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Abstract: In spite of significant advancements and success in antiretroviral therapies directed against
HIV infection, there is no cure for HIV, which scan persist in a human body in its latent form and
become reactivated under favorable conditions. Therefore, novel antiretroviral drugs with different
modes of actions are still a major focus for researchers. In particular, novel lead structures are being
sought from natural sources. So far, a number of compounds from marine organisms have been
identified as promising therapeutics for HIV infection. Therefore, in this paper, we provide an
overview of marine natural products that were first identified in the period between 2013 and 2018
that could be potentially used, or further optimized, as novel antiretroviral agents. This pipeline
includes the systematization of antiretroviral activities for several categories of marine structures
including chitosan and its derivatives, sulfated polysaccharides, lectins, bromotyrosine derivatives,
peptides, alkaloids, diterpenes, phlorotannins, and xanthones as well as adjuvants to the HAART
therapy such as fish oil. We critically discuss the structures and activities of the most promising new
marine anti-HIV compounds.
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1. Introduction

Human immunodeficiency virus (HIV) infections pose a global challenge given that in 2017,
according to the World Health Organization data, 36.9 million people were living with HIV and
additional 1.8 million people were becoming newly infected globally (Table 1). HIV targets immune
cells and impairs the human defense against pneumonia, tuberculosis, and shingles as well as certain
types of cancer [1]. The most advanced stage of HIV infection is the Acquired Immunodeficiency
Syndrome (AIDS), which can take from two to 15 years to develop, depending on the individual [2].
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Table 1. Summary of the global human immunodeficiency virus (HIV) epidemic (2017) according to
World Health Organization (WHO) data.

People Living with HIV
in 2017

People Newly Infected
with HIV in 2017

HIV-Related Deaths
in 2017

total 36.9 million
(31.3–43.9 million)

1.8 million
(1.4–2.4 million)

940,000
(670,000–1.3 million)

adults 35 million
(29.6–41.7 million)

1.6 million
(1.3–2.1 million)

830 000
(590,000–1.2 million)

women 18.2 million
(15.6–21.4 million)

men 16.8 million
(13.9–20.4 million)

children (<15 years) 1.8 million
(1.3–2.4 million)

180,000
(110,000–260,000)

110,000
(63,000–160,000)

HIV has two viral forms: HIV-1 (the most common form that accounts for around 95% of all
infections worldwide) and HIV-2 (relatively uncommon and less infectious). HIV-1 consists of groups
M, N, O, and P with at least nine genetically distinct subtypes of HIV-1 within group M (A, B, C, D, F,
G, H, J, and K). Additionally, different subtypes can combine genetic material to form a hybrid virus
known as the ‘circulating recombinant form’ (CRFs) (Figure 1). HIV-2 consists of eight known groups
(A to H). Of these, only groups A and B are pandemic. The HIV-2 mechanism is not clearly defined
and neither is its difference from HIV-1. However, the transmission rate is much lower in HIV-2 than
in HIV-1. HIV-2 is estimated to be more than 55% genetically distinct from HIV-1.
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The HIV-1 genome has reading frames coding for structural and regulatory proteins. The gag
gene encodes the Pr55Gag precursor of inner structural proteins p24 (capsid protein, CA), p17 (matrix
protein, MA), p7 (nucleoprotein, NC), and p6 involved in the virus particle release. The pol gene
encodes the Pr160GagPol precursor of the viral enzymes p10 (protease, PR), p51 (reverse transcriptase,
RT), p15 (RNase H), and p32 (integrase, IN). The env gene encodes the PrGp160 precursor of the gp120
(surface glycoprotein, SU) and gp41 (transmembrane protein, TM). Other genes include tat, encoding
p14 (transactivator protein), rev, encoding p19 (RNA splicing regulator), nef, encoding p27 (negative
regulating factor), vif, encoding p23 (viral infectivity protein), vpr, encoding p15 (virus protein r), vpu,
encoding p16 (virus protein unique), vpx in HIV2, encoding p15 (virus protein x), and tev, encoding
p26 (tat/rev protein) [3].

The HIV infections are extremely problematic as the virus targets the CD4+ memory T-cells
population, which is essential for organism immunity. HIV can attach itself to the host cell through 1) a
relatively nonspecific interaction with negatively charged cell-surface heparan sulfate proteoglycans [4],
2) specific interactions between the Env and α4β7 integrin [5,6], and/or 3) the interaction with
pattern-recognition receptors, such as the dendritic cell-specific intercellular adhesion molecular
3-grabbing non-integrin (DC-SIGN) [7]. The attachment of HIV in any of the abovementioned ways
can increase the efficacy of infection because it brings Env, a heavily glycosylated trimer of gp120 and
gp41 heterodimers, into close proximity with the viral receptor CD4 and co-receptor [8]. Finally, in
order for the viral entry to occur, Env needs to bind itself to the host protein CD4 [9,10].

The binding of the HIV glycoprotein gp120 to the host cell CD4 receptor causes conformational
changes of the gp120 glycoprotein, which uncover additional binding sites that interact with distinct
proteins on the host cell membrane, known as β-chemokine co-receptors (mainly CCR5 and CXCR4),
which facilitate the virus entry into the cell [11].

After the infection, a progressive decline of CD4 + cells consequently leads to the failure of the
immune system function and the development of opportunistic infections that usually lead to death [1].
In HIV-infected patients, immunodeficiency develops both as a result of the viral replication and the
failure of the patients’ homeostatic mechanisms. The continuous viral presence in the patients after the
application of therapy is attributed to the CD4 + T-cell homeostasis owing to a pool of latently infected
and resting CD4 + T-cells, macrophages, and follicular dendritic cells that remain in the organism.
Indeed, the complex interactions of the patient’s immune system with the virus, and vice versa after
the viral suppression, are thought to be crucial for the control of disease progression [12,13].

Current therapeutic approaches mainly target proteins that are vital for the viral cycle. One
of the prominent examples is the linear 36-amino acid synthetic peptide enfuviritide (T20, Fuzeon),
developed by Hoffmann-La Roche, and the first FDA approved fusion inhibitor for the treatment
of HIV-1/AIDS acting through the binding to the gp41 subunit of the HIV-1 envelope glycoprotein.
This induces a conformational change that brings the viral and cellular membranes into close enough
proximity for the fusion and the subsequent viral entry into the host-cell to occur. Nevertheless, several
restrictions, such as a low genetic barrier for drug resistance and a short in vivo half-life, limit its
clinical use [14–17].

Other various FDA-approved antiretroviral drugs from seven mechanistic classes of inhibitors of
the HIV replication are also available for the treatment of infected patients, namely, the nucleoside
reverse-transcriptase inhibitors NRTIs, non-nucleoside reverse-transcriptase (RT) inhibitors NNRTIs,
protein inhibitors PIs, fusion inhibitors, entry inhibitors—CCR5 co-receptor antagonists, HIV integrase
strand transfer inhibitors, and multi-class combinations. None of the mentioned drug classes alone
or in combination, the latter being known as the highly active antiretroviral therapy (HAART), can
eradicate the HIV infection, and effective vaccines remain unavailable.

The difficulties of HIV-1 vaccine research are, in part, a result of 1) the unavailability of a model
for natural immunity related to HIV; 2) the existence of genetically distinct subtypes of HIV and
frequent mutations; 3) unidentified correlates of specific immune response to HIV; 4) lack of a reliable,
non-human animal model for HIV infection (SIV in monkeys vs. HIV in humans).
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The established latent pro-viral reservoirs in the patient’s body can stochastically begin to reproduce
viral particles, which makes the HIV disease practically incurable. From over 160 compounds identified
so far as latency-reversing agents (LRAs), none have led to a promising cure [18].

Several rare and long-term remissions of HIV cases are described in the literature. For example,
Berlin, London, and Düsseldorf’s patients underwent bone marrow transplantation with stem cells
from a donor with a rare genetic mutation of the CCR5. The Mississippi baby received a very early
antiretroviral therapy that extended the time of the viral rebound for more than 27 months. There
undoubtedly remains a lot to be learned from these cases, and further investigation of stem-cell
transplantation in people living with HIV is required [19–21].

The currently used antiretroviral treatment, alone or in combination, extends the quality and
life expectancy of HIV-infected individuals but does not cure them. Drug resistance, along with
the emergence of drug-resistant virus strains, a high-cost of the lifetime treatment regimen, cell
toxicity, and serious side effects of currently used anti-HIV drugs [2] underlie the need for a synthetic
development of new drugs or the search for active anti-HIV molecules in natural sources. Mother
Nature has been perfecting its chemistry for three billion years, and most of it has been done in water.
Intense competition and feeding pressure as well as non-static marine environmental conditions yield
compounds with chemical and structural features generally not found in terrestrial natural products.

New efficient molecules directed against HIV should demonstrate better performance in
comparison with the currently approved drugs and suppress the HIV virus and/or eliminate the latent
HIV reservoirs present in the human body.

Around 60% of drugs currently available on the market are derived or inspired by nature [22].
Turning to nature for drug development holds great potential, especially when it comes to marine
organisms. Only few marine-derived drugs have been approved on the market so far but many are in
the preclinical or clinical stage of development [23]. Marine organisms make up to two-thirds of Earth’s
species and produce, as a consequence of living in a highly competitive environment, unique and
structurally diverse metabolites. Over the last 40 years, bioprospecting efforts have resulted in over
20,000 compounds of marine origin. The highest share of marine metabolites (up to 70%) are obtained
from marine sponges, corals, and microorganisms, while mollusks, ascidians, and algae metabolites
form only a minor part [24]. Oceans are, indeed, still a rather underexploited habitat, and biodiversity
appears to be higher in the oceans than on land, which might be relevant when focusing on the marine
environment as an untapped reservoir of novel antiretroviral candidates. In the discovery of new
antiviral marine-derived drugs, researchers usually implement two strategies. They either screen
the extracts from different strains (e.g., cyanobacteria, microalgae) or search directly for bioactive
molecules in organisms—extract and purify them for evaluation within the drug development pipeline.
It is thought that the marine environment might yield more potent anti-HIV candidates characterized
by a higher efficiency (lower effective dose) and a better selectivity and which do not induce resistance
development. This could, of course, only be speculation based on some of the previous success stories
in the discovery of drugs from natural sources such as, e.g., lovastatin and paclitaxel. However, nature
generally does create more sophisticated and perfected systems with a complex mode of action.

An excellent example is protein lectin, derived from marine red algae Griffithsia sp. named
Griffithsin with mid-picomolar activities, which groups it among the most potent HIV entry inhibitors
reported so far [25]. It inhibits the HIV infection by binding itself to high mannose glycan structures
on the surface of gp120, altering the gp120 structure or its oligomeric state [26]. This interaction relies
on the specific trimeric “sugar tower,” including N295 and N448 [27]. Griffitshin can also prevent
infections caused by other glycoprotein-enveloped viruses such as the Ebola virus, hepatitis C virus,
and the severe acute respiratory syndrome coronavirus. It has been shown that the dimerization of
Griffithsin is necessary for a high potency inhibition of HIV-1 [28]. However, the discrepancy between
the HIV gp120 binding activity and the HIV inhibitory activity points to the presence of mechanism
unrelated to a merely simple HIV gp120 binding [26]. The most promising application of Griffithsin
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would be its incorporation into vaginal and rectal gels, creams, or suppositories acting as an antiviral
microbicide to prevent the transmission of HIV.

