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Abstract

Eastern cottonwood (Populus deltoides W. Bartram ex Marshall) and hybrid poplars are

well-known bioenergy crops. With advances in tree breeding, it is increasingly necessary to

find economical ways to identify high-performing Populus genotypes that can be planted

under different environmental conditions. Photosynthesis and leaf nitrogen content are criti-

cal parameters for plant growth, however, measuring them is an expensive and time-con-

suming process. Instead, these parameters can be quickly estimated from hyperspectral

leaf reflectance if robust statistical models can be developed. To this end, we measured

photosynthetic capacity parameters (Rubisco-limited carboxylation rate (Vcmax), electron

transport-limited carboxylation rate (Jmax), and triose phosphate utilization-limited carboxyl-

ation rate (TPU)), nitrogen per unit leaf area (Narea), and leaf reflectance of seven taxa and

62 genotypes of Populus from two study plantations in Mississippi. For statistical modeling,

we used least absolute shrinkage and selection operator (LASSO) and principal component

analysis (PCA). Our results showed that the predictive ability of LASSO and PCA models

was comparable, except for Narea in which LASSO was superior. In terms of model interpret-

ability, LASSO outperformed PCA because the LASSO models needed 2 to 4 spectral

reflectance wavelengths to estimate parameters. The LASSO models used reflectance

values at 758 and 935 nm for estimating Vcmax (R2 = 0.51 and RMSPE = 31%) and Jmax

(R2 = 0.54 and RMSPE = 32%); 687, 746, and 757 nm for estimating TPU (R2 = 0.56 and

RMSPE = 31%); and 304, 712, 921, and 1021 nm for estimating Narea (R2 = 0.29 and

RMSPE = 21%). The PCA model also identified 935 nm as a significant wavelength for esti-

mating Vcmax and Jmax. Therefore, our results suggest that hyperspectral leaf reflectance

modeling can be used as a cost-effective means for field phenotyping and rapid screening

of Populus genotypes because of its capacity to estimate these physicochemical

parameters.
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Introduction

Production of bioenergy through direct combustion [1] and/or the manufacture of liquid bio-

fuels [2] can reduce the consumption of fossil fuels and associated emissions [3]. In the USA,

bioenergy contributed about 7.3% to the energy sector in 2019, which could increase to an

additional 18–55% by 2050 [4]. To bolster this increasing trend, short rotation woody crops

(SRWCs) can be planted as a biomass feedstock for bioenergy production [5, 6]. Currently in

the USA, Populus feedstock production for bioenergy makes up a small portion of land use,

but there is the potential for large-scale plantations for bioenergy in the future because Populus
is a promising bioenergy crop. Eastern cottonwood (Populus deltoides W. Bartram ex Mar-

shall) and hybrid poplars have preferable traits for producing high biomass yield within a

short period of time [7–12]. The biomass yield of Populus genotypes can reach 7.5 to

15.2 Mg/ha/year [13]. Due to their rapid growth and high biomass productivity, the United

States Department of Energy classifies Populus as a potential SRWC for bioenergy production

[14]. A Populus plantation can be managed with a five-year harvesting cycle [10, 15–17], and

their excellent coppicing ability [18–20] eliminates the need for replanting after each harvest.

Since Populus has a wide range of genetic diversity [21, 22], clonal propagation [23, 24] and

the use of genetically improved plant material [3, 25] can maximize biomass yield and will

accelerate the development of the bioenergy sector [3, 25]. Moreover, Populus feedstocks have

desirable attributes needed for producing ethanol and other biofuels, such as high cellulose

content, moderate lignin and hemicellulose content, and low ash and extractives [26].

Tree breeding has been used to produce many Populus genotypes with the aim of maximiz-

ing biomass yield [27, 28]. Tree breeding is usually followed by field trials to compare growth

performance across developed genotypes. Since field experiments are laborious, costly, and

time-consuming [29], identifying superior genotypes for further testing is needed as an initial

screening step to optimize field trials. To this end, photosynthetic capacity can be used as a

selection criterion for clonal screening because individuals with enhanced photosynthetic

rate under field conditions are likely to result in higher biomass yield [30]. To evaluate

photosynthetic capacity, photosynthetic CO2 response curves can be used to calculate key pho-

tosynthetic capacity parameters, such as (1) maximum carboxylation rate limited by ribulose

1-5-bisphosphate carboxylase/oxygenase (RuBisCO) activity (Vcmax), (2) electron transport-

limited carboxylation rate (Jmax), and (3) triose phosphate utilization-limited carboxylation

rate (TPU) [31, 32]. In addition to photosynthetic capacity parameters, nutrient content in

leaves is another important parameter for plant growth because limitations of nutrients can

decrease photosynthesis. In plants, nitrogen (N) is a limiting macronutrient [33–35]. N defi-

ciency can reduce leaf area [36], leaf durability, and leaf chlorophyll content. Additionally, leaf

N content tends to be linearly correlated with photosynthetic capacity [37, 38], and conse-

quently, variations in leaf N content can affect biomass production [39–41].

Photosynthetic capacity parameters and leaf N content provide valuable information about

leaf-level processes. However, measuring photosynthetic CO2 response curves in the field

takes about 15–20 minutes per leaf. Analogously, measuring leaf N content requires a labora-

tory assay to generate results. Therefore, these measurement techniques are not cost-effective

for high-throughput screening and large-scale field phenotyping. On the other hand, hyper-

spectral leaf reflectance can potentially be used as an alternative to quickly estimate photosyn-

thetic capacity parameters and leaf N content. Generally, leaf spectra have low reflectance in

the visible region mainly due to chlorophyll absorption and high reflectance in the near-infra-

red region due to internal leaf scattering with little to no absorption [42]. Therefore, there is a

physiological relationship between leaf reflectance and photosynthetic capacity parameters

[43–45]. For example, according to Qian et al. [44], when Vcmax increases, the reflectance at
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the red edge position and the green peak decreases. Leaf reflectance can also be correlated with

leaf N content because N-containing bonds cause variation in spectral features [46]. Ye et al.

[47] found that when leaf N content increased, spectral reflectance decreased, and this rela-

tionship was more significantly observed in the green to near infrared regions. Due to these

relationships, if robust statistical models can be developed, hyperspectral leaf reflectance can

be used as a proxy for rapid assessment of photosynthetic capacity [48–50], as well as non-

destructive and real-time monitoring of leaf N content [51, 52]. On the other hand, creating

empirical models for hyperspectral data requires sophisticated model development techniques,

and model robustness depends on the quality of sample data measured in the field [53].

