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Abstract

Duchenne Muscular Dystrophy (DMD) is an important pathology associated with the human skeletal muscle and has been
studied extensively. Gene expression measurements on skeletal muscle of patients afflicted with DMD provides the
opportunity to understand the underlying mechanisms that lead to the pathology. Community structure analysis is a useful
computational technique for understanding and modeling genetic interaction networks. In this paper, we leverage this
technique in combination with gene expression measurements from normal and DMD patient skeletal muscle tissue to
study the structure of genetic interactions in the context of DMD. We define a novel framework for transforming a raw
dataset of gene expression measurements into an interaction network, and subsequently apply algorithms for community
structure analysis for the extraction of topological communities. The emergent communities are analyzed from a biological
standpoint in terms of their constituent biological pathways, and an interpretation that draws correlations between
functional and structural organization of the genetic interactions is presented. We also compare these communities and
associated functions in pathology against those in normal human skeletal muscle. In particular, differential enhancements
are observed in the following pathways between pathological and normal cases: Metabolic, Focal adhesion, Regulation of
actin cytoskeleton and Cell adhesion, and implication of these mechanisms are supported by prior work. Furthermore, our
study also includes a gene-level analysis to identify genes that are involved in the coupling between the pathways of
interest. We believe that our results serve to highlight important distinguishing features in the structural/functional
organization of constituent biological pathways, as it relates to normal and DMD cases, and provide the mechanistic basis
for further biological investigations into specific pathways differently regulated between normal and DMD patients. These
findings have the potential to serve as fertile ground for therapeutic applications involving targeted drug development for
DMD.
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Background

Community structure analysis is an interesting computational

technique for studying interaction networks. Analysis of commu-

nity structure in networks can yield useful insights into the

structural organization of the network. For instance, community

structure analysis is used in the context of networks that arise in

domains such as social networks to understand the fundamental

social structure in a community of interacting individuals [1–7].

This provides insights about the influential individuals and the

strongly-networked individuals in a community. Another domain

where algorithms for community structure analysis find useful

application is the topological understanding of large scale

connection networks such as Internet, and how one may use the

insights from community structure analysis to design more resilient

communication networks [6,8–10]. In the context of biological

networks, such insights can also be used to understand the

biological significance of the underlying community structure and

organization of the network. There is existing work that discusses

the use of community structure analysis in networks that are

observed in biological contexts [4–5,11–13]. For example, [4]

presents the application of an algorithm for community structure

analysis to a food web of marine organisms living in the

Chesapeake Bay, a large estuary on the east coast of the United

States. Furthermore, rich toolsets have also been developed for the

purpose of understanding biological networks from a community

structure perspective [13–17].

In this paper, we explore the application of community

structure analysis as an effective technique to understand the

topological structure and biological behavior of human skeletal

muscle. Skeletal muscles are a form of striated muscle tissue

existing under the control of the somatic nervous system, which

are attached to bones by tendons. This muscle category has been

clinically associated with diseases such as Myopathy, Muscular

Dystrophy, Paralysis, and a host of other diseases. DMD is a group

of inherited disorders that involve muscle weakness and loss of

muscle tissue, which get worse over time [18] and results in death

before the individual reaches adulthood. Given the genetic nature

of this disorder, techniques that leverage the underlying genetic

interactions are expected to yield useful insights, and this is the

primary focus of our study.
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Community structure analysis: Newman and Girvan
Algorithm

The Newman and Girvan (NG) algorithm is a popular

algorithm for community structure analysis in networks [7]. It is

a divisive approach that selects and removes edges based on its

betweenness value. The betweenness of an edge is defined as the

number of shortest paths between all vertex pairs in the network,

which run along that edge. The steps involved in the NG

algorithm are as follows: The betweenness values of all edges are

computed. The edge with the largest betweenness is removed (in

case of ties with other edges, one of them is picked at random).

This is followed by the recalculation of betweenness values of the

remaining edges in the network. The entire process is repeated

iteratively till all edges are removed.

The output from this algorithm is a dendrogram capturing the

possible division of the network into communities. In order to

select the optimal split from these possible candidates, Newman and

Girvan introduce the concept of modularity, which is a measure of

the quality of a particular division of a network into communities

[7]. Given a specific division of a network into k communities, let

us define a k|ksymmetric matrix e whose element eij is the

fraction of all edges in the original network that link vertices in

community i to vertices in communityj. The row (or column) sums

ai~
X

j
eij represent the fraction of edges that connect to vertices

in community i. Modularity is then defined as follows:

Q~
X

i

eii{a2
i

� �
~Tr e{ e2

�� ��

where Tr e~
X

i
eii, denotes the trace of the matrix e and ek k

denotes the sum of the elements of the matrix e. Typically, Q is

calculated for each split of a network into communities as the

algorithm moves down the dendrogram, with the optimal split

corresponding to the peak value ofQ. For a network with n vertices

and m edges, the worst-case time complexity for this algorithm is

O m2n
� �

(or O n3
� �

for a sparse network).