Despite the vast number of structurally diverse and unique bioactive molecules from the marine
environment, the global marine pharmaceutical pipeline includes only eight approved drugs: Adcetris®,
Cytosar-U®, Halaven®, Yondelis®, Carragelose®, Vira-A®, Lovaza®, and Prialt® [29]. Overall, it has
taken 20 to 30 years from their discovery to their entry into the market. A sustainable supply, structural
complexity, optimization of formulation, and ADMET properties, and a scale-up issue have prevented
further development of several highly promising marine compounds. It is by no means an easy task to
identify a marine candidate that may be considered as a potential drug. Initial high costs of developing
a natural product into a drug could be balanced out with careful long-term considerations (biodiversity,
supply, and technical, market) [30].

This paper provides an overview of natural marine metabolites that were first identified in
the period between 2013 and 2018 or the previously identified marine constituents with a recently
confirmed anti-HIV activity that could be potentially used or further optimized as novel ant-HIV
agents. We also comprehensively summarize anti-HIV activities for several categories of marine
structures including chitosan and its derivatives, sulfated polysaccharides, lectins, bromotyrosine
derivatives, peptides, alkaloids, diterpenes, phlorotannins, and xanthones as well as fish oil as an
auxiliary to HAART therapy.

2. Marine Compounds in the Treatment of HIV/AIDS

2.1. Chitosan and Its Derivatives

Chitosan (2, Figure 2), a natural marine byproduct, is a poly-cationic linear polysaccharide derived
from chitin (1, Figure 2) after partial deacetylation. Chitin is a structural element in the exoskeleton
of mainly shrimps and crabs and is mainly composed of the randomly distributed β-(1-4)-linked
D-glucosamine and N-acetyl-D-glucosamine. It has been previously shown that this compound can
exhibit a large scale of different bioactivities and can also be used as a carrier for anti-HIV drugs [31].
Chitosan is loaded with saquinavir, an anti-HIV drug with a protease inhibitory activity, which showed
better cell targeting efficiency than saquinavir alone [32]. Furthermore, trimethyl chitosan has improved
Atripla, an anti-HIV drug consisting of efavirenz, emtricitabine, and tenofovir disoproxil fumarate,
anti-HIV 1 activity, and has allowed it to be used in lower concentrations [33]. The antiretroviral
activity is manifested in the chitosan-specific cationic nature that allows the formation of electrostatic
complexes or multilayer structures with other negatively charged polymers [34]. Karagozlu et al.
reported about new QMW-COS and WMQ-COS oligomers with anti-HIV activities. These oligomers
are conjugates of chitosan and the Gln-Met-Trp peptide, which were constructed as a continuation of
the authors’ previous research, in which a high potency of synthetically constructed chitosan oligomers
was confirmed in anti-HIV therapy. More specifically, it was shown that these oligomers suppress
syncytium formation, which occurs as a fusion of infected cells with neighboring cells, induced by HIV
in a dose-dependent manner. However, the authors also noticed that after a certain period, the number
of syncytia once again increased, suggesting that the cells should be re-treated with QMW-COS and
WMQ-COS oligomers to maintain the primary therapeutically-relevant effect. The inhibition of the
HIV-1 induced lytic effect, determined by the cell viability assay, showed that IC50 for QMW-COS
was 48.14 µg/mL and was almost identical for WMQ-COS, 48.01 µg/mL. These oligomers effectively
reduced the HIV load but showed no effects on HIV-1 RT and protease in vitro. Higher dosages were
also required for the reduction in the HIV-1IIIB p24 antigen production assessed by the ELISA assay
and the HIV-1RTMDR p24 antigen production. The highest difference between the compounds was
reflected in IC50 values obtained from studies on the virus-induced luciferase activity in infected cells,
where QMW-COS had a higher potency in comparison with WMQ-COS. Lastly, the authors determined
the effects of oligomers on the interaction between gp41 and CD4 by using the CD4-gp41 ELISA assay,
whereby both oligomers showed high potency. The effect of these oligomers was highest when they
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were applied immediately upon the HIV-1 infection of cells, indicating that they should be used as a
potential treatment in the early stages of HIV infection, probably at the entry stage [31].
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2.2. Sulfated Polysaccharides

Sulfated polysaccharides (SP) are the most studied class of antiviral polysaccharides that are
structural components of the alga cell wall where they play both the storage and structural role.
They are an important source of galactans, commercially known as agar and carrageenan in red alga
(Rhodophyta), fucans (fucoidan, sargassan, ascophyllan, and glucuronoxylofucan) in brown alga
(Phaeophyta), and ulvans-sulfated heteropolysaccharides that contain galactose, xylose, arabinose,
mannose, glucuronic acid, or glucose [35–37]. Many studies indicate that, in marine algae, sulfated
polysaccharides facilitate water and ion retention in extracellular matrices, which is an important
mechanism for coping with desiccation and osmotic stress in a highly salted environment [38–40]. The
antiviral activity of this group of compounds is mainly connected to the degree of sulfation, constituent
sugars, molecular weight, conformation, and dynamic stereochemistry [41,42]. The effect of counter
cation should also be considered as an important factor in observed biological activity.

The antagonizing effect of the negatively charged sulfated polysaccharides on the HIV-1 entry
into cells may be due to 1) their binding onto the positively charged V3 domain of gp120, thereby
preventing the virus attachment to the cell surface [43–45] or 2) the masking of the docking sites of
gp120 for sCD4 on the surface of T lymphocytes, thereby disrupting the CD4-gp120 interaction [46–48]
and subsequently inhibiting the expression of the viral antigen and the activity of the viral reverse
transcriptase [49,50].

2.2.1. Heparan Sulfate

Heparinoid polysaccharides can interact with the positive-charge regions of cell-surface
glycoproteins, leading to a shielding effect on these regions, which prevents the binding of viruses to the
cell surface [51]. The sulfated polysaccharides content in marine mollusks is high in comparison with
the bovine mucosal heparin (73.5%) and the porcine mucosal heparin (72.8%) [52]. The acidic sulfate
groups on heparin (3, Figure 3), or heparin-like compounds, can inhibit HIV through electrostatic
interactions with basic amino-acid residues of the transcriptional activator Tat protein [53].
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2.2.2. Fucose Containing SP

So far, the main anti-infectious activities documented for the fucose-containing SP are those against
viruses [54]. More importantly, these polysaccharides are selective inhibitors of various enveloped
viruses, including HIV [54–56]. FCSP acts during the early phase of infection by blocking the virus
attachment and entry into the host cells, but may also inhibit subsequent replication stages in vitro [57].

2.2.3. Fucoidans

Three fucoidans extracted from three brown seaweeds (Sargassum mcclurei, Sargassum polycystum,
Turbinara ornata) inhibit the early stages of HIV-1 entry into target cells, with IC50 ranging from 0.33
to 0.7 µM. Neither the sulfate content nor the position of sulfate groups are related to the anti-HIV
activity of fucoidans, suggesting the involvement of other structural parameters such as the molecular
weight, the type of glycosidic linkage, or even a unique fucoidan sequence [56]. Although the presence
of sulfo-groups seems to be necessary for anti-HIV activity [58], these data do not support random
sulfation as the main antiviral factor.

Sulfated fucan polysaccharides, ascophyllan (4, Figure 4), and two fucoidans (S and A) (5 and 6,
Table 2), derived from different sources, significantly inhibit (IC50 1.3; 0.3; 0.6 µg/mL) the early step
of HIV-1 (R9 and JR-Fl) infection. They also inhibit the VSV-G-pseudotype HIV-1 infection in HeLa
cells [59].
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Table 2. Chemical composition of polysccharides (Fuc, Fucose; Xyl, Xylose; Glu, Glucose; Man,
Mannose; Gal, Galactose) in ascophyllan, S- and A-fucoidan.

Neutral Sugars
Fuc Xyl Glu Man Gal Uronic Acid SO3−

ascophyllan (4) 15.5 13.4 0.3 3.4 0.6 21.4 9.6

S-fucoidan (5) 24.8 1.9 0.8 1 3.1 9.6 22.6

A-fucoidan (6) 28.4 4.3 2.0 0.8 5.1 5.8 19.4

Chondroitin sulfate with fucosylated branches (FuCS) (7, Figure 5) has also attracted attention
as an HIV antiviral compound. Depolymerized fucosylated CS, extracted from the sea cucumber,
has shown in vitro activity against a range of viral strains, including the resistant ones [60]. FuCS is
effective in blocking the laboratory strain HIV-1IIIB entry and replication by inhibiting the p24 antigen
production (4.26 and 0.73 µg/mL, respectively) and the infection of the clinic isolate HIV-1KM018
and HIV-1TC-2 (23.75 and 31.86 µg/mL, respectively) as well as suppressing the HIV-1 drug-resistant
virus. Additionally, FuCS is also effective in T-20-resistant strains (EC50 values ranging from 0.76 to
1.13µg/mL). The depolymerized fragments seem to maintain a similar anti-HIV action at the early stages
of infection, apparently through interaction with an HIV envelope glycoprotein gp120. The sulfated
fucose branches appear necessary for antiviral activity, which is also affected by molecular weight and
carboxylation [61]. While the in vitro results of the fucosylated CS against HIV are promising, it is
questionable whether the antiviral activity would be maintained in vivo. Other polyanionic HIV entry
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inhibitors, which advanced into clinical trials, failed to prove effective against the heterosexual HIV-1
transmission. This was related to factors not considered in previous development stages, such as the
presence of seminal plasma and the concentration and retention of polyanionic inhibitors [62].
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The complex chemical architecture and the sulfate patterning of marine polysaccharides depends
on numerous factors (species, tidal cycles, environmental variations (e.g., salinity), harvesting season,
plant age, geographical location etc.) [39,63–69], making isolation, purification, and comprehensive
chemical characterization a highly challenging task [70]. The development of many polysaccharides
into clinical application is hindered by the still limited view of their sophisticated and diverse nature.
Despite having good antiviral effects, the use of carbohydrate drugs is still in its infancy, and intensive
structure-activity and in vivo studies are needed in the future.

A relatively new strategy in inducing immunity and developing an HIV vaccine is to use
carbohydrates. The major difficulty of such an approach lies in mimicking the specific glycan protective
epitope. Gp120 of HIV is a highly glycosylated envelope surface glycoprotein responsible for the
receptor and co-receptor binding, which, together with gp41, comprises the heterodimeric envelope
trimer spikes of HIV. N-linked glycans, mainly mannose and complex-type, cover much of the gp120
surface-accessible face of the HIV envelope spike forming the glycan shield. Inadequate mimicry
of the glycan shield, tolerance mechanisms, and/or the inability to induce a domain-exchange are
reflecting difficulties in creating the proper specificity of Abs [71]. Most of the vaccines for HIV-1 in
preclinical trials are based on a Manα1-2Man oligomannosyl epitope (various conjugates, engineered
yeast strains, and modified glycoproteins) [72–79]. Better specificity could potentially be gained using
carbohydrates of marine origin.