While existing vegetation indices (e.g., normalized difference vegetation index, photochem-

ical reflectance index, etc.) might be sufficient for estimating physicochemical parameters [43,

54–56], many studies have also developed more robust models using multiple regression meth-

ods to improve the prediction capacity for certain plant species [50, 57, 58]. Hyperspectral data

have very narrow bandwidths with tremendous amounts of redundant information leading to

potential issues with multicollinearity and high-dimensionality. In this respect, statistical

methods, such as stepwise regression, shrinkage (e.g., ridge regression and least absolute

shrinkage and selection operator (LASSO)), and dimension reduction (e.g., principal compo-

nent analysis (PCA)) may be useful for handling hyperspectral data. Hyperspectral data also

contain hundreds of spectral bands, and therefore hundreds of predictor variables. If the num-

ber of predictor variables is greater than the sample size, stepwise selection of multiple linear

regression likely chooses nuisance variables rather than true variables, and consequently, per-

forms poorly for out-of-sample accuracy [59, 60]. Ridge regression includes all predictor vari-

ables in the final model, which is disadvantageous when analyzing data containing a large

number of predictor variables [59]. To solve these issues, many studies suggested LASSO

[61–63] and PCA [64–66] methods. The PCA method is easy and computationally efficient. Its

major drawback is a difficulty in interpreting principal components because they represent lin-

ear combinations of the original features, and thus, each component uses the collection of all

predictor variables [67]. LASSO can overcome this limitation of PCA. Compared to PCA,

LASSO is likely to generate a simpler model because LASSO uses regularization, shrinkage,

and variable selection, and the final model includes a smaller set of predictor variables [59].

However, due to being a supervised feature extraction method [68–70], LASSO is more com-

putationally demanding than PCA. Both LASSO and PCA methods have the capacity for ana-

lyzing hyperspectral data, but each method has its own strengths and weaknesses [71–74].

Therefore, comparing both methods on the same data can help to elucidate these tradeoffs,

determine where the methods provide convergent information, and identify the method with

better model performance.

In this study, we established two Populus plantations for field trials in upland sites of Missis-

sippi each containing over 100 genotypes of Populus and its hybrids. We postulated that utiliz-

ing the large variability in leaf physicochemical parameters across different Populus genotypes

and sites would result in robust models for Populus screening programs. Therefore, using leaf-

level data from 62 Populus genotypes across seven taxa measured at two study plantations, we

developed hyperspectral leaf reflectance models to estimate photosynthetic capacity parame-

ters and leaf N content. Our main objectives were: (1) to assess whether hyperspectral leaf

reflectance can adequately model photosynthetic capacity parameters and leaf N content of

eastern cottonwood and hybrid poplar, (2) to compare the performance of models developed

using LASSO and PCA methods, and (3) to identify spectral wavelengths that are the most sen-

sitive to these physicochemical parameters. Successful development of predictive models from

hyperspectral data can be applied to clonal screenings, enable high-throughput field phenotyp-

ing [50, 75], and thus, reduce the costs of Populus bioenergy research. Moreover,

PLOS ONE Hyperspectral leaf reflectance of Populus genotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0264780 March 10, 2022 3 / 24

https://doi.org/10.1371/journal.pone.0264780


photosynthetic capacity parameters are input parameters in many terrestrial biosphere models

because plant productivity depends on photosynthetic processes [76–79]. Therefore, informa-

tion about these photosynthetic capacity parameters, which may be cost-effectively estimated

from hyperspectral reflectance data, can be used as inputs for process-based earth system mod-

els to simulate terrestrial carbon fluxes [80–82] for improving our understanding of regional

and global carbon cycles.

Materials and methods

Field and laboratory analysis

Study area. The study area consisted of two plantations containing over 100 Populus
genotypes located in Monroe County (88˚ 17’ W, 33˚ 51’ N) and Pontotoc County (88˚ 59’ W,

34˚ 8’ N), MS. The plantation at the Monroe site was established in April 2018 at 2.7 × 1.8 m

spacing. The average height of trees was 6.2 m at the end of the second growing season in

2019. The Monroe site has moderately well-drained, Prentiss fine sandy loam soils [83] and is

surrounded by, and previously used for, row crop agriculture with 0–2 percent slopes. This site

has soil carbon, soil nitrogen, organic matter, and dry bulk density of 2.29 kg/m2, 0.21 kg/m2,

1.08%, and 1.60 g/cm3, respectively. Based on climate data from a nearby weather station

(USW00093862), the Monroe site has an annual temperature range of 11–23˚C, and mean

annual rainfall of 1,397 mm [84].

The plantation at the Pontotoc site was established in April, 2019 at 2.7 × 1.8 m spacing.

The average height of trees was 5.3 m at the end of the second growing season in 2020. The

Pontotoc site has well-drained, Atwood silt loam soils [83] and is also surrounded by, and

previously used for, row crop agriculture with 0–2 percent slopes. This site has soil carbon,

soil nitrogen, organic matter, and dry bulk density of 3.61 kg/m2, 0.44 kg/m2, 1.83%, and

1.52 g/cm3, respectively. Based on climate data from the Pontotoc Experimental Station, MS

(USC00227111), the Pontotoc site has an annual temperature range of 10–22˚C, and mean

annual rainfall of 1,482 mm [84].