Results and Discussion

Consequence of DMD pathology manifests in the state of

muscle cells. The physiological state and cellular state of muscles

are altered, involving concomitant changes in the expression of

genes associated with the physiological function. In particular,

gene expressions in DMD patients have the potential to provide

information on distinguishing characteristics of pathology, relative

to normal muscle (since altered gene expressions could aid in

identification of functional communities). In this work, we have

devised a novel approach to analyze human DMD patient gene

expression data using a combination of techniques from linear

algebra and network theory. Specifically, we posit that the

correlation of gene expression data from DMD patients captures

salient characteristics of pathology. Accordingly, we build the

correlation network from the gene expression data for the normal

and DMD muscles. Under the assumption that correlation implies

mechanistic causality, we take the approach of community

structure analysis, to identify functional communities from the

correlation network, to display known functional and pathway

mechanisms.

Derived Interaction Networks
In this section, we present an analysis of the global properties of

the derived interaction networks (defined in the Methods section) for the

normal and DMD muscle data from a descriptive statistics

standpoint. We use well known global network properties such as

density, average degree etc. to inform our analysis. This analysis

aims to highlight the key similarities and differences between the

derived interaction networks for normal and DMD muscle data, in

order to enable a structural understanding of the underlying

genetic interactions at a macro level.

Figure 1 illustrates the key structural differences in the normal

and the DMD interaction networks. As can be noted from Table 1,

the number of vertices and edges in the DMD interaction network

is much smaller than those of the normal interaction network.

Thus, as one would expect, the density and the average degree of

the DMD interaction network are also lesser than the normal

network (as shown in Figure 1). However, it is interesting to note

that both interaction networks have turned out to be sparse from a

network-theoretic standpoint.

From the planar-layout visualization of the normal and the

DMD interaction networks generated using Cytoscape [19], we

observe that the pre-processed networks containing 7685 vertices

are by themselves disconnected into many independently con-

nected components. Table 2 summarizes the key network

parameters for the normal and DMD cases for the whole

interaction map.

Since we are interested in finding communities from the

networks, we consider the largest connected component in both

networks. Table 3 shows the number of vertices and edges

considered for community structure analysis in both the networks

(i.e. the parameters defining the largest components in the

respective interaction networks).

Community structure analysis
In this section, we present our results from running the NG

algorithm on the largest components of the derived interaction

networks for the normal and DMD muscle datasets. Table 4

presents the number of communities identified in the dataset,

along with the corresponding modularity values (Qmax). We

provide in Figure 2, a comparison of the distribution of

communities in both networks (obtained using the NG algorithm),

across bins defined by vertex cardinality range.

Pathway Analysis
We perform an analysis of the communities obtained from the

NG algorithm from the perspective of its constituent pathways, by

generating pathway projection networks (PPNs). The motivation,

technique and color-coding convention of PPNs are detailed in

the Methods section.

Figure 3 illustrates the PPNs that are considered for analysis.

Biological Interpretation and Discussion
While we have included a representative set of PPNs in the

Supporting Information (Figure S1- Figure S11), we consider the 4

PPNs shown in Figure 3 to elucidate the significance of the

pathways of interest (shown in Table 5) in each community and

the correlation to their presence in the PPNs. Specifically, the

pathways we consider are Metabolic, Focal adhesion, Regulation

of actin cytoskeleton and Cell adhesion. We are interested in

finding evidence from past work that can potentially help with

triangulating our algorithmic findings about the specific pathway

enhancements that we have identified. For example, if a specific

pathway is determined to be enhanced by our algorithmic

Community Structure Analysis of Muscular Dystrophy
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technique, we would expect the evidence corresponding to that

pathway to correlate well with such an enhancement (for the

network under consideration). Conversely, for a pathway that is

determined to not have a pronounced enhancement using our

algorithmic approach, we are interested in finding whether the

experimental evidence surrounding that pathway is aligned with

our finding. We believe that this analysis will help us validate our

algorithmic findings with evidence from existing research. We also

perform a gene-level analysis on the PPNs to identify genes that

are involved in the coupling between the corresponding pathways

of interest, and summarize sample gene pairs with their

corresponding correlation scores. We leverage UniProtKB [20]

for identifying the functional information associated with the

sample genes we consider in the discussion below.

As background for rest of the discussion, we note that dystrophin

is a key protein of interest in the study of dystrophy. Specifically,

the absence of dystrophin is associated with DMD and was identified

as the source of pathology in humans using positional cloning [21].

Mice lacking dystrophin have high serum levels of muscle enzymes

and possess histological lesions similar to human muscular

dystrophy [22–24].

