of the total number of fragments mapping to the
human reference genome is indicative of the degree of murine
stroma tissue in the tumors. Higher levels of murine stroma
mapping reduce the actual tumor coverage from the total
number of fragments mapped. Fig. 4A details the predicted
percentage of human tumor present in each model, which
ranged from 34% to 98%. Fig. 4B shows the histological corre-
lation of the predicted percentage of human tumor compared to
the level of stroma present in corresponding tumor tissue.
Levels were adequate to detect junctions and copy level changes
in all tumor models. The samples were dichotimized at the
median percentage of human tumor present (81%) to assess the
impact of composition. Tumors with higher human stroma
composition grew at a faster rate compared to those with more
murine stroma with shorter TTF (43 days vs. 77 days, p <0.01)
JHEP Reports 2020
and TTH (75 days vs. 126 days, p <0.01) (Fig. 4B). There were no
other significant correlations with regard to survival, patient
characteristics, or tumor features.

Loss of heterozygosity (LOH) was common in the biliary tract
tumors. Fig. 5A presents the allelic copy level of key genes
commonly altered in cholangiocarcinoma. CDKN2A was the
most frequently deleted gene with 92% of cases losing 1 allele
and 46% with biallelic loss. CDKN2A loss is an often reported
early event in cholangiocarcinoma.36 Fig. 5B illustrates examples
of the different ways in which this is achieved in the tumor
models. For PDX #8, PDX #22 and PDX #16, rearrangements in
the CDKN2A locus result in homozygous loss of both copies of
the gene (Fig. 5Bi-iii). In PDX #17, no loss of CDKN2A was
observed (Fig. 5Biv) while PDX #10 has a single deletion event
resulting in a homozygous loss of CDKN2A in a tetraploid
background level of chromosome 9, indicating additional LOH
for this chromosome (Fig. 5Bv). Overall survival was not
significantly different in patients with single allele loss vs. pa-
tients with a biallelic loss (median OS 32 months vs. 21 months
respectively, p = 0.24)

One gene allele copy was lost for SMAD4, TP53, ARID1A and
PTEN in 77%, 58%, 54% and 31% of cases, with 1 case (PDX #22)
predicting biallelic loss of PTEN. Allelic loss of NRG1, FGFR1,
FGFR2 and FGFR3 genes were observed in 65%, 46%, 27% and 31%
of cases. Functional driving fusions have also been reported in
these genes and NRG1 gene fusions were observed in 2 cases
(PDX #12 and 17) and an amplification of FGFR3 in PDX #20.
Fig. 5C presents the commonly gained and lost chromosomal
arms. The most commonly lost chromosomal arms are 9p, 18q,
8p and 17p, consistent with the commonly observed losses of
CDKN2A, SMAD4, NRG1 and TP53, respectively. Commonly
gained genes were heavily influenced by the ploidy levels in the
majority of cases, but 1q is gained in 20 of 26 cases (77%).
Chromosome arm 2q is never observed lost in chol-
angiocarcinoma and 8q, 15q, 20q, 7p and 2p were each only
observed lost in a single case, indicating potential essential
functions in cholangiocarcinoma.

Tetraploid genomes were also commonly observed in the
biliary tract tumors. Overall level of gains and losses of all
chromosomal arms for the 26 biliary tract tumors are presented
in Fig. 6. The 12 tumors in the top half of the figure predicted
diploid genomes, while the lower 14 tumors containing exten-
sive chromosomal gains with many predicted tetraploid ge-
nomes. Survival in patients with diploid vs. tetraploid genomes
were significantly different. Patients with tetraploid genomes
had significantly worse overall survival than those with diploid
tumors (8 months vs. not reached, p <0.01) (Fig. 6B). Recurrence
free survival was similarly worse in patients with tetraploid
genomes (5 months vs. 9 months, p = 0.13) though this did not
reach statistical significance (Fig. 6C). Additionally, tetraploid
tumors were more likely to be higher stage (64% vs. 25%, p =
0.04) and were more likely to have lymphovascular invasion
(57% vs. 17%, p = 0.03) (Fig. 6D).
Discussion
We have shown that biliary tract cancer PDX models can be
successfully developed from various cancer subtypes with a
high rate of engraftment, morphologic recapitulation of the
original patient tumor, and genomic representation of biliary
tract malignancies. Successful engraftment was an independent
factor for an increased risk of recurrence in patients undergoing
6vol. 2 j 100068
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curative intent resection. Additionally, biliary tract PDX tumors
represent the genomic heterogeneity of human tumors with
direct correlation to patient outcomes. This provides a greatly
needed preclinical resource for pharmacological testing and
treatment validation.