Photosynthetic A/Ci curves. Gas exchange measurements were conducted in the field

using a LI-COR 6400 XTP portable photosynthesis system (LI-COR Biosciences Inc., Lincoln,

NE, USA) with a red/blue light source attached. At the Pontotoc site, leaves were within reach,

and measurements were made on live leaves still attached to branches on the mid canopy sun-

lit side of trees. At the Monroe site, leaves could not be accessed due to the height of trees, and

a 7.8 m long pole pruner was used to cut branches from the mid to upper parts of crowns on

the sunlit side of trees. The cut branches were immediately submerged in water, and approxi-

mately 20 cm of the branch end was recut underwater to minimize embolisms [85, 86]. Then,

sample leaves attached to cut branches were measured in a sunlit location outside of the field

plot. Fully expanded leaves with minimal disease located near the top of branches were selected

for these measurements. Photosynthetic A/Ci response curves (A = net CO2 assimilation and

Ci = sub-stomatal CO2 concentration inside the leaf) of the sample leaves were measured by

setting ambient CO2 levels at 400 ppm and then, 300, 200, 100, and 50 ppm before being

increased to 400, 600, and 800 ppm. During measurements, stomatal conductance was moni-

tored. If low stomatal conductance occurred as a result of stress due to removal from the tree

(in the case of the Monroe site), a new branch was collected and measured. Measurements

were made between 10:00 AM and 2:00 PM on clear sunny days. For each individual during

each measurement period, photosynthetic photo flux density, leaf temperature, and relative

humidity inside the leaf chamber were controlled under saturating light conditions at

1500 μmol/m2/s, 30˚C, and 40 to 60%, respectively [85–87]. From the A/Ci curves, we calcu-

lated three main photosynthetic capacity parameters–Vcmax, Jmax, and TPU in a Microsoft
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Excel solver program that contained non-linear curve-fitting equations from Sharkey et al.

[88], which was based on Farquhar et al. [31]. During calculation, the parameters were scaled

to a standardized temperature of 25˚C.

We measured a total of 105 leaves (n = 105). Among them, we measured 57 leaves at the

Monroe site in July and early September in 2019 and 48 leaves at the Pontotoc site in July in

2020. In total, about 85% of leaf samples were measured in July and 15% in early September.

September measurements were made on previously measured genotypes from July because

some spectral response curves from leaves measured in July were more variable than the

majority of collected data, and thus, these genotypes were re-measured. At the Monroe site, we

measured leaf samples from 21 genotypes and five taxa, including P. deltoides × P. deltoides
(D×D, or eastern cottonwood), P. deltoides × P. maximowiczii A. Henry (D×M), P. deltoides ×
P. nigra L. (D×N), P. deltoides × P. trichocarpa Torr. & Gray (D×T), and P. trichocarpa × P. del-
toides (T×D) (S1 Table). At the Pontotoc site, we measured leaf samples from 48 genotypes

and six taxa, including D×D, D×M, D×N, the three-way hybrid Populus deltoides × Populus
nigra × Populus maximowiczii ((D×N)×M), D×T, and T×M (P. trichocarpa × P. maximowiczii)
(S1 Table).

Hyperspectral leaf reflectance. Immediately after gas exchange measurements of a

leaf, hyperspectral leaf reflectance was measured on the same leaf so that both measurements

were made in close proximity temporally and under the same environmental and light condi-

tions. The spectral measurements were made with a portable, single-beam GER 1500 field

spectroradiometer (Spectra Vista Corp., Poughkeepsie, NY, USA). The GER 1500 can detect a

spectral range of 286.90 to 1089.62 nm and contains 512 spectral bands. It has full-width at

half-maximum of 3.20 nm and a nominal bandwidth of approximately 1.50 nm covering parts

of the ultraviolet, visible, and near-infrared wavelength regions of the electromagnetic spec-

trum. Decimal values of spectral wavelengths were rounded to integer values when reporting

results.

To calculate the remote sensing reflectance of leaves, we collected two types of spectral

data—radiance of the leaf and irradiance of the sky under sunny, cloud-free conditions. From

approximately 40 cm above the leaf, radiances were measured on the leaf adaxial surface.

Excluding the midrib, four radiance measurements were taken from various locations on each

leaf lamina, and these readings were then averaged to obtain mean radiance for individual

leaves. Irradiance of the sky was measured by holding the spectroradiometer and its attached

fiber-optic cable with diffuser vertically toward the cloud-free sky. Six irradiance readings

were recorded between individual radiance measurements, and these readings were then aver-

aged to obtain mean irradiance of the sky. To calculate the reflectance of leaves, mean sky irra-

diance measured in close temporal proximity to individual radiance readings was chosen. The

remote sensing reflectance for each individual leaf was then calculated by dividing mean radi-

ance of the leaf with mean irradiance of the sky.

Leaf N content. Leaves measured for both photosynthetic capacity parameters and hyper-

spectral reflectance were placed in sealed plastic bags, kept inside a cooler, and transported to

the laboratory for N determination. Fresh leaf area was measured using a LI-3100C Area

Meter (LI-COR Biosciences Inc., Lincoln, NE, USA) in the laboratory. Leaves were then oven-

dried at 60˚C for at least 72 h until all water was evaporated from samples, and their dry weight

was measured. Next, dried leaves were ground to a fine powder that could pass through a 0.25

mm sieve and analyzed for N content via elemental combustion analysis (ECS 4010 CHNOS

Elemental Analyzer, Costech Analytical Technologies Inc., Valencia, CA, USA). Standards,

duplicates, and blanks were included in the analysis for quality assurance. Since all photosyn-

thetic capacity parameters were calculated on an area basis, we calculated leaf N content on a

per unit area basis (Narea; g N/m2) by using leaf mass per area (LMA; calculated as the ratio of
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dried leaf weight and fresh leaf area) as follows:

Narea ¼
leaf N weight

leaf sample weight
� LMA

Tree biomass. To determine if leaf physicochemical parameters were correlated with

woody biomass and productivity, the measured Populus trees were harvested to estimate their

biomass at the end of the second growing season. The freshly harvested trees were separated

into leaf and wood components with fresh wood weights measured in the field and fresh leaf

weights measured in the laboratory. A wood sample from each tree was also returned to the

laboratory and its fresh weight was recorded. Wood samples were oven-dried at 65˚C, and

their dry weight was measured and used to calculate the dry mass of the field-weighed wood

samples to determine dry woody biomass (kg) for each tree.

Statistical analysis

Taxa comparisons and correlations across parameters. We made statistical comparisons

at the taxa level. We grouped the measured leaf sample data based on taxa. We added T×D geno-

types into D×T, and the(D×N)×M genotype into D×N due to their small sample sizes (T×D,

n = 2 leaf samples, and (D×N)×M, n = 1 leaf sample) (S1 Table). Therefore, we had five taxa

groups. Since analysis of variance (ANOVA) assumptions, such as normal distribution of model

residuals and homogeneity of variance across groups, were not met, a non-parametric Kruskal-

Wallis test was performed to compare the differences in photosynthetic capacity parameters

(Vcmax, Jmax, and TPU), Narea, and tree biomass among the five taxa groups and between the

Monroe and Pontotoc sites using R version 4.0.4 [89]. If taxa groups differed significantly, a

post-hoc Dunn’s Kruskal-Wallis multiple comparison test using the Bonferroni method was

then performed to identify significant differences among the groups. To determine the relation-

ship among Vcmax, Jmax, TPU, Narea, and tree biomass, we used all measured leaf sample data

(n = 105) and calculated a Pearson correlation coefficient matrix across these parameters.