Metabolic pathways and DMD
Our results emphasize an interesting connection between

metabolic pathways and DMD, and we leverage Figures 3A–3C

(PPN 1-PPN 3) to explore these connections in greater detail. We

summarize the key observations from our analysis here. The first

observation from Figures 3A–3C is that, PPN 1–PPN 3 exhibit

enhanced representation of metabolic pathways. Furthermore,

Figure 3A (PPN 1) illustrates a strong coupling between metabolic

pathways and regulation of actin cytoskeleton. Similarly, we

observe a direct coupling of metabolic pathways to calcium

signaling from Figure 3C. Finally, we reiterate the importance of

metabolism as a key differentiator in pathology, in terms of

glycolytic and oxidative variations of metabolic pathways. The rest

of this section provides evidence from prior work in this domain to

support our observations.

Our first observation around metabolic pathways and their

connection to DMD, is in alignment with prior work. In

particular, [22] identifies that a dystrophin-dependent cytoskeletal

organization in skeletal muscles is directly related to the efficiency

of cytoplasmic and mitochondrial metabolic pathways in situ.

More generally, the lack of dystrophin or a functionally mildly

defective dystrophin is connected with subnormal rates of muscle

Figure 1. Structural Properties- Normal vs. Dystrophy Interaction Networks. Plots of the number of Vertices, number of Edges, Density and
Average Degree of the Normal and DMD interaction networks that were constructed from the GSE6011 dataset [discussed in Methods Section]. The
scales (y-axis) for these structural properties are different and the data for the networks are color coded as green and red for the Normal and DMD
muscles respectively.
doi:10.1371/journal.pone.0067237.g001

Table 1. Summary of interaction networks for normal and
DMD muscle.

Dataset Number of vertices considered* Number of edges

Normal muscle 7453 130225

DMD muscle 3332 16445

*The original number of vertices after pre-processing the GSE6011 dataset was
7685.
doi:10.1371/journal.pone.0067237.t001

Table 2. Summary of network parameters.

Full Network Normal DMD

Vertices 7453 3332

Edges 130225 16445

Clusters 670 283

Clustering coefficient 0.278 0.216

Connected components 27 219

Network diameter 16 24

Network radius 1 1

Network centralization 0.056 0.052

Shortest paths 98% 71%

Characteristic path length 5.302 7.852

Avg. number of neighbors 34.946 9.871

Network density 0.005 0.003

Network heterogeneity 1.819 2.042

doi:10.1371/journal.pone.0067237.t002
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energy conversion and the subnormal energy status of sarcoplasm.

In other words, enhancement of metabolic pathways is a canonical

characteristic in normal muscle, and our findings (Figure 3A–3C)

are consistent with this result. Also, from a computational

standpoint, the observed specificity in enhancement validates the

algorithm for community structure analysis used in our approach,

since the algorithm grouped the genes corresponding to metabolic

pathways in cohesive communities. Furthermore, a similar

exercise of pathway projection performed on the DMD network

had no significant representation of the metabolic pathways.

Secondly, the observation of strong coupling between metabolic

pathways and regulation of actin cytoskeleton is corroborated by

prior experimental work, which has identified that, muscles from

the dystrophic mdx mouse show reduced maintenance metabolic

rates [22]. The authors of [22] also propose that the in vivo

efficiency of metabolic pathways may depend on stabilization of

enzyme complexes by dystrophin-associated elements of the

cytoskeleton. By performing a gene-level analysis on PPN 1

(Figure 3A), we found that many genes were involved in the

coupling between the two pathways of interest. Table 6 presents

five sample gene pairs and the corresponding correlation scores

between them.

Specifically, Leukotriene A4 hydrolase is an epoxide hydrolase

that catalyzes the final step in the biosynthesis of the proin-

flammatory mediator leukotriene B4 [20]. This gene is highly

correlated with cell division cycle 42 which is involved in epithelial

cell polarization processes. It also plays a role in the extension and

maintenance of the formation of thin, actin-rich surface projec-

tions called filopodia. Phosphoglycerate mutase 1 is highly

correlated with Cofilin 1 which regulates actin cytoskeleton

dynamics and plays a role in the regulation of cell morphology

[20]. It is interesting to note that a similar correlation was observed

between these genes in astrocytomas involved in pathogenesis of

radioresistance [25]. There is existing evidence of association

between Iduronate 2-sulfatase and integrin, alpha V from a Gene

Set Enrichment Analysis point of view (which is in accordance

with the results shown in Table 6, in terms of their correlation)

[26]. Iduronate 2-sulfatase plays a role in the lysosomal

degradation of heparan sulfate and dermatan sulfate. integrin,

alpha V is a receptor for fibronectin and fibrinogen [20]. Finally,

referring to the high correlation between PIK3CA and PDGFRB,

there is existing evidence that reports an interaction between these

genes [27].