Previous studies involving PDX models have shown a cor-
relation between clinical patient characteristics and successful
PDX engraftment. Thomas and colleagues showed a significant
decrease in recurrence-free survival in patients with pancreas
ductal adenocarcinoma whose PDX successfully engrafted after
previous neoadjuvant therapy.22 Similar results have been
described for a variety of tumor types, including colorectal
cancer, breast cancer, and ovarian cancer.37–39 Our study had
similar findings with significant reductions in recurrence free
survival for patients with successful PDX models. This positive
correlation presents an opportunity to identify patients who are
at a high risk for recurrence following their resection and also
an opportunity to utilize the derived PDX tumors to identify
potential therapies for clinical use prior to documented clinical
recurrence.

The majority of the tissue specimens were obtained
following surgical resection (86%) as opposed to radiographic
JHEP Reports 2020
biopsy (14%). The ischemic time for the surgical specimens was
significantly longer than for that of radiographic biopsy (61
minutes vs. 41 minutes) which is likely due to the fact that after
a specimen is surgically resected in our practice, it is initially
evaluated in the frozen section pathology lab for a tissue diag-
nosis. Only after a tissue diagnosis has been made and surplus
tissue has been verified is the tissue released for implantation.
For radiographic biopsies, excess tissue cores are released
immediately for implantation without being evaluated in the
pathology lab and therefore the viability of such samples cannot
be ascertained prior to implantation. Of the surgical specimens
implanted, 44 of 75 (58.7%) were successful compared to only 3
of 12 (25%) obtained by radiographic biopsy and this was
signficant predictor of successful engraftment. Therefore,
despite longer ischemic time which has been shown to be a risk
factor for failed PDX engraftment, a higher percentage of sur-
gical xenografts successfully engrafted compared to the biopsy
obtained specimens, likely due to acquisition of both larger and
verified viable tumor specimens.

We have previously shown that biopsy tissue can be suc-
cessfully used to generate PDX models in a number of different
tumor types including cholangiocarcinoma, gallbladder,
7vol. 2 j 100068



100

80

60

40

20

0

Diploid
Median OS: not reached
Tetraploid
Median OS: 8 m

Su
rv

iv
in

g 
pe

rc
en

ta
ge

Overall survival (months)

p = 0.85

0 126 18 24

12 12 10 8
14 8 5 5

4
3

Diploid
Tetraploid

B
100

80

60

40

20

0

Diploid
Median RFS: 9m
Tetraploid
Median RFS: 5 m

Su
rv

iv
in

g 
pe

rc
en

ta
ge

Recurrence free survival (months)

p = 0.13

0 126 18 24

14 19 6 6
12 4 3 3

5
0

Diploid
Tetraploid

C

D

Stage III or IV (n (%))
Lymphovascular invasion (n (%))

Diploid
n = 12

Tetraploid
n = 14

p value

0.04
0.03

Perineural invasion (n (%))
Moderate or poor differentiation (n (%))

1.00
0.64

Median TTF (days) [IQR]
Median TTH (days) [IQR]

3 (25.0)
2 (16.7)
6 (50.0)

11 (91.7)
55 [25-98]

120 [56-168]