Model development: Least absolute shrinkage and selection operator. We used all mea-

sured leaf sample data (n = 105) to develop models for estimating leaf physicochemical param-

eters from hyperspectral data across measured Populus taxa and genotypes. We followed the

least absolute shrinkage and selection operator (LASSO) model development method to create

hyperspectral leaf reflectance models for each leaf physicochemical parameter. To address the

high-dimensional features of hyperspectral data and to reach a sparse solution, LASSO cross

validation [90] (i.e., an L1-regularized regression) was applied for variable selection. Predictor

variables were hyperspectral wavelength bands, and the response variables were photosyn-

thetic capacity parameters (Vcmax, Jmax, and TPU) and Narea.

All statistical analyses were performed in R version 4.0.4 [89]. Using R package ‘glmnet’ ver-

sion 2.0.18 [91], k-fold cross validation for ‘glmnet’ was performed by specifying the number

of folds as 10. Deviance, which used mean square error for Gaussian models, was assigned as

the loss for cross validation. From the cross validation output, the tuning parameter lambda

(λ) at minimum mean cross-validated error was selected. Once the optimal λ was determined,

data were fit with a generalized linear model through penalized maximum likelihood using

LASSO regularization [91]. LASSO minimized overfitting by shrinking the coefficients of vari-

ables that were not related with the response variable to zero and thus, the predictor variables

with non-zero coefficients were selected for the linear model. Then, R2, root mean square

error (RMSE), and root mean square percentage error (RMSPE; calculated as

ðRMSE=�XÞ � 100%) of the selected models were calculated.
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For model validation, the data were divided into training and testing datasets using the

‘trainControl’ function available in R package ‘caret’ version 6.0–84 [92]. Training and testing

data included 70% and 30% of the entire data, respectively. The control parameters for cross

validation were defined as 10-fold cross validation with 20 repetitions [93]. Then, the averaged

values of repeated 10-fold cross-validated RMSE and R2 of the model were calculated.

Model development: Principal component analysis. We used all measured leaf sample

data (n = 105) for principal component analysis (PCA) model development. Using the

‘prcomp’ function in R, we conducted PCA to create hyperspectral leaf reflectance models for

each physicochemical parameter. An unrotated P-mode PCA was conducted on the data

matrix (spectral bands × leaves) to produce orthogonal principal components (PCs), of which

those with eigenvalues greater than 1.0 were retained [94]. Two PCs were retained as they

explained 98.2% of the variance (PC1 = 85.8% and PC2 = 12.4%). Next, linear regression was

performed using PC1 and PC2 as predictor variables for each of the photosynthetic capacity

parameters and Narea. Then, the performance of these linear models was evaluated with train-

ing and testing data using the methods described above for repeated 10-fold cross validation.

Results

Photosynthetic parameters, Narea, biomass, and leaf reflectance

Vcmax ranged from 67.8 to 368.8 with a mean of 184.4 ± 15.7 μmol/m2/s; Jmax ranged from 71.5

to 402.4 with a mean of 193.5 ± 17.3 μmol/m2/s; TPU ranged from 5.3 to 25.8 with a mean of

13.2 ± 1.2 μmol/m2/s; Narea ranged from 1.1 to 4.7 with a mean of 2.5 ± 0.1 g/m2; and age two,

whole-tree dry woody biomass ranged from 779.4 to 7288.4 with a mean of 4001.9 ± 341.7 g.

These were the results calculated from all measured leaf sample data (n = 105).

Among the five taxa groups, D×N had 31% lower Vcmax than D×T; D×D had 32% lower

Jmax than D×T; and D×D had 31% lower TPU than D×T. For tree biomass, D×N and T×M

were 39% and 54% lower than D×T, and 40% and 54% lower than D×D, respectively (Fig 1).

There was no difference in Narea among the taxa (Fig 1). Generally, T×M had lower leaf reflec-

tance especially when compared with D×N and D×T (Fig 2). The positions of peak and trough

leaf reflectance were mainly observed within the range of 700–800 nm and 900–1000 nm,

respectively (Fig 2 and S1 Fig).

Trees at the Monroe site had higher photosynthetic capacity and leaf N content than those

at the Pontotoc site. Trees at the Monroe site had 37% higher Vcmax, 44% higher Jmax, 45%

higher TPU, 12% higher Narea, and 34% higher tree biomass than those at the Pontotoc site

(Fig 1). Tree biomass was positively correlated (P-value < 0.05) with Vcmax, Jmax, and TPU,

but not with Narea (P-value = 0.22). Narea was positively correlated with Vcmax, Jmax, and TPU

(P-value< 0.05) (Table 1).

Variable selection and model performance

The LASSO model selected the same two wavelengths, 758 and 935 nm to estimate both Vcmax

and Jmax (Table 2 and S1 Fig). The TPU model selected three wavelengths, 687, 746, and 757

nm; and the Narea model selected four wavelengths, 304, 712, 921, and 1021 nm (Table 2 and

S1 Fig). The LASSO model for Narea had the lowest RMSPE (21%), followed by TPU (31%),

Vcmax (31%), and Jmax (32%). In terms of R2, the LASSO model for TPU was the highest (R2 =

0.56), followed by Jmax (R2 = 0.54), Vcmax (R2 = 0.51), and Narea (R2 = 0.29) (Table 2 and Fig 3).