Similarly, we note that there is evidence from past research that

aligns with our observation around the coupling of metabolic

pathways to calcium signaling. In particular, [28] suggests that

high intracellular Ca 2+ (linked to calcium signaling) in dystrophic

fibers, may be the cause of the inefficiency of mitochondrial

metabolic pathways. Table 7 provides five sample gene pairs with

their corresponding correlation scores, from among the many

genes that we found to be highly correlated in function between

the metabolic and calcium signaling pathways.

While CYP2C6 plays a role in drug metabolism [29], CYP2C9

localizes to the endoplasmic reticulum and its expression is

induced by rifampin. From Table 7, we observe that both

CYP2C6 and CYP2C9 are highly correlated to Phosphodiesterase

1C, calmodulin-dependent 70kDa. Members of the Cyclic

nucleotide phosphodiesterases (PDE1) family, are calmodulin-

dependent PDEs [CaM-PDEs] that are stimulated by a calcium-

calmodulin complex [30]. This gene is also highly correlated to

Cysteine conjugate-beta lyase, cytoplasmic (from Table 7). ErbB-4

protein binds to and is activated by neuregulins and induces a

variety of cellular responses including mitogenesis and differenti-

ation [20]. It is interesting to note that this gene is highly

correlated to Fructose-1,6-bisphosphatase 1, deficiency of which is

associated with hypoglycemia and metabolic acidosis [31].

Analysis of functional communities that are differentially

regulated, demonstrates metabolism as the most important

mechanistic change in DMD muscle. In particular, glycolysis

and oxidative metabolism play significant roles in muscle

energetics including remodeling of the muscle into fast and slow

fiber forms responding to the nature of the energy demands.

Experiments that have been performed on normal muscle showed

accumulation of glycolytic and oxidative metabolism capacity with

increased age, but this accumulation failed in DMD [32]. The

data used in [32] shows stage-specific remodeling of human

dystrophin-deficient muscle, with inflammatory pathways pre-

dominating in the presymptomatic stages and failure of metabolic

pathways later in the disease [32–33].

In the slow twitch (type I) fibers, the slow muscles are more

efficient at using oxygen to generate more fuel (known as ATP) for

continuous, extended muscle contractions over a long time. In

other words, these are the fibers that correspond to oxidative

phosphorylation. Whereas, because fast twitch (Type II) fibers use

Table 3. Parameters of networks’ largest component used for
community structure analysis.

Dataset Number of vertices Number of edges

Normal muscle 7389 130185

DMD muscle 2823 16142

doi:10.1371/journal.pone.0067237.t003

Figure 2. Distribution of Communities. A comparison of the
distribution of communities in both the Normal and DMD networks,
obtained using the Newman and Girvan’s edge-betweenness algorithm.
The green bars show the distribution of the total number of 644
communities obtained from the Normal network, across the four bins of
community size, and the red bars represent the distribution of the 283
communities from the DMD network.
doi:10.1371/journal.pone.0067237.g002

Table 4. Communities from the GSE6011 dataset.

Dataset Number of communities Qmax

Normal muscle 670 0.498339

DMD muscle 283 0.535499

doi:10.1371/journal.pone.0067237.t004
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anaerobic metabolism to create fuel, they are much better at

generating short bursts of strength or speed than slow muscles.

These typically correspond to glycolysis/gluconeogenesis, which is

involved in converting glucose into pyruvate. We performed an

analysis on the number of genes that contributed to the fast and

slow twitch fibers, in the three communities in which metabolic

pathways were enhanced (PPN 1–PPN 3). The results are

summarized in Table 8.

Regulation of actin cytoskeleton and DMD
The discussion on Regulation of actin cytoskeleton and its

relationship to DMD is centered around Figure 3D (PPN 4).

Specifically, PPN 4 illustrates that in normal skeletal muscle, the

actin cytoskeleton pathways are enhanced, whereas they are less

utilized in DMD muscle. This is consistent with prior work as

follows. Dystrophin links the actin cytoskeleton to the dystroglycan

complex (which is a part of an adhesion receptor complex [34]) in

the plasma membrane as part of the linkage between the

cytoskeleton and the extracellular matrix [35–36]. This link helps

maintain sarcolemmal integrity in a muscle [37]. Damage to or

absence of or mutations in dystrophin causes DMD [21,36–37].