8 (57.1)
9 (64.3)

12 (85.7)
7 (50.0)

124 [93-162]
47 [32-218] 0.74

0.66

11

* *
*

*

*
* *

*
*

*

* *

*

*

** *

*

*

* *

* * * * * * * * * *

** *
*
* * *

*
*

*
*

* *

* *
*

*

*

* *

*

* *

*
*

*

*

*
*

*
*
*

*

* *

* *
*
*

*

* *

*

*

*

*
*
*
*
*

*

*

*

*
*

*

* *

*

* *
*
*

* *
*
*

* *
* *

* * * *
*
*
*

* *

*

*

*
*

*

*

*
*
*

*

*

*
*

*

* *

*
*

*
*

*
*

*

*

*

* *
*
*

*

*

*

*

* * *
* *

*

*

*
* *

*

*

*

*

*
*

*

**

*
* *

*
* *

2
3
8
15
14
17
18
19
22
1
24
7
4
6
9
12
16
5
10
20
21
23
25
26
13

1p 1q 2p 2q 3p 3q 4p 4q 5p 5q 6p 6q 7p 7q 8p 8q 9p 9q 10
p

10
q

11
p

11
q

12
p

12
q

13
q

14
q

15
q

16
p

16
q

17
p

17
q

18
p

18
q

19
p

19
q

20
p

20
q

21
q

22
p

23
p

23
q

24
p

24
q

Pl
oi

dy

%
 T

um
or

# 
Ju

nc
tio

ns

Su
b-

C
lo

ne
s

PA
X#

A

*

N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

n n
n n

n n
n n
n n
n n
n n
n n
n n
n n

n n
n n
n n
n n
n n
n n
n n

n n
n n
n n
n n
n n

96
97
91
92
98
99

100
100
100
100
100
95
75
90
90

100
100
100
100
100
100

93
90
93
97
98

102
75

118
38
10

101
33
58

178
182
33
144
113
318
37

84
102
34

173
163
217

84
153
126
46

165

N

N
Y

Y

Y
Y

N
N
N

Y

N
N

Y
Y

N

Y
Y

N
N
N

Y

N
N

Y
N

N

Fig. 6. Chromosomal copy levels and clinical correlation. Chromosomal arm gains (blue) and losses (red). LOH indicated by *. Ploidy, percentage (%) tumor,
number (#) of detected junctions and presence of sub-clonal populations indicated (A). Overall survival (B), recurrence free survival (C), and tumor charac-
teristics (D) based on diploid or tetraploid genome status. LOH, loss of heterozygosity.

Research article
pancreas, and gastric cancer.40 This is important as the majority
of patients with biliary tract cancers are unable to be surgically
resected at the time of their diagnosis, resulting in a large subset
of patients whose tumors have not been xenografted. The
disadvantage of biopsy-obtained specimens is that this usually
required additional biopsy samples to be obtained which im-
poses a slightly increased risk for procedural complications, as
well as for procuring non-viable or necrotic specimens that likely
will not successfully engraft. This is not the case with surgically
resected specimens in that surplus and confirmed viable tissue is
obtained only after the surgical resection.
JHEP Reports 2020
Our results show that MPseq can be used to efficiently pro-
cess whole genome data from the murine PDX model and map
the human sequences, allowing for accurate determination of
murine stromal infiltration and revealing structural variants in
biliary tract PDX models. The level of murine stromal infiltration
varied greatly, from 34% to 98%, and correlated only to rate of
growth in the PDX model with no correlation to patient char-
acteristics, tumor characteristics, or passage number. A study
examining the stromal composition in lung cancer PDX models
showed a consistent stromal percentage over multiple passages
of the tumor, suggesting that a paracrine interaction between
8vol. 2 j 100068



the human cancer cells and the stromal cells determines the
specific tissue composition.35 This high rate of variation is pre-
served in our biliary tract PDX models and may serve as a means
to study the impact of stromal variability on treatment efficacy.