In the PCA method, PC loading in each spectral band indicated that PC1 did not have

much variability, however, distinguishability mainly occurred in PC2 (Fig 4). For PC2, the

wavelengths that had the highest positive loadings were 429, 431, 437, 439, and 414 nm, and

those that had the highest negative loadings were 931, 928, 930, 934, and 927 nm. Both PC1
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Fig 1. Box plots showing the variability among five different Populus taxa (left panels) and between the Monroe and Pontotoc sites

(right panels). Bars with different letters indicate statistically significant differences (P-value< 0.05). Parameters include maximum

carboxylation rate of Rubisco (Vcmax) by (a) taxa and (b) site, maximum electron transport limited carboxylation rate (Jmax) by (c) taxa and

(d) site, triose phosphate utilization limited carboxylation rate (TPU) by (e) taxa and (f) site, nitrogen per unit leaf area (Narea) by (g) taxa, (h)

site, and tree biomass by (i) taxa and (j) site. D×T and T×D taxa were combined and shown as D×T, and (D×N)×M was included in D×N (S1

Table). D×D = P. deltoides × P. deltoides, D×M = P. deltoides × P. maximowiczii, D×N = P. deltoides × P. nigra, D×N×M = P. deltoides × P.

nigra × P. maximowiczii, D×T = P. deltoides × P. trichocarpa, T×D = P. trichocarpa × P. deltoides, and T×M = P. trichocarpa × P.

maximowiczii.

https://doi.org/10.1371/journal.pone.0264780.g001
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and PC2 loadings indicated that the wavelengths near 935 nm were significant (Fig 4), and the

same wavelength was also selected by the LASSO models for estimating Vcmax and Jmax

(Table 2).

The PCA models had comparable RMSPE and R2 as the LASSO models for Vcmax, Jmax, and

TPU. Only the PCA model for Narea had substantially lower R2 than the LASSO model for

Narea (PCA = 0.15 vs. LASSO = 0.29) but RMSPE was comparable (PCA = 23% vs.

LASSO = 21%) (Table 2). Among the PCA models, the PCA model that estimated Narea had

the lowest RMSPE (RMSPE = 24%), followed by Vcmax (RMSPE = 31%), Jmax (RMSPE = 32%),

and TPU (RMSPE = 33%) (Table 2 and Fig 3). The PCA model for Jmax had the highest R2

(R2 = 0.53), followed by models for Vcmax (R2 = 0.51), TPU (R2 = 0.50), and Narea (R2 = 0.15).

The model validation using repeated 10-fold cross validation indicated that there was a very

slight difference in RMSEs among the training data, test data, and entire dataset for both

Fig 2. Leaf reflectance curves of five different Populus taxa. D×T and T×D taxa were combined and shown as D×T, and taxa (D×N)×M was

included in D×N (S1 Table). D×D = P. deltoides × P. deltoides, D×M = P. deltoides × P. maximowiczii, D×N = P. deltoides × P. nigra, (D×N)×M

= P. deltoides × P. nigra × P. maximowiczii, D×T = P. deltoides × P. trichocarpa, T×D = P. trichocarpa × P. deltoides, and T×M = P. trichocarpa
× P. maximowiczii.

https://doi.org/10.1371/journal.pone.0264780.g002

Table 1. Pearson correlation coefficient (r) matrix among tree biomass, Vcmax, Jmax, TPU, and Narea.

Tree biomass Vcmax Jmax TPU Narea

Tree biomass 1.00

Vcmax 0.33 1.00

Jmax 0.35 0.97 1.00

TPU 0.36 0.96 0.99 1.00

Narea 0.12 ns 0.39 0.38 0.36 1.00

Non-significant correlations are denoted by “ns” superscript, and the rest with “bold” font are significant at P-

value < 0.05.

https://doi.org/10.1371/journal.pone.0264780.t001
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LASSO and PCA models (Table 2). Therefore, both LASSO and PCA models were not over-fit.

Cross-validation also indicated that RMSEs were generally higher, albeit modestly, for the

PCA models compared with the LASSO models.

Discussion

Model performance

Our results showed promise in estimating photosynthetic capacity parameters (Vcmax, Jmax,

and TPU) using hyperspectral leaf reflectance (Table 2). In both LASSO and PCA, the models

for estimating Narea had the lowest R2, but RMSPE was smaller for Narea than that of the esti-

mates of Vcmax, Jmax, and TPU (Table 2). The Narea model likely had the smallest RMSPE

Table 2. Selected predictor variables in the models and averaged 10-fold cross validation results.

Model Model form R2 RMSPE RMSE (Entire data) Cross validated RMSE

Training data Test data

LASSO: Vcmax -30.2 + (601.1 × ρ758.29) + (302.7 × ρ935.71) 0.51 31% 57.20 59.07 57.37

LASSO: Jmax -44.6 + (796.2 × ρ758.29) + (200.57 × ρ935.71) 0.54 32% 60.98 61.68 60.64

LASSO: TPU -6.4 + (-62.0 × ρ687.03) + (35.2 × ρ745.99) + (59.9 × ρ756.76) 0.56 31% 4.02 4.02 4.37

LASSO: Narea 2.0 + (28.3 × ρ303.51) + (-24.4 × ρ711.97) + (0.7 × ρ920.68) + (5.9 × ρ1021.44) 0.29 21% 0.51 0.53 0.51

PCA: Vcmax 184.4 + (-1.9 × PC1) + (-5.6 × PC2) + (-0.03 × PC1 × PC2) 0.52 31% 56.99 56.68 59.54

PCA: Jmax 193.5 + (-2.4 × PC1) + (-5.3 × PC2) + (-0.01 × PC1 × PC2) 0.53 32% 61.92 62.46 64.72

PCA: TPU 13.2 + (-0.2 × PC1) + (-0.3 × PC2) + (-0.0007 × PC1 × PC2) 0.50 33% 4.30 4.20 4.65

PCA: Narea 2.5 + (0.0008 × PC1) + (-0.04 × PC2) + (-0.0005 × PC1 × PC2) 0.15 23% 0.56 0.60 0.55

Training and testing data contained 70% and 30% of the entire data, respectively. ρ is spectral reflectance at the corresponding wavelengths.

https://doi.org/10.1371/journal.pone.0264780.t002

Fig 3. Scatterplots showing the linear relationship between measured and estimated Vcmax, Jmax, TPU and Narea for the LASSO models: (a), (b),

(c), and (d) and the PCA models: (e), (f), (g), and (h). The solid black line is the regression line, and the dotted red line is the 1:1 line.

https://doi.org/10.1371/journal.pone.0264780.g003
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because of having smaller variance compared to that of Vcmax, Jmax, and TPU (Fig 1). The Narea

model had the smallest R2 probably because Narea was weakly correlated with photosynthetic

capacity parameters (Table 1) suggesting that a large portion of N in leaves was not involved in

photosynthesis, and consequently, might not generate a strong spectral signal. In addition to

Narea, we also developed a model for leaf N content per unit mass (i.e., Nmass (%); calculated by

dividing leaf N mass with leaf sample mass and then, multiplying with 100). Nonetheless, the

Narea model (R2 = 0.29 for LASSO and 0.15 for PCA) fit the data better than that of Nmass (%)

(R2 = 0.07 for LASSO and 0.02 for PCA). Narea resulted in a better model likely because Narea

incorporated the information of both Nmass and leaf mass per area in its calculation.