2.3. Lectins

Lectins are a group of proteins that specifically, but reversibly, bind glycosylated molecules
on the cell surface. Precisely, this group of molecules can affect cell-cell interactions, protect cells
from pathogens, influence cell adhesion, and affect the intracellular glycoprotein translocation [80].
Recently, lectins have become promising agents for antiretroviral therapy, and different researches have
confirmed their anti-HIV properties. Their antiretroviral activity is manifested through an alteration of
the interaction between HIV gp120 or gp41 and the corresponding receptors [81], which, in the end,
inhibit the HIV cell function, HIV infectivity, and the formation of the syncytium, multi-nucleated
cells [82–84].

Several published review papers describe the previously found marine lectins with antiretroviral
action [85,86]. For example, Gogineni et al. reported about some new, unusual lectins, such as the
β-galactose specific lectin (CVL), CGL, DTL, DTL-A, SVL-1, and SVL-2 [86]. Additionally, Akkouh et al.
reported about some new algal lectins, such as Boodlea Coacta Lectin, Griffithsin and Oscillatoria Agardhii
Agglutinin (OAA), and some cyanobacterial lectins, such as Cyanovirin-N, Scytovirin, Microcystis
Viridis Lectin, and Microvirin.

However, in the last few years, there has not been as much research focused on anti-HIV lectins
from marine sources. Only Hirayama et al. (2016) reported about the new high-mannose specific
lectin and its recombinants that possess anti-HIV activity [87]. In their research performed on the red
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alga Kappaphycus alvarezii, authors confirmed KAA-1 and KAA-2, two KAA mannose-binding lectin
isomers, as potent anti-HIV agents. The anti-HIV role of action of these two compounds includes a
strong binding to the virus envelope glycoprotein gp120 and, consequently, the inhibition of HIV entry
into the host cells. These KAA recombinants, as well as the native one, inhibited the HIV-1 entry at
IC50s (neutralization assay in Jurkat cells) of 7.3–12.9 nM. Authors concluded in the end that KAAs,
besides their strong inhibitory effect on HIV entry into the cells, have a potential as agents in treatments
against other viruses possessing high mannose glycans on their envelope as well.

2.4. Peptides

It has been shown that the majority of marine peptides have strong anti-HIV activity. They are
usually isolated from marine organisms through the process of enzymatic hydrolysis [88]. The most
common source of such constituents is marine sponges that are known for their unique metabolome [89]
and are a source of more than 36% of all marine bioactive compounds [90]. Their bioactive peptides
can be found in cyclic or linear forms and contain unusual amino acids that form unique structures
rarely found in other species. Antiretroviral activity of such structures works on several different
levels: blocking of virus entry, inhibition of the cytopathic viral activity, neutralization of viral particles,
or inhibition of viral fusion and entry [89,91].

Recently, Shin et al. discovered two new depsipeptides from marine sponges Stelletta sp.,
stellettapeptin A (8, Figure 6), and stellettapeptin B (9, Figure 6), with the inhibition of the cytopathic
effect of HIV-1 infection [92]. Confirming the mentioned theory about the unique metabolome
of marine sponges, the authors revealed that these two compounds have previously undescribed
nonproteinogenic amino-acid parts on peptides that are rarely found in nature. Namely, stellettapeptin
A and stellettapeptin B have an unexpected polyketide subunit, 3-hydroxy-6,8-dimethylnon-4-enoic
acid, 3-OHGln, and 3-OHAsn residues. Their high potency is witnessed through low EC50 values
(inhibition of the cytotoxic effect upon HIV infection)—values of 23 nM for stellettapeptin A and 27 nM
for stellettapeptin B.
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Furthermore, newly discovered anti-HIV constituents derived from marine sponges Verongula
rigida and Aiolochoria crassa with amino-acid structure were published by Gomez-Archila et al.
(2014) [93]. In their paper, they evaluated and confirmed the anti-HIV effect of 11 bromotyrosine
derivatives (Table 3), whereby aeroplysinin-1 (10), 19-deoxyfistularin 3 (15), purealidin B (16), fistularin
3 (17) and 3-bromo-5-hydroxy-O-methyltyrosine (18, Figure 7) were the most potent in their anti-HIV
activity. Aeroplysinin 1 (15) and purealidin B (16), compounds found in V. rigida species inhibited
the HIV-1 replication in a dose-dependent manner by more than 50%. Specifically, for aeroplysinin
1, HIV-a replication was inhibited by 74% at a concentration of 20 µM, whereas purealidin was less
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potent with inhibitory power of 57% at a concentration of 80 µM. These two compounds had been
previously isolated; however, their anti-HIV activity was proven in this research. The same was with
3-bromo-5-hydroxy-O-methyltyrosine (18) that has a relatively high percentage of inhibition of HIV
activity (47%) in a dose-dependent manner. However, the exact mechanism of action remains unclear.
In the same study, additional tests with these compounds on the HIV RT inhibition (qPCR of the early
and late transcripts), nuclear import (qPCR analysis of 2-LTR transcript), and HIV entry inhibition (viral
infectivity assay) were performed. The results showed that aeroplysinin-1 (10), 19-deoxyfistularin 3 (15),
purealidin B (16), fistularin 3 (17), and 3-bromo-5-hydroxy-O-methyltyrosine (18) influenced the nuclear
import of the HIV virus with around or more than 50% of inhibition: aeroplysinin-1 (10) showed 67% of
inhibition at 10µM, 19-deoxyfistularin 3 62% inhibition at 20µM, purealidin B 66% of inhibition at 20µM,
fistularin 3 47% of inhibition at 10 µM, and 3-bromo-5-hydroxy-O-methyltyrosine 73% of inhibition at
80 µM. Viral RT inhibition was not high for all compounds, whereby the highest results were around
50% of inhibition. For example, purealidin B had 58% of inhibition at 20µM in the qPCR analysis of early
transcripts. As for the HIV entry inhibition, all compounds were active in a dose-depended manner,
with the highest results of inhibition obtained for 3,5-dibromo-N,N,N,O-tetramethyltyraminium (13),
from 14% to 30%. Finally, the authors stressed the structural similarity of these compounds with the
HIV integrase and protease inhibitors, suggesting that these compounds can have a broader mode of
antiviral action.
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Figure 7. Structures of aeroplysinin-1 (10), dihydroxyaerothionin (11), 3,4-dibromo-N,N,N-
trimethyltyraminium (12), 3,5-dibromo-N,N,N,O-tetramethyltyraminium (13), purealidin R (14), 19-
deohxyfistularin 3 (15), purealidin B (16), fistularin-3 (17), 3-bromo-5-hydroxy-O-methyltyrosine (18),
3-bromo-N,N,N-trimethyltyrosinium (19), and 3,5-dibromo-N,N,N-trimethyltyrosinium (20).
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Table 3. Summary of anti-HIV compounds from marine organisms.

Group Compound Location Organism Assay Dose Activity Structure Reference

Peptide +
chitosan
oligomer

QMW-COS not disclosed a marine
byproduct

IC50—inhibition of HIV-1 induced lytic effects
(cell viability assay)

IC50—inhibition of HIV-1IIIB p24 antigen
production (ELISA)

IC50—inhibition of HIV-1RTMDR p24 antigen
production (ELISA)

IC50—inhibition of virus-induced luciferase activity
in infected TZM-bl cells

IC50—inhibition of the interaction between gp41 and
CD4 (CD4-gp41 ELISA)

48.14 µg/mL
67.35 µg/mL
81.03 µg/mL
68.13 µg/mL
39.13 µg/mL

anti-HIV-1; inhibition
of the HIV entry at an
early stage, blocking
the fusion of HIV-1

infected cells,
interference of

gp41-CD4 binding
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sulfate

(3)
not disclosed -

EC50—inhibition of HIV-1IIIB strain (syncytia assay)
EC50—inhibition of HIV-1IIIB strain (p24 assay)

EC50—inhibition of HIV-1IIIB/H9 strain
(co-cultivation assay)

EC50—inhibition of HIV-1RF strain (p24 assay)
EC50—inhibition of HIV-1KM018 strain (p24 assay)
EC50—inhibition of HIV-1TC-2 strain (p24 assay)
EC50—inhibition of HIV-1A17 strain (p24 assay)

EC50—inhibition of HIV-1RF/V82F/184V strain
(p24 assay)

EC50—inhibition of HIV-1L10R/M461/L63P/V82T/184V
strain (p24 assay)

EC50—inhibition of HIV-1CBL-20 strain
(syncytia assay)
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anti-HIV-1;
electrostatic
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basic amino acid
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0.73 µg/mL 
4.26 µg/mL 
1.14 µg/mL 

23.75 
µg/mL 
31.86 

µg/mL 
1.09 µg/mL 
0.95 µg/mL 
1.12 µg/mL 

71.76 
µg/mL97.63 

µg/ml 

anti-HIV-1; 
electrostatic 
interactions 
with basic 
amino acid 
residues of 

Tat 

 
[53] 

fucose 
containing  

Nha Trang 
bay, 

Vietnam 

Sargassum 
mcclurei, 

Sargassum 
polycystum

, and 
Turbinara 

Ornate 
brown 

seaweeds 

U373-CD4-CXCR4 cells 211 infected with 
pseudotype viral 

IC50—inhibition (FSP crude extract)-(p24 
ELISA) 

IC50—inhibition (FTO crude extract)-(p24 
ELISA) 

IC50—inhibition (FSM crude extract)-(p24 
ELISA) 

0.34 µg/mL  
0.39 µg/mL  
0.96 µg/mL 

anti-HIV-1; 
inhibition of 

the  
early phase 
of infection, 
by blocking 

the virus 
attachment 
and entry 

into the host 
cells 

 [56] 

ascophyllan 
(4) 

not 
disclosed 

different 
sources 

IC50—inhibition of HIV-1R9-real-time PCR  1.3 µg/mL 

anti-HIV-1; 
early step of 
HIV-1 (R9 
and JR-Fl) 
infection; 

inhibition of 
VSV-G-

 

[59] 

[53]
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Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

fucose
containing

Nha Trang bay,
Vietnam

Sargassum
mcclurei,

Sargassum
polycystum, and

Turbinara
Ornate brown

seaweeds

U373-CD4-CXCR4 cells 211 infected with
pseudotype viral

IC50—inhibition (FSP crude extract)-(p24 ELISA)
IC50—inhibition (FTO crude extract)-(p24 ELISA)
IC50—inhibition (FSM crude extract)-(p24 ELISA)

0.34 µg/mL
0.39 µg/mL
0.96 µg/mL

anti-HIV-1; inhibition
of the

early phase of
infection, by blocking
the virus attachment

and entry into the
host cells

[56]

ascophyllan
(4) not disclosed different sources IC50—inhibition of HIV-1R9-real-time PCR 1.3 µg/mL

anti-HIV-1;
early step of HIV-1

(R9 and JR-Fl)
infection;

inhibition of
VSV-G-pseudotyped

HIV-1 infection in
HeLa cells
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anti-HIV-1; 
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by blocking 

the virus 
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 [56] 

ascophyllan 
(4) 

not 
disclosed 

different 
sources 

IC50—inhibition of HIV-1R9-real-time PCR  1.3 µg/mL 

anti-HIV-1; 
early step of 
HIV-1 (R9 
and JR-Fl) 
infection; 

inhibition of 
VSV-G-

 