The skeletal muscle L-type Ca2+ channel (CaV1.1), which is

responsible for initiating muscle contraction, is regulated by

phosphorylation by cAMP-dependent protein kinase (PKA) in a

voltage-dependent manner [38]. Furthermore, the role of the actin

cytoskeleton in channel regulation was investigated in skeletal

myocytes cultured from mdx mice that lack the cytoskeletal linkage

Figure 3. Pathway Projection Networks. Representation of communities (of interest) from the perspective of the pathways. Nodes in the PPNs
are derived from (and are representative of) the pathway(s) that the constituent genes correspond to. The edges between the pathway-nodes
represent the connections between the underlying genes in the original network. The nodes are color-coded according to the degree (measure of
connectivity between the pathways) and size-coded according to the pathway cardinality of the node (number of genes from the community that
correspond to that pathway). The transformation technique that was employed to generate an equivalent network in terms of the constituent
pathways for each community is described in the Methods section [also schematically presented in the flowchart in Figure 4].
doi:10.1371/journal.pone.0067237.g003
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Figure 4. Schematic representation of transformation technique employed to generate PPNs. A schematic representation of the
transformation technique that was employed to represent the communities from the perspective of the pathways that the constituent genes
correspond to. This technique is described in detail in the Methods section.
doi:10.1371/journal.pone.0067237.g004

Table 5. Pathways of interest in each community.

Pathway projection network Pathway of interest

PPN1–PPN3 Metabolic pathways

PPN4 Focal adhesion, Regulation of actin cytoskeleton and Cell adhesion molecules

doi:10.1371/journal.pone.0067237.t005
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protein dystrophin, and a skeletal muscle cell line, 129 CB3.

Results of the experiments detailed in [38] show that regulation of

Ca2+ channel activity by hormones and neurotransmitters that use

the PKA signal transduction pathway may interact in a critical

way with the cytoskeleton and may be impaired by deletion of

dystrophin, contributing to abnormal regulation of intracellular

calcium concentrations in dystrophic muscle.

We see that most pathways in PPN4 are well-coupled to each

other. From the sample correlation scores provided in Table 9, we

infer that there is strong correlation [39] that exists between the

genes, which signifies the coupling between the regulation of actin

cytoskeleton and focal adhesion pathways.

Focal adhesion and DMD
We use Figure 3D (PPN 4) to motivate the discussion around the

focal adhesion pathway, and its relationship to pathology. In

particular, PPN 4 shows the expected level of association of focal

adhesion pathways in normal muscle and this is consistent with the

evidence presented below. The representation of focal adhesion

kinase (FAK) in dystrophy networks has been studied previously

[23,40]. For example, the authors of [40] find that at 12 weeks of

age, both hind limb muscles of dystrophic mice possessed a lower

FAK protein than normal mice. It is proposed that FAK is a part

of the pathway that would be of potential importance in

transducing mechanical signals from cell membranes to skeletal

muscle fiber nuclei [41–42]. Focal adhesion pathway is coupled

tightly not only to regulation of actin cytoskeleton (as shown in the

Table 9), but also to cell adhesion molecules, with high correlation

scores, some of which are shown in Table 10.

Referring to genes in Table 9, Laminin alpha-4 is a protein

thought to mediate the attachment, migration and organization of

cells into tissues by interacting with other extracellular matrix

components, by binding to cells via a high affinity receptor [20].

Integrin alpha-6 is a receptor for laminin in epithelial cells and it

plays a critical structural role in the hemidesmosome. Laminin

alpha4 and integrin alpha6 are upregulated in regenerating dy/dy

skeletal muscle [20]. Furthermore, laminin alpha4 and integrin

alpha6 expression patterns are notably different in dy/dy when

compared to normal muscle. This is especially pronounced in the

interstitium of regenerating areas and on newly formed myotubes

[43]. Our observation about the high correlation between Laminin

alpha4 and integrin alpha6 (Table 9) is in alignment with these

findings.

We also present a brief description (collated from [20]) of other

genes in Table 9 amongst which we observe a high correlation.

Moesin is conjectured to be involved in connections of major

cytoskeletal structures to the plasma membrane. Kinase insert

domain receptor (a type III receptor tyrosine kinase) is a vascular

endothelial growth factor (VEGF) receptor. Beta-actin is one of six

different actin isoforms which have been identified in humans.

This is one of the two nonmuscle cytoskeletal actins. Actins are

highly conserved proteins that are involved in cell motility,

structure and integrity. Type IV collagen is the major structural

component of glomerular basement membranes, forming a

‘chicken-wire’ meshwork together with laminins, proteoglycans

and entactin/nidogen.

From Table 10, we observe that Platelet/endothelial cell

adhesion molecule 1 (PECAM-1) and Cadherin 5, type 2 (vascular

endothelium) genes from cell adhesion molecules pathway are

highly correlated to the genes from the focal adhesion pathway.

PECAM-1 is a transmembrane protein in the inter-endothelial cell

contacts [20]. PECAM-1 is a homophilic adhesive molecule that is

diffusely distributed on subconfluently growing endothelial cells,

but concentrates at cell-cell borders upon cell-cell contact [44].

Our observation of high correlation between PECAM-1 and genes

in the focal adhesion pathway (shown in Table 10) is corroborated

by [45] which illustrates the co-localisation of some of the ECM

components viz. laminin a1, collagen type IV with the endothelial

Table 6. Sample correlation scores of highly correlated genes (Metabolic and Regulation of actin cytoskeleton pathways).