For screening, new genotypes are developed by breeding within and potentially between

taxa. Therefore, creating models from taxa- or genotype-specific data may not be robust

enough because new genotypes that need to be screened for productivity potential are being

developed. In this study, we used all leaf sample data (n = 105) measured across 7 taxa and 62

genotypes while developing LASSO and PCA models, with many of these genotypes com-

monly selected for establishing short rotation plantations across different geographic regions.

Our measurements at both study plantations represented a single growing season, but we mea-

sured a wide variety of taxa and genotypes to generate large variability in physicochemical

Fig 4. Lollipop plot showing the loadings of all spectral wavelengths in (a) PC1 and (b) PC2. As shown by vertical

green dashed line, a significant peak and trough occurred at or near 935 nm, which was also selected by the LASSO

models for estimating Vcmax and Jmax.

https://doi.org/10.1371/journal.pone.0264780.g004
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parameters (Vcmax, Jmax, TPU, and Narea) and to develop robust models for predicting Populus
parameters. Therefore, our hyperspectral leaf reflectance captured variability in physiological

functioning across a diverse range of Populus taxa and genotypes.

LASSO and PCA model development techniques had similar capacity in estimating Vcmax,

Jmax, and TPU. However, the LASSO models used only 2 to 4 wavelengths to estimate all

response variables, while the PCA models used 2 PCs, including all 512 wavelengths. Conse-

quently, it is easier to interpret the results of the LASSO models compared to the PCA models.

On the other hand, the LASSO method requires more sophisticated analysis. Since LASSO is a

supervised feature extraction method, it needs to define an optimal value for the tuning param-

eter (λ) using cross-validation procedures to adjust the balance between sparsity (i.e., the

model containing few non-zero coefficients) and model prediction accuracy [59, 71]. Further-

more, LASSO selects only one variable from the group if predictor variables within a group are

highly correlated [67, 95]. Despite these setbacks, our findings suggested that sparse statistical

modeling with LASSO could simplify models by selecting a small subset of predictor variables,

which was especially helpful for analyzing data with high dimensionality and complexity in

which small and critical differences in data could not be easily detected [72]. Therefore, we

found that the LASSO method was able to develop acceptable models for the hyperspectral

data in which the number of predictor variables was significantly larger than the sample size.

In contrast to the LASSO method, the PCA method was an unsupervised dimension reduc-

tion technique. Consequently, it is easier and quicker to generate results with minimum input

from the analyst. The PCA method transforms the high-dimensional space of correlated vari-

ables into a new feature space of high variance, and consequently can achieve the tasks of both

feature and noise reduction [96]. However, the LASSO method does not transform the data,

and consequently, the data might still contain noise [97]. The disadvantage of the PCA method

is that, while constructing the principal components to minimize the correlations among

them, the principal components do not necessarily tie in with the interest of specific model

outcome [67]. Because all the variables exist in each principal component, it is harder to inter-

pret the direct relationship between individual spectral wavelengths and leaf physicochemical

parameters. The model performance between LASSO and PCA methods was equivalent in

estimating photosynthetic capacity parameters, however, the LASSO model outperformed the

PCA model in estimating Narea (Table 2). Therefore, the LASSO method was able to provide a

simple and robust model for all response variables even though it required more time and

effort during model development.

We also analyzed previously published vegetation indices in linear regressions by using our

measured data in order to evaluate whether these vegetation indices were comparable with our

LASSO and PCA models in estimating Vcmax, Jmax, TPU, and Narea. We calculated R2 and

RMSE of vegetation indices and compared these parameters with our best-fit LASSO and PCA

models. We found that published vegetation indices did not perform better than our models

because our models, particularly the LASSO models, had the highest R2 and the lowest RMSE

for estimating photosynthetic capacity parameters and Narea in our Populus trees (Table 3).

This was likely because these vegetation indices were developed using other species and to esti-

mate other physiological and leaf- and canopy-level parameters than we estimated. After

LASSO and PCA models, the hyperspectral vegetation indices developed for estimating can-

opy-level growth parameters in cotton (Gossypium hirsutum L.) and leaf-level chlorophyll con-

tent in a wide range of plants [98–102] showed the next best performance for estimating

Vcmax, Jmax, and TPU (Table 3 and S2 Table). Regarding Narea, the LASSO model performed

the best. However, hyperspectral red edge index (ρ738/ρ720) [103] and linear red edge index

[98] previously used for estimating leaf area index in wheat and canopy N in cotton, and
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vegetation indices developed by Maccioni et al. [102] and Le Maire et al. [101] for estimating

leaf chlorophyll content in trees outperformed the PCA model (Table 3 and S2 Table).

Interpretation of selected wavelengths

As with previous studies [32, 116], we found a strong positive correlation between Vcmax and

Jmax (r = 0.97) (Table 1) likely due to their coordinated processes in CO2 assimilation. The

LASSO models selected the same two wavelengths: 758 and 935 nm for estimating both Vcmax

and Jmax (Table 2 and S1 Fig). PCA also indicated 935 nm as a significant wavelength in both

PC1 and PC2 (Fig 4). In our leaf reflectance curves (Fig 2 and S1 Fig), peaks and troughs of

spectral reflectance mainly occurred at 758 nm and 935 nm. The wavelength 758 nm is an

important wavelength for photosynthesis as it corresponds with the sun-stimulated fluores-

cence emission spectrum in plants [117, 118]. The spike in reflectance near 758 nm (Fig 2 and

Table 3. Comparison of model performance among the LASSO model, the PCA model, and published vegetation indices.