[59] [59]

fucoidan S
(5)

fucoidan A
(6)

not disclosed different sources

IC50—inhibition of HIV-1R9-real-time PCR
(fucoidan S)

IC50—inhibition of HIV-1R9-real-time PCR
(fucoidan A)

0.3 µg/mL
0.6 µg/ml

anti-HIV-1;
early step of HIV-1

(R9 and JR-Fl)
infection;

inhibition of
VSV-G-pseudotyped

HIV-1 infection in
HeLa cells
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chondroitin 
sulfate  

(7) 

not 
disclosed 

 

EC50—HIV-1 p24 detection-PBMC assay-
inhibition of HIV-1IIIB, HIV-

1L10R/M46I/L63P/V82T/I84V, HIV-1A17, HIV-1RF, and 
HIV-1RF/V82F/184V strains  

0.01–0.08 
µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication; 
inhibition of 

the HIV-1 
entry 

 
[61] 

Lectins 

KAA-1 
not 

disclosed 

red alga 
Kappaphyc
us alvarezii 

IC50—neutralization assay in Jurkat cells 
(median tissue culture infectious dose 
(TCID50) method using Jurkat cells) 

9.2 nM 

anti-HIV-1; 
inhibition of 

the HIV-1 
entry 

 [87] 

KAA-2 
not 

disclosed 

red alga 
Kappaphyc
us alvarezii 

IC50—neutralization assay in Jurkat cells 
(median tissue culture infectious dose 
(TCID50) method using Jurkat cells) 

7.3 nM 

anti-HIV-1; 
inhibition of 

the HIV-1 
entry 

 [87] 

[59]

chondroitin
sulfate

(7)
not disclosed

EC50—HIV-1 p24 detection-PBMC assay-inhibition of
HIV-1IIIB, HIV-1L10R/M46I/L63P/V82T/I84V, HIV-1A17,

HIV-1RF, and HIV-1RF/V82F/184V strains
0.01–0.08 µM

anti-HIV-1; inhibition
of HIV-1 replication;

inhibition of the
HIV-1 entry
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(median tissue culture infectious dose 
(TCID50) method using Jurkat cells) 

7.3 nM 
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the HIV-1 
entry 

 [87] 

[61]

Lectins

KAA-1 not disclosed
red alga

Kappaphycus
alvarezii

IC50—neutralization assay in Jurkat cells (median
tissue culture infectious dose (TCID50) method using

Jurkat cells)
9.2 nM anti-HIV-1; inhibition

of the HIV-1 entry [87]

KAA-2 not disclosed
red alga

Kappaphycus
alvarezii

IC50—neutralization assay in Jurkat cells (median
tissue culture infectious dose (TCID50) method using

Jurkat cells)
7.3 nM anti-HIV-1; inhibition

of the HIV-1 entry [87]



Molecules 2019, 24, 3486 13 of 36

Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

Peptides

stellettapeptin
A
(8)

north-western
Australia

marine sponge
Stelletta sp.

EC50—inhibition of the cytotoxic effect upon
HIV-1 infection 23 nm

anti-HIV-1;
cytopathic effect of

HIV-1 infection
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EC50—inhibition of the cytotoxic effect upon 
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27 nm 

anti-HIV-1; 
cytopathic 

effect of 
HIV-1 

infection 
 

[92] 

Bromotyrosi
ne 

derivatives  

aeroplysinin-1 
(10) Colombia 

marine 
sponge 

Verongula 
rigida 

% of inhibition of HIV-1 replication by flow 
cytometry 

% of reverse transcription inhibition (qPCR 
analysis of late transcripts) 

% of nuclear import inhibition (qPCR 
analysis of 2-LTR transcript) 

% of HIV entry inhibition (viral infectivity 
assay) 

74% of 
inhibition 
at 20 µM 
48% of 

inhibition 
at 10 µM 
67% of 

inhibition 
at 10 µM 

dose 
dependent 
manner 2–

20% 

anti-HIV-1; 
inhibition of 

HIV-1 
replication, 
RT, nuclear 
import and 

entry 
 

[93] 

3,5-dibromo-
N,N,N,O-

tetramethyl 
Tyraminium 

(13) 

Colombia 

marine 
sponge 

Verongula 
rigida 

% of HIV entry inhibition (viral infectivity 
assay) 

dose 
depended 

manner 14–
30% 

anti-HIV-1; 
inhibition of 
HIV-1 entry 

 

[93] 

19-deoxy 
fistularin 3  

(15) 
Colombia 

marine 
sponge 

Verongula 
rigida 

% of reverse transcription inhibition (qPCR 
analysis of early transcripts) 

% of reverse transcription inhibition (qPCR 
analysis of late transcripts) 

35% 
inhibition 
at 20 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication,  

[93] 

[92]

stellettapeptin
B

(9)

north-western
Australia

marine sponge
Stelletta sp.

EC50—inhibition of the cytotoxic effect upon
HIV-1 infection 27 nm

anti-HIV-1;
cytopathic effect of

HIV-1 infection
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[93] 

3,5-dibromo-
N,N,N,O-

tetramethyl 
Tyraminium 
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marine 
sponge 

Verongula 
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% of HIV entry inhibition (viral infectivity 
assay) 

dose 
depended 

manner 14–
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anti-HIV-1; 
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[93] 

19-deoxy 
fistularin 3  

(15) 
Colombia 

marine 
sponge 

Verongula 
rigida 

% of reverse transcription inhibition (qPCR 
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% of reverse transcription inhibition (qPCR 
analysis of late transcripts) 

35% 
inhibition 
at 20 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication,  

[93] 

[92]

Bromotyrosine
derivatives

aeroplysinin-1
(10) Colombia marine sponge

Verongula rigida

% of inhibition of HIV-1 replication by flow cytometry
% of reverse transcription inhibition (qPCR analysis

of late transcripts)
% of nuclear import inhibition (qPCR analysis of

2-LTR transcript)
% of HIV entry inhibition (viral infectivity assay)

74% of
inhibition at

20 µM
48% of

inhibition at
10 µM
67% of

inhibition at
10 µM

dose dependent
manner 2–20%

anti-HIV-1; inhibition
of HIV-1 replication,
RT, nuclear import

and entry
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sponge 
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35% 
inhibition 
at 20 µM 

anti-HIV-1; 
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HIV-1 
replication,  

[93] 

[93]

3,5-dibromo
-N,N,N,O-

tetramethyl
Tyraminium

(13)

Colombia marine sponge
Verongula rigida % of HIV entry inhibition (viral infectivity assay) dose depended

manner 14–30%
anti-HIV-1; inhibition

of HIV-1 entry
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inhibition 
at 20 µM 

anti-HIV-1; 
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HIV-1 
replication,  

[93] 

[93]

19-deoxy
fistularin 3

(15)
Colombia marine sponge

Verongula rigida

% of reverse transcription inhibition (qPCR analysis
of early transcripts)

% of reverse transcription inhibition (qPCR analysis
of late transcripts)

% of nuclear import inhibition (qPCR analysis of
2-LTR transcript)

35% inhibition
at 20 µM

11% inhibition
at 20 µM

62% inhibition
at 20 µM

anti-HIV-1; inhibition
of HIV-1 replication,
RT, nuclear import
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Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

purealidin B
(16) Colombia marine sponge

Verongula rigida

% of inhibition of HIV-1 replication by flow cytometry
% of reverse transcription inhibition (qPCR analysis

of early transcripts)
% of reverse transcription inhibition (qPCR analysis

of late transcripts)
% of nuclear import inhibition (qPCR analysis of

2-LTR transcript)
% of HIV entry inhibition (viral infectivity assay)

57% of
inhibition at
80 µM58% of
inhibition at

20 µM
34% of

inhibition at
20 µM
66% of

inhibition at
20 µM

dose depended
manner 2–11%

anti-HIV-1; inhibition
of HIV-1 replication,
RT, nuclear import

and entry
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% of HIV entry inhibition (viral infectivity 
assay) 

24% of 
inhibition 
at 5 µM, 
47% of 

inhibition 
at 10 µM, 

dose 
depended 

manner 11–
13% 

anti-HIV-1; 
inhibition of, 

HIV-1 RT, 
nuclear 

import and 
HIV-1 entry 

 

[93] 

[93]

fistularin 3
(17) Colombia marine sponge

Verongula rigida

% of reverse transcription inhibition (qPCR analysis
of late transcripts)

% of nuclear import inhibition (qPCR analysis of
2-LTR transcript)

% of HIV entry inhibition (viral infectivity assay)

24% of
inhibition at

5 µM,
47% of

inhibition at
10 µM,

dose depended
manner 11–13%

anti-HIV-1; inhibition
of, HIV-1 RT, nuclear

import and HIV-1
entry
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analysis of 2-LTR transcript) 

% of HIV entry inhibition (viral infectivity 
assay) 

57% of 
inhibition 

at 80 
µM58% of 
inhibition 
at 20 µM 
34% of 

inhibition 
at 20 µM 
66% of 

inhibition 
at 20 µM 

dose 
depended 
manner 2–

11% 

anti-HIV-1; 
inhibition of 

HIV-1 
replication, 
RT, nuclear 
import and 

entry  

[93] 

fistularin 3 
(17) 

Colombia 

marine 
sponge 

Verongula 
rigida 

% of reverse transcription inhibition (qPCR 
analysis of late transcripts) 

% of nuclear import inhibition (qPCR 
analysis of 2-LTR transcript) 

% of HIV entry inhibition (viral infectivity 
assay) 

24% of 
inhibition 
at 5 µM, 
47% of 

inhibition 
at 10 µM, 

dose 
depended 

manner 11–
13% 

anti-HIV-1; 
inhibition of, 

HIV-1 RT, 
nuclear 

import and 
HIV-1 entry 

 

[93] [93]

3-bromo-
5-hydroxy-O-
methyltyrosine

(18)

Colombia marine sponge
Aiolochroia crassa

% of inhibition of HIV-1 replication by flow cytometry
% of reverse transcription inhibition (qPCR analysis

of early transcripts)
% of reverse transcription inhibition (qPCR analysis

of late transcripts)
% of nuclear import inhibition (qPCR analysis of

2-LTR transcript)
% of HIV entry inhibition (viral infectivity assay)

47% of
inhibition at

80 µM,
54% of

inhibition at
160 µM,
50% of

inhibition at
40 µM,
73% of

inhibition at
80 µM,

dose depended
manner 2–12%

anti-HIV-1; inhibition
of HIV-1 replication,
RT, nuclear import

and entry
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Peptides 

APCHP 
(21) 

not 
disclosed 

Alaska 
pollack 

EC50—against anti-HIV-1 induced cell lysis 
(MTT assay) 

EC50—HIV-1-induced RT activation in MT-4 
cells 

EC50—against p24 production (western blot) 

459 µM 
(0.403 

mg/mL) 
374 µM 
(0.327 

mg/mL)  
405 µM 
(0.356 

mg/mL) 

anti-HIV-1; 
inhibition of 

induced 
syncytia 

formation by 
interference 

of HIV 
fusion 

inhibition of 
cell lysis, RT 
activity and 
production 

of p24 
antigen 

 
[94] 