Highly correlated genes Correlation Score

Metabolic pathway Regulation of actin cytoskeleton

Leukotriene A4 hydrolase Cell division cycle 42 0.876235649

Phosphoinositide-3-kinase, class 2, alpha polypeptide Platelet-derived growth factor receptor, alpha polypeptide 0.870928383

Phosphoglycerate mutase 1 Cofilin 1 0.860115666

Iduronate 2-sulfatase integrin, alpha V 0.849397619

dCMP deaminase Actinin, alpha 4 0.82944117

doi:10.1371/journal.pone.0067237.t006

Table 7. Sample correlation scores of highly correlated genes (Metabolic and Calcium signaling pathways).

Highly correlated genes Correlation Score

Metabolic pathway Calcium signaling pathway

Cytochrome P450, family 2, subfamily B, polypeptide 6 Phosphodiesterase 1C, calmodulin-dependent 70 kDa 0.970659478

Cytochrome P450, family 2, subfamily C, polypeptide 9 Phosphodiesterase 1C, calmodulin-dependent 70 kDa 0.945775382

Gamma-glutamyltransferase 1 Calcium/calmodulin-dependent protein kinase IV 0.912367742

Cysteine conjugate-beta lyase, cytoplasmic Phosphodiesterase 1C, calmodulin-dependent 70 kDa 0.906362395

Fructose-1,6-bisphosphatase 1 v-erb-a erythroblastic leukemia viral oncogene homolog 4 0.900885014

doi:10.1371/journal.pone.0067237.t007

Community Structure Analysis of Muscular Dystrophy
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cell marker PECAM-1. Cadherin 5, type 2 (vascular endothelium)

are calcium-dependent cell adhesion proteins. They play an

important role in endothelial cell biology through control of the

cohesion and organization of the intercellular junctions [20]. From

Table 10, we see that it is highly correlated with Integrin, alpha 6

and Laminin, alpha 4.

Cell adhesion and DMD
Figure 3D (PPN 4) illustrates that the cell adhesion pathway is

not enhanced significantly in the normal network (given that it is a

relatively small sized node, representing smaller pathway cardi-

nality). When we performed a detailed analysis of the genes that

constitute this pathway in the network, we find that most genes are

a form of the Class I and Class II type major histocompatibility

complex (MHC). There exists enough evidence that MHC

proteins in normal skeletal muscle fibers show lower expression

levels, when compared to DMD [46]. Prior work also shows that

for every MHC protein, the fold change for DMD muscle is

greater than one [47], which represents a higher expression in

DMD than in normal. Thus, we see that the algorithm, not only

highlights the more enhanced pathways in the communities, but

also identifies the lowly expressed pathways in the normal muscle.

This evidence provides more confidence to the robustness of the

communities detected. Table 10 shows a few genes from cell

adhesion that are correlated to focal adhesion pathway.

Methods

Muscular Dystrophy: Dataset Description
We used the skeletal muscle gene expression data, Series

GSE6011 from the Gene Expression Omnibus [48]. The gene

expression dataset consisted of measurements on probes for genes

with a many-to-many mapping between probes and genes. In

order to obtain one-to-one equivalence between the probes and

genes, we perform a series of pre-processing steps, which are

included in the Supporting Information (see Appendix S1).

Table 11 summarizes the parameters of the pre-processed dataset.

Derived interaction networks
We introduce the notion of an interaction network that is derived

from an underlying gene expression dataset. This is one of the

novel contributions in our paper. We consider a gene expression

dataset Am | n (consisting of measurements on mprobes for genes

across n experiments) that has been pre-processed to represent

one-on-one mappings between probes and genes. Let rdenote the

correlation matrix for the dataset, containing the pairwise linear

correlation coefficient between each pair of columns in the

matrixAT
n|m, where AT denotes the transpose of the matrix A %

r~½rij �m | m

We define the interaction network for the dataset as an undirected

network D~D V ,Eð Þ, such that the set of vertices Vcorresponds

to the set of genes in the underlying dataset (i.e. Vj j~m) and the

interactions between them are captured by the set of edges E via

an adjacency matrix as follows:

adjMat Dð Þ~½rij �m |m

aij~

1, rij

�� ��wt

0, rij

�� ��ƒt

8><
>:

where 0vtv1 is a pre-defined threshold

Our intuition behind the definition of the interaction network

was to capture the inherent associations between genes in a dataset, by

using the correlation of expression measurements as a represen-

tative surrogate for the interactions between the underlying genes.

In other words, the hypothesis is that a stronger correlation is likely

to signify a stronger interaction between the genes exhibiting the

correlation (modeled by the presence of an edge between the genes

in the interaction network), while a weaker correlation is likely to

Table 8. Summary of muscle fibers’ cardinality.