Source Formula Vcmax Jmax TPU Narea

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LASSO This study 0.51 57.20 0.54 60.98 0.56 4.02 0.29 0.51

PCA This study 0.52 56.99 0.53 61.92 0.50 4.30 0.15 0.56

Carter et al. [104] ρ695/ρ420 0.02ns 81.21 0.03ns 88.67 0.03ns 5.97 0.01ns 0.60

Carter et al. [104] ρ695/ρ760 0.00ns 81.85 0.00ns 89.88 0.00ns 6.05 0.03ns 0.60

Datt [99] ρ672/(ρ550×ρ708) 0.08 78.62 0.09 85.74 0.11 5.72 0.03ns 0.60

Gamon (Photochemical Reflectance Index) [105] (ρ531-ρ570)/(ρ531+ρ570) 0.00ns 81.80 0.00ns 89.70 0.01ns 6.04 0.04ns 0.60

Gitelson and Merzlyak [106] ρ750/ρ705 0.05 79.80 0.04 88.22 0.03ns 5.97 0.15 0.56

Gitelson and Merzlyak [107] (ρ750-ρ705)/ (ρ750+ρ705) 0.03ns 80.53 0.02ns 88.88 0.02ns 6.00 0.13 0.57

Gitelson and Merzlyak [108] ρ750/ρ550 0.06 79.28 0.04 87.94 0.03ns 5.96 0.11 0.57

Gitelson and Merzlyak [108] ρ750/ρ700 0.02ns 80.88 0.01ns 89.31 0.01ns 6.03 0.09 0.58

Gitelson et al. (Green Normalized Difference Vegetation

Index) [109]

(ρ750-ρ550)/(ρ750+ρ550) 0.04 80.23 0.03ns 88.76 0.02ns 6.00 0.10 0.58

Gitelson et al. [100] 1/ρ700 0.16 74.85 0.20 80.34 0.21 5.40 0.00ns 0.61

Gupta et al. (Hyperspectral Red Edge Index) [103] ρ735/ρ720 0.06 79.54 0.05 87.59 0.04 5.93 0.17 0.55

Gupta et al. (Hyperspectral Red Edge Index) [103] ρ741/ρ717 0.01ns 81.26 0.01ns 89.48 0.01ns 6.03 0.16 0.56

Gupta et al. (Hyperspectral Red Edge Index) [103] ρ747/ρ708 0.06 79.49 0.05 87.84 0.04ns 5.95 0.17 0.55

Gupta et al. (Hyperspectral Red Edge Index) [103] ρ738/ρ720 0.07 78.78 0.07 86.75 0.06 5.88 0.19 0.55

Le Maire et al. [101] (ρ749-ρ720)-(ρ701-ρ672) 0.29 69.06 0.30 75.48 0.27 5.18 0.21 0.54

Maccioni et al. [102] (ρ780-ρ710)/(ρ780-ρ680) 0.12 76.57 0.12 84.25 0.10 5.73 0.25 0.52

Penuelas et al. (Structure Insensitive Pigment Index) [110] (ρ800-ρ445)/(ρ800-ρ680) 0.03ns 80.47 0.04 88.09 0.04 5.94 0.00ns 0.61

Raper and Varco (Linear Red Edge Index) [98] 700+40[(ρ670+ρ780)/2-ρ700]/

(ρ740-ρ700)

0.12 76.95 0.11 84.92 0.09 5.78 0.24 0.53

Sims and Gamon [111] (ρ750-ρ445)/(ρ705-ρ445) 0.06 79.26 0.06 87.36 0.04 5.92 0.17 0.55

Sims and Gamon [111] (ρ800–680)/(ρ800+ρ680–2ρ445) 0.03ns 80.64 0.04ns 88.29 0.03ns 5.95 0.00ns 0.61

Sims and Gamon [111] (ρ800-ρ445)/(ρ680-ρ445) 0.01ns 81.36 0.01ns 89.38 0.02ns 6.00 0.03ns 0.60

Stimson et al. (Hyperspectral Normalized Difference

Vegetation Index) [112]

(ρ860-ρ690) /(ρ860 +ρ690) 0.00ns 81.75 0.01ns 89.56 0.01ns 6.03 0.02ns 0.60

Vogelmann et al. [113] ρ740/ρ720 0.07 78.85 0.07 86.82 0.06 5.88 0.19 0.55

Wen et al. [114] ρ764/ρ716 0.00ns 81.71 0.00ns 89.88 0.00ns 6.06 0.15 0.56

Zarco-Tejada et al. (Red Edge Optical Index) [115] ρ750/ρ710 0.06 79.28 0.05 87.63 0.04 5.93 0.18 0.55

Spectral reflectance is denoted by ρ, and non-significant correlations are indicated by the “ns” superscript. The models and vegetation indices having the lowest RMSE

for estimating each parameter are bolded. The sources of the alphabetically ordered vegetation indices and their study objectives are described in S2 Table.

https://doi.org/10.1371/journal.pone.0264780.t003
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S1 Fig) is the spectral signature caused by chlorophyll molecules that re-emit light to dissipate

energy and return from excited to non-excited states [118]. In addition, chlorophyll fluores-

cence emission can be a sign of plant water stress, and steady-state chlorophyll fluorescence

emission can reduce net CO2 assimilation [119–122]. According to Frankenberg et al. [123],

Fraunhofer lines at 758.8 and 770.1 nm can be used for retrieving chlorophyll fluorescence.

Satellite-derived solar-induced chlorophyll fluorescence data have also been suggested as a

proxy for estimating and mapping Vcmax for global climate change studies [124–126]. More-

over, chlorophyll fluorescence emission can be an indicator of increased photorespiration,

which can reduce the rate of photosynthetic capacity [127]. The near infrared wavelength 935

nm is commonly identified as a key wavelength in several vegetation indices. For example, this

wavelength was found in the normalized difference vegetation index (NDVI = (ρ935 –ρ661)/

(ρ935 + ρ661), in which ρ = spectral reflectance) used to evaluate the visual quality and the

drought stress responses of turfgrasses [128–130] as well as to explore the photosynthetic

responses under varying salinity stresses in seashore paspalum (Paspalum vaginatum Swartz)

ecotypes [131]. Furthermore, according to Wang et al. [132], 935 nm was sensitive to leaf

greenness and chlorophyll content [133]. Moreover, 935 nm was associated with thermal dissi-

pation of absorbed energy under stress conditions. For example, Zhang et al. [134] observed

that non-photochemical quenching (i.e., a mechanism used by plants to protect from adverse

effects of high light intensity by dissipating the excessively absorbed radiant energy into heat

in the photosystem II antenna complexes) was negatively correlated with the spectral reflec-

tance range 935–945 nm under salinity stress. There was also a significant inverse relationship

between non-photochemical quenching and light-adapted fluorescence yield [135, 136]

because the fluorescence signal could originate from photosystem II [137]. In addition to its

correlation with the leaf chlorophyll fluorescence signal under different abiotic stresses [66,

134], reflectance at 935 nm is related with the water content in plant leaves [138] and could

provide potential for understanding leaf water status [139].