SM-peptide 
not 

disclosed 
Spirulina 
maxima 

IC50—protective activity on HIV-1-induced 
cell lysis-MTT assay 

% of RT Inhibition in HIV-1-infected cells 
(reverse transcriptase assay kit) 

% of HIV-1 p24 antigen production (p24 
antigen production assay) 

0.691 mM 
(0.475 

mg/mL) 
90% 

inhibition 
at 1.093 

mM (0.75 
mg/mL) 

anti-HIV-1; 
inhibition of 

the HIV-1 
RT activity 

and p24 
antigen 

production 

Leu-Asp-Ala-Val-Asn-
Arg 

[95] 

[93]
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Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

Peptides

APCHP
(21) not disclosed Alaska pollack

EC50—against anti-HIV-1 induced cell lysis
(MTT assay)

EC50—HIV-1-induced RT activation in MT-4 cells
EC50—against p24 production (western blot)

459 µM
(0.403 mg/mL)

374 µM
(0.327 mg/mL)

405 µM
(0.356 mg/mL)

anti-HIV-1; inhibition
of induced syncytia

formation by
interference of HIV

fusion
inhibition of cell lysis,

RT activity and
production of p24

antigen
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cell lysis-MTT assay 
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(0.475 
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mg/mL) 

anti-HIV-1; 
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the HIV-1 
RT activity 

and p24 
antigen 

production 

Leu-Asp-Ala-Val-Asn-
Arg 

[95] 

[94]

SM-peptide not disclosed Spirulina maxima

IC50—protective activity on HIV-1-induced cell
lysis-MTT assay

% of RT Inhibition in HIV-1-infected cells (reverse
transcriptase assay kit)

% of HIV-1 p24 antigen production (p24 antigen
production assay)

0.691 mM
(0.475 mg/mL)
90% inhibition

at 1.093 mM
(0.75 mg/mL)

95% of
inhibition at

1.093 mM
(0.75 mg/mL)

anti-HIV-1; inhibition
of the HIV-1 RT
activity and p24

antigen production

Leu-Asp-Ala-Val-Asn-Arg [95]

Alkaloids

aspernigrin
C

(22)

Yongxing Island,
South China Sea
Yongxing Island,
South China Sea

marine fungus
Aspergillus niger
SCSIO Jcw6F30
isolated from
marine alga

Sargassum sp.

IC50—inhibitory effects on infection by
CCR5-tropic HIV-1 SF162 in TZM-bl cells 4.7 µM anti-HIV-1
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Atlantic 
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fungus 
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sp. MCCC 
3A00281 

IC50—anti-HIV bioassay-pNL4.3.Env-.Luc 
co-transfected 293T cells 

3.2 µM 

anti-HIV-1; 
inhibitory 

effects 
against HIV-
1 replication 

 

[97] 

[96]

malformin C
(23)

Yongxing Island,
South China Sea
Yongxing Island,
South China Sea

marine fungus
Aspergillus niger
SCSIO Jcw6F30
isolated from
marine alga

Sargassum sp.

IC50—inhibitory effects on infection by
CCR5-tropic HIV-1 SF162 in TZM-bl cells 1.4 µM anti-HIV-1
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Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

eutypellazine
E

(24)

South Atlantic
Ocean

deep-sea
sediment

fungus Eutypella
sp. MCCC
3A00281

IC50—anti-HIV bioassay-pNL4.3.Env-.Luc
co-transfected 293T cells 3.2 µM

anti-HIV-1;
inhibitory effects

against HIV-1
replication
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isolated 
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CCR5-tropic HIV-1 SF162 in TZM-bl cells 

1.4 µM anti-HIV-1  

 

[96] 

eutypellazine E 
(24) 

South 
Atlantic 
Ocean  

deep-sea 
sediment 
fungus 

Eutypella 
sp. MCCC 
3A00281 

IC50—anti-HIV bioassay-pNL4.3.Env-.Luc 
co-transfected 293T cells 

3.2 µM 

anti-HIV-1; 
inhibitory 

effects 
against HIV-
1 replication 

 

[97] [97]

eutypellazine
J

(25)

South Atlantic
Ocean

deep-sea
sediment

fungus Eutypella
sp. MCCC
3A00281

IC50—anti-HIV bioassay-pNL4.3.Env-.Luc
co-transfected 293T cells

reactivation activity-In vitro latent HIV reactivating
assay-flow cytometry-based screening

4.9 µM
80 µM

anti-HIV-1;
inhibitory effects

against HIV-1
replication, latency
reactivating agent
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debromo- 
hymenialdisine 

(26) 

Coral reefs 
in the Red 

Sea  

S. carteri 
sponge 
extract 

% of reduction of HIV-1 replication-cell-
based assay 

30% of 
inhibition 
at 13 µM 

anti-HIV 1; 
decrease the 
transcription 
of the HIV-1, 
abrogate the 

G2-
checkpoint 
of the cell 

cycle 
 

[98] 

Hymenialdisine 
(27) 

Coral reefs 
in the Red 

Sea  

S. carteri 
sponge 
extract 

% of reduction of HIV-1 replication-cell-
based assay 

<40% of 
inhibition 
at 3.1 µM 

anti-HIV 1; 
decrease the 
transcription 
of the HIV-1, 
abrogate the 

G2-
checkpoint 
of the cell 

cycle 
 

[98] 

Oroidin 
(28) 

Coral reefs 
in the Red 

Sea  

S. carteri 
sponge 
extract 

% of inhibition - HIV-1 RT biochemical assay 
% of reduction of HIV-1 replication-cell-

based assay 

90% of 
inhibition 
at >25 µM 

50% of 
inhibition 
at 50 µM 

anti-HIV-1; 
inhibition of 
HIV-1 RT, 

reduction of 
HIV-1 

replication  

[98] 

[97]

debromo-
hymenialdisine

(26)

Coral reefs in
the Red Sea

S. carteri sponge
extract % of reduction of HIV-1 replication-cell-based assay

30% of
inhibition at

13 µM

anti-HIV 1; decrease
the transcription of
the HIV-1, abrogate

the G2-checkpoint of
the cell cycle
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[98]

Hymenialdisine
(27)

Coral reefs in
the Red Sea

S. carteri sponge
extract % of reduction of HIV-1 replication-cell-based assay

<40% of
inhibition at

3.1 µM

anti-HIV 1; decrease
the transcription of
the HIV-1, abrogate

the G2-checkpoint of
the cell cycle
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Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

Oroidin
(28)

Coral reefs in
the Red Sea

S. carteri sponge
extract

% of inhibition - HIV-1 RT biochemical assay
% of reduction of HIV-1 replication-cell-based assay

90% of
inhibition at

>25 µM
50% of

inhibition at
50 µM

anti-HIV-1;
inhibition of HIV-1

RT, reduction of
HIV-1 replication
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[98] [98]

3-(phenetyl
amino)

demethyl(oxy)
aaptamine

(29)

Woody Island
(Yongxing,

Hainan, China)
and Seven

Connected Islets
in the South
China Sea

A. aptos
sponge extract

% of inhibition against HIV-1 replication-anti-HIV-1
activity assay-cell-based VSVG/HIV-1

pseudotyping system

88% of
inhibition at

10 µM

anti-HIV-1;
inhibitory effects

against HIV-1
replication
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bengamide A 
(31) 

not 
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screening 
of 

previously 
isolated 

compoun
ds 
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isolated 
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sponge 
Jaspis cf. 
coriacea) 

EC50—multi-cycle viral replication assay 
% inhibition of p24Gag production-of PBMC 
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3-(isopentyl
amino)

demethyl(oxy)
aaptamine

(30)

Woody Island
(Yongxing,

Hainan, China)
and Seven

Connected Islets
in the South
China Sea

A. aptos
sponge extract

% of inhibition against HIV-1 replication-anti-HIV-1
activity assay-cell-based VSVG/HIV-1

pseudotyping system

72.3% of
inhibition at

10 µM

anti-HIV-1;
inhibitory effects

against HIV-1
replication
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Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

keramamine
C

(33)
not disclosed

screening of
previously

isolated
compounds

EC5—multi-cycle viral replication assay 3.4 µM

anti-HIV-1;
inhibitory effects

against HIV-1
replication
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dolastane
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Praia do Velho,
Angra dos Reis,
in the south of
Rio de Janeiro
State, Brazil

brown alga
Canistrocarpus

cervicornis

EC50—inhibition of HIV-1 replication-CXCR4-tropic
HIV-1–MTT method 0.35 µM

anti-HIV-1; inhibition
of HIV-1 replication,

potent effect on HIV-1
infectivity

Molecules 2019, 24, x FOR PEER REVIEW 22 of 40 

 

 

dolastane 
(38) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistrocar
pus 

cervicornis 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

0.35 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication, 

potent effect 
on HIV-1 
infectivity 

 

[103] 

dolastane 
(39) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistrocar
pus 

cervicornis 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

0.794 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication, 

potent effect 
on HIV-1 
infectivity 

 

[103] 

secodolastane 
diterpene 

(40) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistroca
rpus 

cervicorni
s 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

3.67 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication  

[103] 

8,10,18-
trihydroxy-2,6-
dolabelladiene 

(41) 

Atol das 
Rocas reef, 
Brazil 

brown 
alga 
Dictyota 
friabilis 

EC50—inhibition of the cytopathic 
effect of HIV-1-MT-2 cells—MTT method 

6.16 µM 

anti-HIV-1; 
inhibition of 
the 
cytopathic 
effect of 
HIV-1 

 

[104,1
05] 

oxygenated 
dolabellane  

(42) 

Santa 
Marta 

Bay 
(Colombian 
Caribbean 

Sea 

octocoral 
Eunicea 
laciniata 

EC50—inhibition of HIV-1-Inhibition of the 
cytopathic effect of HIV-1-MT-2 cells—MTT 

method 
3.9 µM 

anti-HIV-1; 
inhibition of 

the 
cytopathic 

effect of 
HIV-1  

[106] 

[103]



Molecules 2019, 24, 3486 19 of 36

Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

dolastane
(39)

Praia do Velho,
Angra dos Reis,
in the south of
Rio de Janeiro
State, Brazil

brown alga
Canistrocarpus

cervicornis

EC50—inhibition of HIV-1 replication-CXCR4-tropic
HIV-1–MTT method 0.794 µM

anti-HIV-1; inhibition
of HIV-1 replication,

potent effect on HIV-1
infectivity
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[103]

secodolastane
diterpene

(40)

Praia do Velho,
Angra dos Reis,
in the south of
Rio de Janeiro
State, Brazil

brown alga
Canistrocarpus

cervicornis

EC50—inhibition of HIV-1 replication-CXCR4-tropic
HIV-1–MTT method 3.67 µM anti-HIV-1; inhibition

of HIV-1 replication
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anti-HIV-1; inhibition
of the cytopathic

effect of HIV-1

Molecules 2019, 24, x FOR PEER REVIEW 22 of 40 

 

 

dolastane 
(38) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistrocar
pus 

cervicornis 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

0.35 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication, 

potent effect 
on HIV-1 
infectivity 

 

[103] 

dolastane 
(39) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistrocar
pus 

cervicornis 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

0.794 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication, 

potent effect 
on HIV-1 
infectivity 

 