ID Pathway PPN1 (Fig 3A) PPN2 (Fig 3B) PPN3 (Fig 3C)

hsa00010 Glycolysis/Gluconeogenesis (fast twitch) 4 1 5

hsa00190 Oxidative phosphorylation (slow twitch) 18 13 6

doi:10.1371/journal.pone.0067237.t008

Table 9. Sample correlation scores of highly correlated genes (Focal adhesion and Regulation of actin cytoskeleton pathways).

Highly correlated genes Correlation Score

Focal adhesion pathway Regulation of actin cytoskeleton

Kinase insert domain receptor (a type III receptor tyrosine kinase) Moesin 0.930732193

Laminin, alpha 4 Integrin, alpha 6 0.916349568

Collagen, type IV, alpha 2 Actin, beta 0.914346045

Collagen, type IV, alpha 1 Actin, beta 0.910817128

Laminin, alpha 4 Actin, beta 0.9039736

doi:10.1371/journal.pone.0067237.t009
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correspond to a weaker interaction between the genes (modeled by

the absence of an edge).

Derived interaction networks for the GSE6011 Dataset
We generated the derived interaction networks for the pre-

processed GSE6011 dataset for both the normal and DMD data.

We used a threshold of t~0:8 as the correlation cut-off, applying

the guidelines from [40]. Hence, an edge was present between two

genes in the generated interaction network if and only if the

absolute value of correlation between those genes was greater than

0.8. We note that due to the post-processing steps described in the

Supporting Information (see Appendix S1), the actual number of

vertices considered for subsequent analysis in this paper is less than

the initial number of vertices in the raw interaction networks

generated for both normal and DMD data (summarized in

Table 1).

Pathway Analysis
Consequence of DMD pathology manifests in the state of

muscle cells. The physiological state and cellular state of muscles

are altered, involving concomitant changes in the expression of

genes associated with the physiological function. In particular,

gene expressions in DMD patients have the potential to provide

information on distinguishing characteristics of pathology, relative

to normal muscle (since altered gene expressions could aid in

identification of functional communities). In this work, we have

devised a novel approach to analyze human DMD patient gene

expression data using a combination of techniques from linear

algebra and network theory. Specifically, we posit that the

correlation of gene expression data from DMD patients captures

salient characteristics of pathology. Accordingly, we build the

correlation network from the gene expression data for the normal

and DMD muscles. Under the assumption that correlation implies

mechanistic causality, we take the approach of community

structure analysis, to identify functional communities from the

correlation network, to display known functional and pathway

mechanisms.

In this section, we present an analysis of the communities from

the perspective of the pathways that the constituent genes

represent. The goal is to understand the communities from

derived interaction networks through functional analysis, since

functions help elucidate alterations in pathological conditions [49–

50]. Furthermore, we expect that the analysis of normal and DMD

interaction networks from a pathway perspective is likely to yield

more holistic insights into the correlation between functional and

structural organization of the underlying genetic interactions.

We describe below, the transformation technique we employed

to generate an equivalent network in terms of the constituent

pathways for each community [also schematically presented in the

flowchart in Figure 4]. We call this a Pathway Projection Network

(PPN). For each community from the normal muscle interaction

network, we extract a sub-network consisting of only those genes

present in the normal muscle network and not in the DMD muscle

network. From these sub-networks, we identify those that have a

minimum vertex cardinality of 100 (we found four such

candidates), and performed pathway analysis for these candidates

using the KEGG mapper [51–52].

It is important to note that there is a one-to-many mapping

between genes and pathways. Hence there are multiple pathway

assignments that are possible for a given gene and this would lead

to a combinatorial explosion in the number of pathway projection

networks. To avoid this, we prune the space of gene-pathway

mappings by employing a heuristic that we call the maximum

spanning pathway reduction heuristic. This heuristic works as follows:

From all candidate pathways that a gene from a sub-network

belongs to, we choose that pathway p which maximizes the

number of other genes spanning the sub-network which can also be

assigned the pathway p.

We use Cytoscape to visualize the PPNs and these are shown in

Figures 3A–3D (denoted as PPN1–PPN4). The PPNs 1–4 use the

following convention. The pathway-nodes are color coded from

Green to Red, with increasing degree of the node. This is a

measure of connectivity between the pathways. A second attribute

(pathway cardinality) defines the size of the node- a larger node

signifying a larger pathway cardinality, which is the number of

genes from the community that correspond to that pathway).

Thus, strong connections between two large, red nodes imply a

strong coupling between the set of genes in one pathway to the set

that correspond to another.

From among the pathways represented in the PPNs, we are

specifically interested in further analyzing pathways that are

enhanced in each community and/or are known to be relevant to

DMD from prior work [21–24,32–38,40–42]. These are summa-

rized in Table 5. The pathway interactions analysis for the

resultant PPNs is presented in the Results and Discussion section.