The TPU model selected remote sensing reflectance at 687, 746, and 757 nm (Table 2 and

S1 Fig). Due to its capacity to detect chlorophyll fluorescence signal, the wavelength 757 nm

has been widely used for modeling terrestrial gross primary productivity from space [140–

145]. In addition, 687 nm is also used for sun-induced fluorescence retrieval for estimating

leaf- and canopy-level net photosynthesis of vegetation [117, 146–149]. The absorption maxi-

mum positions of the excitation spectra of fluorescence also occurred at 746 nm in pea plants

[150]. The wavelength 746 nm is also associated with photosynthetic processes. Traditionally,

the wavelength range of 400–700 nm is considered photosynthetically active radiation (PAR).

However, recent studies suggested wavelengths 711 nm, 723 nm, and 746 nm as extended PAR

wavelengths as well [151, 152] because these far-red wavelengths also manifested comparable

efficiency at driving canopy photosynthesis and yield of both C3 and C4 species and their culti-

vars [152]. The reflectance at 746 nm may distinguish levels of accessary pigments with Sonobe

et al. [153] finding that reflectance at 746 nm had a strong negative correlation with carotenoid

concentration in shade-grown tea leaves. Therefore, the predictors included in our TPU

model (687, 746, and 757 nm) are in agreement with formerly proposed wavelengths for esti-

mating photosynthetic capacity.

Our hyperspectral leaf reflectance model for estimating Narea had lower R2 (0.29 for the

LASSO model and 0.15 for the PCA model) than models for estimating Vcmax, Jmax, and TPU

(Table 2). Nevertheless, all four wavelengths selected in our Narea LASSO model have been

reported elsewhere as critical wavelengths, which were largely associated with, and also useful

for, estimating leaf N content in different plant species. Our best model for estimating Narea

contained four wavelengths– 304, 712, 921, and 1021 nm (Table 2 and S1 Fig). The first wave-

length, 304 nm, is in the ultraviolet-B (UV-B) region, which extends from 280 to 320 nm
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[154–156]. Leaf protective chemicals have been shown to absorb UV-B radiation at 305 nm

[157]. Leaves with more protective chemicals to absorb UV-B radiation might have less N con-

tent because protective compounds (e.g., flavonoid content) in plants were found to have a

negative relationship with leaf N content [158]. The wavelength near 712 nm was also highly

correlated with total N content in cotton plants (Gossypium hirsutum L.) [159]. In Chinese

cabbage (Brassica campestris L. ssp. Pekinensis ‘Norgangbom’) leaves, 710 nm was correlated

with chlorophyll content and was also a significant wavelength for predicting leaf N [160].

According to Zhao et al. [41], changes in reflectance at 710 nm could detect levels of N defi-

ciency because of its negative relationship with leaf N in corn (Zea mays L.). Besides agricul-

tural crops, 711 nm was one of the correlated spectral bands with leaf N in balsam fir (Abies
balsamea L. Mill) [161]. The wavelength near 921 nm can be a leaf N predictor as well. Zhao

et al. [162] found that the reflectance at 920 nm was associated with leaf N concentration and

canopy N density in winter wheat (Triticum aestivum L.), and the reflectance at this wave-

length was controlled by leaf structural features. Moreover, Tarpley et al. [163] used 920 nm

for estimating leaf N content in cotton, and Yu et al. [164] used 921 nm for estimating whole-

plant total (including leaves, stems, and roots) N content in pepper (Capsicum annuum L.)

plants. The wavelength near 1021 nm also showed a relationship with leaf N content. Due to

the N-H stretch from protein (i.e., the stretching vibrations of the strong molecular bonds

between hydrogen atoms and nitrogen atoms), the N absorption feature centers at 1020 nm in

leaves [165]. Moreover, 1020 nm was used as a N absorption feature for estimating canopy N

in sagebrush (Artemisia spp.) [166] and as a protein absorption feature for estimating leaf N

concentrations in grass [167]. Therefore, previously documented studies support the wave-

lengths selected in our LASSO models for estimating Vcmax, Jmax, TPU, and Narea.

Conclusion

LASSO and PCA model development methods showed similar capacity for estimating photo-

synthetic capacity parameters, but the LASSO model outperformed the PCA model in estimat-

ing Narea. For analyzing hyperspectral data, the LASSO models resulted in superior model

interpretability compared to the PCA models. With only a few spectral wavelengths, narrow-

band hyperspectral reflectance can estimate photosynthetic capacity and leaf N content of

highly variable eastern cottonwood and hybrid poplar genotypes. This is particularly critical

when the most important spectral bands are adjacent to each other (within about 10 nm in

TPU model; Table 2) suggesting that high spectral resolution is needed for spectral precision

and modeling biophysical traits. Previous physiological studies also found that wavelengths

selected by our LASSO models were strongly correlated with photosynthetic capacity and leaf

N content. The results of our single-leaf studies corroborated that sun-induced chlorophyll

fluorescence retrieval bands (687 and 758 nm) [117, 146–149] could predict Vcmax, Jmax, and

TPU. This suggests that sun-induced fluorescence techniques can be successful in estimating

Vcmax and Jmax of Populus plantations at the ecosystem level. In total, hyperspectral leaf reflec-

tance can be used as a cost-effective means for high-throughput phenotyping and rapid clonal

screening due to its ability to model photosynthetic capacity and leaf N content of a wide vari-

ety of Populus genotypes.

Supporting information

S1 Fig. Locations of wavelengths selected by the LASSO models for estimating Vcmax, Jmax,

TPU, and Narea. D×T and T×D taxa were combined and shown as D×T, and (D×N)×M taxa

was included in D×N (S1 Table). D×D = P. deltoides × P. deltoides, D×M = P. deltoides × P.

maximowiczii, D×N = P. deltoides × P. nigra, (D×N)×M = P. deltoides × P. nigra × P.
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