[103] 

secodolastane 
diterpene 

(40) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistroca
rpus 

cervicorni
s 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

3.67 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication  

[103] 

8,10,18-
trihydroxy-2,6-
dolabelladiene 

(41) 

Atol das 
Rocas reef, 
Brazil 

brown 
alga 
Dictyota 
friabilis 

EC50—inhibition of the cytopathic 
effect of HIV-1-MT-2 cells—MTT method 

6.16 µM 

anti-HIV-1; 
inhibition of 
the 
cytopathic 
effect of 
HIV-1 

 

[104,1
05] 

oxygenated 
dolabellane  

(42) 

Santa 
Marta 

Bay 
(Colombian 
Caribbean 

Sea 

octocoral 
Eunicea 
laciniata 

EC50—inhibition of HIV-1-Inhibition of the 
cytopathic effect of HIV-1-MT-2 cells—MTT 

method 
3.9 µM 

anti-HIV-1; 
inhibition of 

the 
cytopathic 

effect of 
HIV-1  

[106] 

[104,105]

oxygenated
dolabellane

(42)

Santa Marta
Bay (Colombian
Caribbean Sea

octocoral
Eunicea laciniata

EC50—inhibition of HIV-1-Inhibition of the
cytopathic effect of HIV-1-MT-2 cells—MTT method 3.9 µM

anti-HIV-1; inhibition
of the cytopathic

effect of HIV-1

Molecules 2019, 24, x FOR PEER REVIEW 22 of 40 

 

 

dolastane 
(38) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistrocar
pus 

cervicornis 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

0.35 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication, 

potent effect 
on HIV-1 
infectivity 

 

[103] 

dolastane 
(39) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistrocar
pus 

cervicornis 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

0.794 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication, 

potent effect 
on HIV-1 
infectivity 

 

[103] 

secodolastane 
diterpene 

(40) 

Praia do 
Velho, 

Angra dos 
Reis, in the 

south of 
Rio de 
Janeiro 

State, Brazil 

brown 
alga 

Canistroca
rpus 

cervicorni
s 

EC50—inhibition of HIV-1 replication-CXCR4-
tropic HIV-1–MTT method 

3.67 µM 

anti-HIV-1; 
inhibition of 

HIV-1 
replication  

[103] 

8,10,18-
trihydroxy-2,6-
dolabelladiene 

(41) 

Atol das 
Rocas reef, 
Brazil 

brown 
alga 
Dictyota 
friabilis 

EC50—inhibition of the cytopathic 
effect of HIV-1-MT-2 cells—MTT method 

6.16 µM 

anti-HIV-1; 
inhibition of 
the 
cytopathic 
effect of 
HIV-1 

 

[104,1
05] 

oxygenated 
dolabellane  

(42) 

Santa 
Marta 
Bay 

(Colombian 
Caribbean 

Sea 

octocoral 
Eunicea 
laciniata 

EC50—inhibition of HIV-1-Inhibition of the 
cytopathic effect of HIV-1-MT-2 cells—MTT 

method 
3.9 µM 

anti-HIV-1; 
inhibition of 

the 
cytopathic 

effect of 
HIV-1  

[106] [106]

oxygenated
dolabellane

(43)

Santa Marta
Bay (Colombian
Caribbean Sea

octocoral
Eunicea laciniata

EC50—inhibition of the cytopathic effect of
HIV-1-MT-2 cells—MTT method 0.73 µM

anti-HIV-1; inhibition
of the cytopathic

effect of HIV-1

Molecules 2019, 24, x FOR PEER REVIEW 23 of 40 

 

oxygenated 
dolabellane 

(43) 

Santa 
Marta 

Bay 
(Colombian 
Caribbean 

Sea 

octocoral 
Eunicea 
laciniata 

EC50—inhibition of the cytopathic effect of 
HIV-1-MT-2 cells—MTT method 

0.73 µM 

anti-HIV-1; 
inhibition of 

the 
cytopathic 

effect of 
HIV-1  

[106] 

oxygenated 
dolabellane  

(44) 

Santa 
Marta 

Bay 
(Colombian 
Caribbean 

Sea 

octocoral 
Eunicea 
laciniata 

EC50—inhibition of HIV-1-Inhibition of the 
cytopathic effect of HIV-1-MT-2 cells–MTT 

method 
0.69 µM 

anti-HIV-1; 
inhibition of 

the 
cytopathic 

effect of 
HIV-1  

[106] 

8,4′′′-dieckol 
(45) 

not 
disclosed 

brown 
alga, 

Ecklonia 
cava 

Inhibition of syncytia formation on C8166 
cells (HIV-1IIIB, HIV-1RF and HIV-1LAI)-

inverted microscope 
Inhibition of the cytopathic effect of HIV-1-

C8166 cells—MTT method 

Inhibition 
in dose-

depended 
manner * 

Cell 
viability 

was more 
than 90% 

dose-
dependent 
inhibition 

anti-HIV-1; 
inhibition of 

the 
cytopathic 
effects of 
HIV-1: 

inhibition of 
syncytia 

formation, 
lytic effects, 
inhibition of 

viral p24 
antigen 

production, 
HIV-1 entry 
inhibition 

 

[107] 

[106]

oxygenated
dolabellane

(44)

Santa Marta
Bay (Colombian
Caribbean Sea

octocoral
Eunicea laciniata

EC50—inhibition of HIV-1-Inhibition of the
cytopathic effect of HIV-1-MT-2 cells–MTT method 0.69 µM

anti-HIV-1; inhibition
of the cytopathic

effect of HIV-1

Molecules 2019, 24, x FOR PEER REVIEW 23 of 40 

 

oxygenated 
dolabellane 

(43) 

Santa 
Marta 

Bay 
(Colombian 
Caribbean 

Sea 

octocoral 
Eunicea 
laciniata 

EC50—inhibition of the cytopathic effect of 
HIV-1-MT-2 cells—MTT method 

0.73 µM 

anti-HIV-1; 
inhibition of 

the 
cytopathic 

effect of 
HIV-1  

[106] 

oxygenated 
dolabellane  

(44) 

Santa 
Marta 

Bay 
(Colombian 
Caribbean 

Sea 

octocoral 
Eunicea 
laciniata 

EC50—inhibition of HIV-1-Inhibition of the 
cytopathic effect of HIV-1-MT-2 cells–MTT 

method 
0.69 µM 

anti-HIV-1; 
inhibition of 

the 
cytopathic 

effect of 
HIV-1  

[106] 

8,4′′′-dieckol 
(45) 

not 
disclosed 

brown 
alga, 

Ecklonia 
cava 

Inhibition of syncytia formation on C8166 
cells (HIV-1IIIB, HIV-1RF and HIV-1LAI)-

inverted microscope 
Inhibition of the cytopathic effect of HIV-1-

C8166 cells—MTT method 

Inhibition 
in dose-

depended 
manner * 

Cell 
viability 

was more 
than 90% 

dose-
dependent 
inhibition 

anti-HIV-1; 
inhibition of 

the 
cytopathic 
effects of 
HIV-1: 

inhibition of 
syncytia 

formation, 
lytic effects, 
inhibition of 

viral p24 
antigen 

production, 
HIV-1 entry 
inhibition 

 

[107] 

[106]



Molecules 2019, 24, 3486 20 of 36

Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

8,4′′′-dieckol
(45) not disclosed brown alga,

Ecklonia cava

Inhibition of syncytia formation on C8166 cells
(HIV-1IIIB, HIV-1RF and HIV-1LAI)-inverted

microscope
Inhibition of the cytopathic effect of HIV-1-C8166

cells—MTT method

Inhibition in
dose-depended

manner *
Cell viability

was more than
90%

dose-dependent
inhibition

anti-HIV-1; inhibition
of the cytopathic
effects of HIV-1:

inhibition of syncytia
formation, lytic

effects, inhibition of
viral p24 antigen

production,
HIV-1 entry inhibition

and RT inhibition
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Effect on p24 antigen production-p24 antigen capture
ELISA and immunoblast analysis

RT activity assay—commercial fluorescence RT
assay kit

Inhibited 91%
activity of

HIV-1IIIB RT
and approximat
ely 80% for rest

of the HIV-1
strains tested,
HIV-1RTMDR1

strain was
inhibited at a
ratio of 76.1%

Inhibition of HIV-1 replication-Luciferase gene
reporter assay

At the highest
concentration,
inhibition was
more than 80%

for all viral
strains except
for RTMDR1

(76.33%)

penicilli-
xanthone A

(46)
not disclosed

from the
jellyfish-derived

fungus
Aspergillus
fumigates

IC50—inhibition of PXA on infection by CCR5-tropic
HIV-1 in TZM-bl cells

IC50—inhibition of PXA on infection by
CXCR4-tropic HIV-1 in TZM-bl cells

0.36 µM
0.26 µM

anti-HIV-1; inhibition
of infection against
CCR5-tropic HIV-1

SF162 and
CXCR4-tropic HIV-1

NL4-3
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docosahexanoic
acid
(48)

not disclosed In vivo study on male rat models-Male F344 (control)
and HIV-1Tg rats

anti-HIV-1;
neuroprotective effect

on
neuroinflammations
induced by ethanol
(in the presence of
HIV viral proteins)
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Table 3. Cont.

Group Compound Location Organism Assay Dose Activity Structure Reference

Phlorotannins
and xanthones

radicicol
(49)

Tutuila,
American

Samoa
H. fuscoatra

EC50—In Vitro Model of HIV-1
Latency-high-throughput primary cell-based HIV-1

latency assay
9.1 µM

anti-HIV-1;
reactivation of latent
viral loads in CD4+

T-cells
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Marine sponges are not the sole source of bioactive proteins. For example, Jang et al. reported
about a new small hydroxyproline-rich peptide from Alaska Pollack collagen (APHCP, 21, Figure 8) that
exhibits a unique antiviral activity [94]. This peptide is a Gly-Pro-Hyp-Gly-Pro-Hyp-Gly-Pro-Hyp-Gly
peptide, and the authors showed that the most important part of a peptide for anti-HIV activity is the
hydroxyl group at hydroxyproline, whereas a peptide with only prolines does not exhibit antiviral
activity. Its anti-HIV 1 mode of action is manifested through the inhibition of the induced syncytia
formation by the interference of an HIV fusion, inhibition of cell lysis, RT activity, and the production
of the p24 antigen. It was shown that APHCP can decrease the HIV-1 induced cell lysis at a potency
around EC50 of 459 µM (EC50 against anti-HIV-1 induced cell lysis—MTT assay). Additionally, through
the inhibition of the viral RT at EC50 at 374 µM, this peptide’s crucial role in the inhibition of the
conversion of viral RNA to DNA was also confirmed. With EC50 of 405 µM, this compound effectively
suppressed the p24 production in viral cells, as determined by the Western blot analysis.
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Similarly, one new anti-HIV peptide was isolated from Spirulina maxima (SM-peptide) [95]–the
Leu-Asp-Ala-Val-Asn-Arg peptide, and the authors showed its HIV-1 infection inhibition in a human
T cell line MT4. The peptide inhibited cell lysis, p24 antigen production, and HIV-1 RT. Specifically,
IC50 (obtained by a cell viability assay) against an anti-HIV 1 infection was determined as 0.691 mM,
the inhibition of the HIV-1-induced RT activation (RT assay kit) in MT4 cells was at a high 90% at a
concentration of 1.093 mM, and the p24 production (p24 antigen production assay) was inhibited at
95% at a concentration of 1.093 mM.