Table 10. Sample correlation scores of highly correlated genes (Focal adhesion and Cell adhesion molecules pathways).

Highly correlated Genes Correlation Score

Focal adhesion pathway Cell adhesion molecules (CAMs)

Laminin, alpha 4 Platelet/endothelial cell adhesion molecule 1 0.964950625

Laminin, alpha 4 Cadherin 5, type 2 (vascular endothelium) 0.939171386

Collagen, type IV, alpha 1 Platelet/endothelial cell adhesion molecule 1 0.937020588

Integrin, alpha 6 Cadherin 5, type 2 (vascular endothelium) 0.929446836

Actin, beta Platelet/endothelial cell adhesion molecule 1 0.929072591

doi:10.1371/journal.pone.0067237.t010

Table 11. Summary of pre-processed GSE6011 dataset
parameters.

Dataset Number of Probes/Genes Number of Experiments

Normal muscle 7685 13

DMD muscle 7685 23

doi:10.1371/journal.pone.0067237.t011
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Conclusion
In this paper, we have proposed a principled approach for

transforming gene expression datasets into interaction networks,

which serve as a useful representation for downstream analysis of

pathology. Furthermore, we have illustrated the utility of

community structure analysis applied to the interaction networks,

as a sound computational technique for gaining insights about the

underlying topology and function. We have leveraged this

approach to study the characteristics of normal and DMD human

skeletal muscle tissues, in terms of functional communities. In

addition to providing a topological perspective on the differential

regulation of transcripts between normal and DMD skeletal

muscle, the derived communities provide extensive information on

functional pathways and their association with pathology. Not only

does our analysis provide clear evidence of the role of altered

metabolic, calcium signaling and cytoskeletal remodeling pathways

in DMD, but also identifies novel cross-talk between them. We

believe that our work provides the steps for biomarker identifica-

tion, as well as systems level information for therapy of the DMD

skeletal muscle.

Supporting Information

Appendix S1 GSE6011 dataset description and post-
processing steps on the derived interaction networks.
(DOCX)

Figure S1 Pathway Projection Network 1. Pathway

Projection Network from the 1st dominant topological community

(in terms of size). This PPN represents enhancement of metabolic

pathways. We also observe coupling between metabolic pathways

and other pathways represented in the same community, such as

regulation of actin cytoskeleton.

(TIF)

Figure S2 Pathway Projection Network 2. Pathway

Projection Network from the 2nd dominant topological community

(in terms of size). This PPN represents enhancement of metabolic

pathways. We also observe coupling between metabolic pathways

and other pathways represented in the same community, such as

pathways in cancer.

(TIF)

Figure S3 Pathway Projection Network 3. Pathway

Projection Network from the 3rd dominant topological community

(in terms of size). This PPN represents enhancement of metabolic

pathways. We also observe coupling between metabolic pathways

and other pathways represented in the same community, such as

calcium signaling pathway.

(TIF)

Figure S4 Pathway Projection Network 4. Pathway

Projection Network from the 4th dominant topological community

(in terms of size). This PPN represents enhancement of focal

adhesion pathways and regulation of actin cytoskeleton. We also

observe coupling between focal adhesion pathways and other

pathways represented in the same community, such as regulation

of actin cytoskeleton and cell adhesion molecules.

(TIF)

Figure S5 Pathway Projection Network 5. Pathway

Projection Network from the 5th dominant topological community

(in terms of size). This PPN represents enhancement of metabolic

pathways.

(TIF)

Figure S6 Pathway Projection Network 6. Pathway

Projection Network from the 6th dominant topological community

(in terms of size). This PPN represents enhancement of metabolic

pathways and aminoacyl.

(TIF)

Figure S7 Pathway Projection Network 7. Pathway

Projection Network from the 7th dominant topological community

(in terms of size). This PPN represents enhancement of metabolic

pathways. We also observe coupling between metabolic pathways

and other pathways represented in the same community, such as

the signaling pathways.

(TIF)

Figure S8 Pathway Projection Network 8. Pathway

Projection Network from the 8th dominant topological community

(in terms of size). This PPN represents enhancement of pathways

in cancer.

(TIF)

Figure S9 Pathway Projection Network 9. Pathway

Projection Network from the 9th dominant topological community

(in terms of size). This PPN represents enhancement of metabolic

pathwayys and arrhythmogenic right ventricular cardiomyopathy.

(TIF)

Figure S10 Pathway Projection Network 10. Pathway

Projection Network from the 10th dominant topological commu-

nity (in terms of size). This PPN represents enhancement of

metabolic pathways and MAPK signaling pathway.

(TIF)

Figure S11 Pathway Projection Network 11. Pathway

Projection Network from the 11th dominant topological commu-

nity (in terms of size). This PPN represents enhancement of

metabolic pathways and Huntington’s disease.

(TIF)
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