The PDX tumors were highly active for structural rear-
rangements and commonly had complex genomic rearrange-
ments, though there was little similarity between tumors, again
recapitulating the overall complexity of abnormalities seen in
these challenging cancers despite their similar histologic phe-
notypes. Over 50% of the tumors predicted tetraploid genomes
that strongly correlated with clinical outcomes. Patients who
had tumors with diploid genomes had significantly longer sur-
vival compared to those who had tetraploid genomes. Of the 12
patients with diploid genomes, only 1 has died of disease and 5
have no evidence of disease greater than 2 years after resection.
The prognostic value of tumor ploidy has previously been
shown in primary patient tumors where diploidy was the best
predictor for improved long-term survival.41 The preservation of
this genomic content again highlights the diverse applications
of PDX models.

The PDX tumors profiled here showed a high rate of com-
plete or single allele losses in genes previously shown to be
altered in biliary tract tumors. CDKN2Awas the most commonly
altered gene with 46% of tumors having complete loss and an
additional 46% with LOH. A previous analysis of 41 intrahepatic
cholangiocarcinomas demonstrated 5% with a complete loss of
CDKN2A and 20% with a LOH, though this was not found to be
associated with survival.42 Our analysis also found CDKN2A
status to be unrelated to survival. Other highly altered genes
were SMAD4, NRG1, ARID1A, and TP53, all of which have been
found to be altered to varying degress in biliary tract tu-
mors.36,43 The absence of point mutation analysis for these
models does not rule out the potential for additional pathogenic
mutations in retained alleles of these genes, resulting in loss of
function in the remaining allele equivalent to loss of both al-
leles. The patterns of chromosome gains and losses are also
highly correlative to analyses of primary patient tumors.44–46

Frequently lost chromosomes included 9p, 18q, 8p, and 17p
which correspond to the genes with the most frequent losses:
CDKN2A, SMAD4, NRG1, and TP53. These genomic alterations are
representative of a cohort that are in desperate need of better
therapies.
JHEP Reports 2020
Limitations
There are several important limitations to the PDX model. The
first is that there is a variable amount of human stromal
displacement by murine stroma with multiple passages, with
some studies reporting immediate replacement while others
report a gradual replacement over time.47,48 This change may
influence the effectiveness of treatments that are affected by
this interaction, though in our experience the replacement is
always immediate. Another significant limitation to the PDX
model is that the mice are not immunocompetent. The role of
the immune system in cancer initiation and progression is
becoming increasingly recognized and is unable to be inves-
tigated in this model.49,50 What this model is able to offer is a
reproduction of tumor heterogeneity that is seen in patients
with similar histologic cancer types that is not available in
other preclinical cancer models. The genomic analysis that we
present is what has been found in our successful PDX models
and was not compared to the original patient tumor. While
there is certainly potential for mutational drift from the
original tumor, our results are consistent with what is
currently known about biliary tract tumors and we utilized
only early generation PDX models for all genomic analyses to
minimize this as a confounder. Lastly, the Kaplan-Meier sur-
vival analysis was performed with all tumor subtypes and is
therefore quite heterogeneous, which may confound the
overall results.

Conclusions
This is the largest series of biliary tract cancer xenografts reported
to date. Despite longer ischemic time, succesful xenograft
engraftment is superior for surgically resected specimens over
radiographic tissue acquisition, suggesting that PDX engraftment
should be attempted on surgical specimens if at all possible.
Histologic and genomic analysis of patient-derived xenografts
demonstrates accurate recapitulation of original tumor micro-
structures and genomic alterations. Development of biliary can-
cer xenografts is feasible. However, a surgeon-directed program
is critical for technical success in order to minimize failure and
maximize engraftment efficacy. Such programs provide a plat-
form for substantial direct translational application for individ-
ualizedmedicine anddata generated from thexenograft program
are being used to direct adjuvant therapy.
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