2.5. Alkaloids

Marine organisms are well-established sources of natural alkaloids. Although the term
‘alkaloid’ seems puzzling and is prone to scientific controversy, alkaloids are generally defined
as nitrogen-containing compounds derived from plants and animals. Relatively few alkaloids from
marine sources have been found to possess antiretroviral properties and, so far, none have found their
clinical use.

Aspernigrin C (22, Figure 9) and malformin C (23, Figure 9) have been isolated from marine-derived
black aspergili, Aspergillus niger SCSIO Jcw6F30, and their inhibitory activity against the chemokine
receptor subtype 5 (CCR5) tropic HIV-1 SF162 has been evaluated. They show potent inhibition of
infection with IC50 values 4.7± 0.4 µM and 1.4± 0.06 µM, which is comparable to the nucleoside reverse
transcriptase inhibitor—abacavir (IC50 = 0.8± 0.1µM) and the HIV-1 entry inhibitor ADS-J1 (IC50 = 0.8±
0.1 µM). In comparison to other aspernigrins, it has been suggested that the 2-methylsuccinic moiety is
responsible for the potency of aspernigrin C [96].
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Figure 9. Structures of aspernigrin C (22) and malformin C (23).

Thiodiketopiperazine-type alkaloids, eutypellazines A-M, isolated from the EtOAc extract of the
fermentation broth of deep-sea sediment fungus Eutypella sp. shows potent inhibitory effects against
pNL4.3.Env-.Luc co-transfected 293T HIV model cells. Eutypellazine E (24, Figure 10) exerts activity in
a low micromolar range (IC50 = 3.2 ± 0.4 µM), while eutypellazine J (25, Figure 10) shows a reactivating
effect toward latent HIV-1 in J-Lat A2 cells. This could be used as a promising strategy to expunge the
HIV-1 infection by activating latent virus cellular reservoirs in combination with HAART [97].
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Figure 10. Structures of eutypellazine E (24) and eutypellazine J (25).

The S. carteri Red Sea sponge extract yields three previously characterized compounds:
debromohymenialdisine (DBH) (26, Figure 11), hymenialdisine (HD) (27, Figure 11), and oroidin
(28, Figure 11). DBH and HD exhibited a 30–40% inhibition of HIV-1 at 3.1 µM and 13 µM but with
associated cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 µM
without observed cytotoxicity. Also, it showed inhibition of HIV-1 reverse transcriptase up to 90% at
25 µMc [98].
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The two known alkaloids of the aaptamine family containing 1H-benz[de]-1,6-naphthyridine
skeleton, namely 3-(phenetylamino)demethyl(oxy)aaptamine (29, Figure 12) and
3-(isopentylamino)demethyl(oxy)aaptamine (30, Figure 11), were isolated from the sponge A.
aptos. They exhibited anti-HIV activity, with inhibitory rates of 88.0% and 72.3%, respectively, at a
concentration of 10 µM [99].
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Phenylspirodrimane, stachybotrin D (34, Figure 14) isolated from the sponge-derived fungus 
Stachybotrys chartarum MXH-X73, was discovered to be a HIV-1 RT inhibitor, which showed 
inhibitory effects on the wild type (EC50 8.4 µM) and five NNRTI-resistant HIV-1 strains (EC50 7.0; 
23.8; 13.3; 14.2; 6.2 µM) [101]. 

Figure 12. Structures of 3-(phenetylamino)dimethyl(oxo)aaptamine (29) and
3-(isopentylamino)dimethyl (oxo)aaptamine (30).

Bengamide A (31, Figure 13), haliclonycyclamine A+B (32, Figure 13) and keramamine C (33,
Figure 13) inhibit HIV-1 with a 50% effective concentration of 3.8 µM or less. The most potent among
them, bengamide A, blocked HIV-1 in a T cell line with an EC50 of 0.015 µM (which was comparable
to control antiretrovirals indinavir 0.029 µM, efavirenz 0.0024 µM, and raltegravir 0.011 µM) and
in peripheral blood mononuclear cells with EC50 of 0.032 µM. It was concluded that HIV-1 LTR
NF-κB response elements are required for a bengamide A-mediated inhibition of LTR-dependent gene
expression [100].
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Phenylspirodrimane, stachybotrin D (34, Figure 14) isolated from the sponge-derived fungus
Stachybotrys chartarum MXH-X73, was discovered to be a HIV-1 RT inhibitor, which showed inhibitory
effects on the wild type (EC50 8.4 µM) and five NNRTI-resistant HIV-1 strains (EC50 7.0; 23.8; 13.3; 14.2;
6.2 µM) [101].
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2.6. Diterpenes

Many terpenes from marine natural products demonstrated anti-HIV properties. Mechanisms of
action involve blocking of different steps of the HIV-1 replicative cycle as reverse transcriptase inhibitors,
protease inhibitors, or entry inhibitors. Among them, diterpenes from marine algae are nowadays in the
spotlight due to their promising anti-HIV activities [102]. Dolabellane diterpenes are compounds from
the diterpene group that have recently been extensively studied for their anti-HIV activity. Pardo-Vargas
et al. characterized three new dolabellane diterpenes isolated from the marine brown alga Dictyota pfaffii
from Northeast Brazil: (1R*,2E,4R*,7S,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene,
(1R*,2E,4R*,7R*,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene,
(1R*,2E,4R*,8E,10S*,11S,12R*)10,18-diacetoxy-7-hydroxy-2,8-dolabelladiene, named dolabelladienols
A–C (35–37, Figure 15), respectively [102]. In particular, the new compounds, dolabelladienols A and
B, showed potent anti-HIV-1 activities that can be confirmed with their low IC50 values of 2.9 and
4.1 µM and low cytotoxic activity against MT-2 lymphocyte tumor cells. These promising anti-HIV-1
agents were even more active than previously known 2,6-dolabelladienes series.
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De Souza Barros et al. tested marine dolastanes (38, 40, Figure 16) and secodolastane diterpenes
(39, Figure 16) isolated from the brown alga Canistrocarpus cervicornis for anti-HIV-1 activity [103]. They
observed that the marine diterpenes 38–40 inhibit the HIV-1 replication in a dose-dependent manner
(EC50 values of 0.35, 3.67, and 0.794 µM) without a cytotoxic effect (CC50 values ranging from 935 to
1910 µM). Additionally, they investigated the virucidal effect of these diterpenes and their potential use
as microbicides. Dolastane-diterpenes 38 and 40 showed a potent effect on HIV-1 infectivity, whereas
no virucidal effect was observed for secodolastane diterpene 39, demonstrating another mechanism of
antiretroviral activity. Therefore, the authors suggested a potential use of marine dolastanes 38 and 40
as microbicides that could directly inhibit virus infectivity and possibly act before the virus penetrates
the target cells [103].
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Dolabelladienetriol from brown alga Dictyota spp has also been evaluated as a potential
microbicide against HIV-1 in tissue explants. Namely, Stephens et al. examined the
8,10,18-trihydroxy-2,6-dolabelladiene (41, Figure 17) in pretreated peripheral blood cells (PBMC)
and macrophages along with their protective effect in the ex vivo explant model of the uterine
cervix [104]. Pre-treatment of peripheral PBMC and macrophages with dolabelladienotriol showed
inhibitory effects on HIV-1 replication. Furthermore, in the explant model dolabelladienetriol inhibited
viral replication in a dose-dependent manner from 20 to 99% in concentrations of 0.15 and 14.4 µM
without a loss in the viability of the tissue. The authors concluded that this compound has great
potential as a possible microbicide. The same compound was also theoretically analyzed as an
inhibitor of the wild-type and mutants’ HIV-1 reverse transcriptase [105]. Firstly, the structure-activity
relationship studies revealed that a low dipole moment and high HOMO (highest occupied molecular
orbital)-LUMO (lowest unoccupied molecular orbital) gap values are related to the antiviral activity.
Secondly, molecular docking studies with RT wild-type and mutants showed a seahorse-like
conformation of 8,10,18-trihydroxy-2,6-dolabelladiene, hydrophobic interactions, and hydrogen bonds
with important residues of the binding pocket. Finally, the authors suggested a new derivative of
the 8,10,18-trihydroxy-2,6-dolabelladiene with an aromatic moiety in the double bond to improve its
biological activity.
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Although dolabellane diterpenes of brown alga Dictyota spp showed a strong anti-HIV-1 activity,
this was not confirmed for dolabellane diterpenes isolated from octocorals. Therefore, some chemical
transformations have been conducted to improve the anti-HIV-1 potency of the main dolabellane
13-keto-1(R),11(S)-dolabella-3(E),7(E),12(18)-triene from Caribbean octocoral Eunicea laciniata [106].
Oxygenated dolabellanes derivatives (42–44, Figure 18), obtained by epoxidation, epoxide opening,
and allylic oxidation of ketodolbellatriene have shown significantly improved antiviral activities and a
low cytotoxicity to MT-2 cells, which makes them promising antiviral compounds.



Molecules 2019, 24, 3486 27 of 36

Molecules 2019, 24, x FOR PEER REVIEW 30 of 40 

 

 
Figure 16. Structures of marine dolastanes (38 and 40) and secodolastane diterpene (39) derived from 
Canistrocarpus cervicornis. 

Dolabelladienetriol from brown alga Dictyota spp has also been evaluated as a potential 
microbicide against HIV-1 in tissue explants. Namely, Stephens et al. examined the 8,10,18-
trihydroxy-2,6-dolabelladiene (41, Figure 17) in pretreated peripheral blood cells (PBMC) and 
macrophages along with their protective effect in the ex vivo explant model of the uterine cervix 
[104]. Pre-treatment of peripheral PBMC and macrophages with dolabelladienotriol showed 
inhibitory effects on HIV-1 replication. Furthermore, in the explant model dolabelladienetriol 
inhibited viral replication in a dose-dependent manner from 20 to 99% in concentrations of 0.15 and 
14.4 µM without a loss in the viability of the tissue. The authors concluded that this compound has 
great potential as a possible microbicide. The same compound was also theoretically analyzed as an 
inhibitor of the wild-type and mutants’ HIV-1 reverse transcriptase [105]. Firstly, the structure-
activity relationship studies revealed that a low dipole moment and high HOMO (highest occupied 
molecular orbital)-LUMO (lowest unoccupied molecular orbital) gap values are related to the 
antiviral activity. Secondly, molecular docking studies with RT wild-type and mutants showed a 
seahorse-like conformation of 8,10,18-trihydroxy-2,6-dolabelladiene, hydrophobic interactions, and 
hydrogen bonds with important residues of the binding pocket. Finally, the authors suggested a new 
derivative of the 8,10,18-trihydroxy-2,6-dolabelladiene with an aromatic moiety in the double bond 
to improve its biological activity. 

 
Figure 17. Structure of (1R,2E,4R,6E,8S,10S,11S,12R)-8,10,18-trihydroxy-2,6-dolabelladiene (41). 

Although dolabellane diterpenes of brown alga Dictyota spp showed a strong anti-HIV-1 
activity, this was not confirmed for dolabellane diterpenes isolated from octocorals. Therefore, some 
chemical transformations have been conducted to improve the anti-HIV-1 potency of the main 
dolabellane 13-keto-1(R),11(S)-dolabella-3(E),7(E),12(18)-triene from Caribbean octocoral Eunicea 
laciniata [106]. Oxygenated dolabellanes derivatives (42–44, Figure 18), obtained by epoxidation, 
epoxide opening, and allylic oxidation of ketodolbellatriene have shown significantly improved 
antiviral activities and a low cytotoxicity to MT-2 cells, which makes them promising antiviral 
compounds. 

 
Figure 18. Structures of semi-synthesized oxygenated dolabellanes (42–44) originally isolated from the
Caribbean octocoral Eunicea laciniata.

2.7. Phlorotannins and Xanthones

Phlorotannins are tannin derivatives made from several phloroglucinol units linked to each
other in different ways. Phlorotannins contain phenyl linkage (fucols), ether linkage (fuhalols and
phlorethols), phenyl and ether linkage (fucophloroethols), and dibenzodioxin linkage (eckols) [86,107].
So far, a series of phlorotannins have been identified with potent anti-HIV activity. For example,
8,8′-bieckol and 6,6′-bieckol from marine brown alga Ecklonia cava has shown an enhanced HIV-1
inhibitory effect [112,113]. Karadeniz et al. reported that 8,4′′′-dieckol (45, Figure 19) is another
phlorotannin derivative isolated from the same brown alga that could be used as a drug candidate
for the development of new generation anti-HIV therapeutic agents [107]. The compound showed
HIV-1 inhibitory activity at noncytotoxic concentrations. More precisely, the results indicated that
8,4′′′-dieckol inhibited the cytopathic effects of HIV-1, including HIV-1 induced syncytia formation,
lytic effects, and viral p24 antigen production. Furthermore, 8,4′′′-dieckol inhibited an HIV-1 entry
and RT enzyme with the inhibition ratio of 91% at a concentration of 50 µM.
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Recently, for the first time, xanthone dimer was identified as a potential anti-HIV-1 agent [108].
Xanthones are secondary metabolites from higher plant families, fungi, and lichen [114,115]. Although
structurally related to flavonoids, xanthones are not as frequently encountered in nature [9].
Penicillixanthone A (PXA) (46, Figure 20), a natural xanthone dimer, has been isolated from the
jellyfish-derived fungus Aspergillus fumigates with fourteen other natural products [108]. However, only
penicillixanthone A showed inhibitory activities in an HIV infection. Marine-derived PXA displayed
potent anti-HIV-1 activity against CCR5-tropic HIV-1 SF162 and CXCR4-tropic HIV-1 NL4-3, with
IC50 of 0.36 and 0.26 µM, respectively. A molecular docking study confirmed that PXA might bind
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to either CCR5 or CXCR4 to prevent HIV entry into target cells. Therefore, PXA, as a CCR5/CXCR4
dual-coreceptor antagonist, may be seen as a new potential lead product type for the development of
anti-HIV therapeutics.Molecules 2019, 24, x FOR PEER REVIEW 32 of 40 
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2.8. Fish Oil as an Adjuvant to HAART Therapy

HAART therapy can cause severe side effects, e.g., insulin resistance, lipoatrophy, dyslipidemia,
and abnormalities of fat distribution. Therefore, finding an adequate diet and supplementation to
lower the negative effects of the HAART combination therapy is desirable [116]. Fish oil contains
omega-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic (EPA, 20:5n-3) (47, Figure 21) and
docosahexaenoic (DHA, 22:6n-3) (48, Figure 21) acids, which may have beneficial effects for HIV-infected
patients. It has been shown that the addition of fish oil to the diet of HIV-infected individuals receiving
usual antiretroviral therapy can significantly lower serum triglycerides levels [117], which is highly
relevant knowing that HIV dyslipidemia is a serious problem related to an increased frequency of
cardiovascular disease.
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Recently, He et al. analyzed the influence of DHA on the locomotor activity in ethanol-treated
HIV-1 transgenic rats [109]. The prevalence of alcohol use and alcohol abuse in infected individuals is
much higher, and numerous ethanol and HIV-1 viral proteins have synergistic effects on inflammation
in the central nervous system [118–120]. HIV remains in the body in its latent form after HAART
therapy and, as such, can induce neuroinflammation. DHA depletion has been found to be associated
with various neurological abnormalities, and its administration can have a neuroprotective effect. DHA
taken daily could reverse the effects of the ethanol negative effect on the locomotor activity in the
presence of HIV viral proteins. An in vivo study, using real-time quantitative PCR, showed that the
addition of DHA can reduce elevated levels of IL-6, IL-18, and increase the expression of NF-κB in the
striatum. This proved the potential of this fish oil constituent as an adjuvant in HIV patients’ treatment
that can help in lowering the interactive effects of ethanol consumption during HIV infection.



Molecules 2019, 24, 3486 29 of 36

2.9. Others

Resorcyclic acid lactones, namely radicicol (49, Figure 22) pochonin B (50, Figure 22) and C (51,
Figure 22) isolated from H. fuscoatra exhibited a 92–98% reactivation efficiency of the latent HIV-1
relative to SAHA (subeoylanilide hydroxamic acid, vorinostat, HDAC inhibitor) and EC50 of 9.1,
39.6 and 6.3 µM [110]. The reactivation strategy is, indeed, a promising strategy to expunge the
HIV-1 infection by reactivating latent viral loads, mainly in CD4 + T-cells, which quickly rebound
when antiviral treatment is interrupted. It was noted that all active compounds contain Michael
acceptor functionality. The PKC-independent mechanism of reactivation of the latent HIV-1 remains to
be elucidated.
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A team of researchers led by Zhao isolated new isoprenylated cyclohexanols from the
sponge-associated fungus Truncatella angustata named truncateols O-V [111]. In vitro testing showed
that truncateols O and P (52 and 53, Figure 23), analogues bearing the alkynyl group in the side
chain, exhibit a significant inhibition toward the HIV-1 virus with IC50 values of 39.0 µM and 16.1 µM,
respectively. These compounds could be considered as new anti-HIV lead compounds due to lower
cytotoxicity (CC50 > 100 µM) in comparison with the positive control efavirenz (CC50 = 40.6 µM).

Molecules 2019, 24, x FOR PEER REVIEW 33 of 40 

 

and 6.3 µM [110]. The reactivation strategy is, indeed, a promising strategy to expunge the HIV-1 
infection by reactivating latent viral loads, mainly in CD4 + T-cells, which quickly rebound when 
antiviral treatment is interrupted. It was noted that all active compounds contain Michael acceptor 
functionality. The PKC-independent mechanism of reactivation of the latent HIV-1 remains to be 
elucidated. 

 
Figure 22. Structures of radicicol (49), pochonin B (50), pochonin C (51). 

A team of researchers led by Zhao isolated new isoprenylated cyclohexanols from the sponge-
associated fungus Truncatella angustata named truncateols O-V [111]. In vitro testing showed that 
truncateols O and P (52 and 53, Figure 23), analogues bearing the alkynyl group in the side chain, 
exhibit a significant inhibition toward the HIV-1 virus with IC50 values of 39.0 µM and 16.1 µM, 
respectively. These compounds could be considered as new anti-HIV lead compounds due to lower 
cytotoxicity (CC50 > 100 µM) in comparison with the positive control efavirenz (CC50 = 40.6 µM). 

 
Figure 23. Structures of truncateols O (52) and P (53). 

3. Future Directions in the Anti-HIV Marine Drug Development 

Marine organisms have been acknowledged as a precious source of bioactive compounds that 
may provide novel anti-HIV structures or lead structures for structural optimization. A large amount 
of evidence from scientific research confirmed a high biological potential of these compounds to treat 
serious diseases, including infective ones. Some of the marine-derived bioactive compounds 
discovered much earlier have emerged with novel properties and potential applications after a 
decade or two. Isolation and structural elucidation of compounds from marine organisms is not an 
easy task and still carries challenges. Identification of all the compounds is a daunting task, especially 
with regards to complex structural motifs that may be present in a single marine extract. Taxonomic 
knowledge is still insufficient to enable unambiguous species classification that can result in the false 
prediction of chemical constituents and hamper structural analysis. Furthermore, a temporal lag 
between the discovery, chemical characterization, and associated pharmacological activities is quite 
common, and the majority of marine metabolites are usually tested for anticancer activity, whereas 
anti-HIV and other possible biological effects are neglected or mostly not performed due to a lack of 
funding. Targeted assays and in vivo analyses are similarly performed only for some of the potential 
candidates, while the translation into clinical trials remains very limited. Thus, the financial gap is 
certainly a relevant factor contributing to the slow drug development process in this area. In 
particular, the development of anti-HIV compounds, which act by mechanisms that differ from 
existing antivirals, requires a well-designed and focused approach to studying the mode of action. 
Libraries should be created for specifically defined crude extracts, their corresponding simplified 

Figure 23. Structures of truncateols O (52) and P (53).

3. Future Directions in the Anti-HIV Marine Drug Development

Marine organisms have been acknowledged as a precious source of bioactive compounds that
may provide novel anti-HIV structures or lead structures for structural optimization. A large amount
of evidence from scientific research confirmed a high biological potential of these compounds to
treat serious diseases, including infective ones. Some of the marine-derived bioactive compounds
discovered much earlier have emerged with novel properties and potential applications after a decade
or two. Isolation and structural elucidation of compounds from marine organisms is not an easy
task and still carries challenges. Identification of all the compounds is a daunting task, especially
with regards to complex structural motifs that may be present in a single marine extract. Taxonomic
knowledge is still insufficient to enable unambiguous species classification that can result in the false
prediction of chemical constituents and hamper structural analysis. Furthermore, a temporal lag
between the discovery, chemical characterization, and associated pharmacological activities is quite
common, and the majority of marine metabolites are usually tested for anticancer activity, whereas
anti-HIV and other possible biological effects are neglected or mostly not performed due to a lack of
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funding. Targeted assays and in vivo analyses are similarly performed only for some of the potential
candidates, while the translation into clinical trials remains very limited. Thus, the financial gap is
certainly a relevant factor contributing to the slow drug development process in this area. In particular,
the development of anti-HIV compounds, which act by mechanisms that differ from existing antivirals,
requires a well-designed and focused approach to studying the mode of action. Libraries should
be created for specifically defined crude extracts, their corresponding simplified fractions as well as
for pure compounds for a well-balanced natural product discovery program. Additionally, there
exist but few publications in which scientists have tried to modify known compounds of marine
origin to improve their bioactivity. We are, however, continuously witnessing advancements in the
deep-sea exploration technology, sampling strategies, genome sequencing, genome mining, genetic
engineering, chemo-enzymatic synthesis, nanoscale NMR structure determination, and development
and optimization of suitable fermentation strategies to ensure a continued supply of unique bioactive
compounds from the oceans. Therefore, the grounds have been met for a broad, international effort
based on scientific collaboration that would rely on well-equipped infrastructure and human resources
as a prerequisite for a full advancement in the field and development of new drug candidates for the
pharmaceutical market in the future.
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