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Necroptosis is a recently discovered form of cell death that plays a vital role in the
progression of cancer, the spread of metastases, and the immunologic response to
tumors. Due to the dual role of necrotic apoptotic processes in tumor pathogenesis and
the heterogeneity of gliomas, the function of necroptosis in the gliomamicroenvironment is
still poorly understood. We characterized the expression of necroptosis-related genes
(NRGs) within glioma samples at both the genetic and transcriptional levels, identifying
three distinct subtypes. Additionally, we constructed a risk score, which is capable of
accurately predicting patient prognosis, correlates with tumor mutation burden (TMB),
tumor stem cell index (CSC), immune checkpoints, and predicts tumor drug sensitivity. To
facilitate its application in the clinic, we developed a nomogram and demonstrated that it
predicts the prognosis of glioma patients with good accuracy and reliability using multiple
datasets. We examined the function of necroptosis in the tumor microenvironment (TME)
and the prognosis of gliomas, which may be useful for guiding individualized treatment
plans for gliomas targeting necroptosis.

Keywords: necroptosis, glioma, nomogram, tumor microenvironment, TMB
INTRODUCTION

Among the many malignant tumors in the central nervous system, glioma is the most common,
characterized by ease of recurrence and a high mortality rate (1). Diffuse gliomas are classified into 3
grades (WHO II, WHO III, WHO IV), and the higher the grade, the worse the prognosis (2).

Although the survival time of glioma patients has improved by using various treatments
including surgery, radiotherapy, and chemotherapy, it is still far from expected (3, 4). With the
development of molecular pathology, several molecular markers have been found to be relevant to
the occurrence, progression, and prognosis of gliomas. These markers include methylation of the
MGMT promoter, IDH mutations, and co-deletion of chromosome 1p/19q (5, 6). However, due to
the high heterogeneity of gliomas, these markers are currently not fully adequate for predicting
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prognosis and guiding individualized therapy. Thus, it is
imperative to construct reliable new prognostic models to
predict the microenvironment of the tumor and to guide
individualized therapies.

Necroptosis, a cystathionine-independent programmed death, is
regulated mainly by receptor-interacting protein [RIP] kinase 3
(RIPK3), RIPK1, and mixed-lineage kinase structural domain-like
pseudokinase (MLKL) (7, 8). As a new form of necrotic cell death,
necrotrophic apoptosis is indispensable for the biological processes
of cancer development, progression, metastasis and prognosis, and
immune surveillance (9–14). In tumors, it has dual functions; its key
mediators promote tumorigenesis and progression (15, 16); and it
also prevents tumor development when apoptosis is compromised
(17, 18). Targeting necrotic apoptosis is a promising
immunotherapeutic approach for eliminating tumor cells when
tumors become apoptosis-resistant. A variety of drugs and
chemotherapeutic agents that have been approved for clinical
trials are selective necroptosis inducers for specific tumors (11).
Due to the high heterogeneity of gliomas, the impact of necroptosis
on their prognosis and immunotherapy is not well elucidated.
Because of technical limitations, most research has focused on
individual drug or mediator targets, whereas immunotherapy and
prognosis are the results of all relevant genes working in concert.
Therefore, there is an urgent need to comprehensively understand
the impact of necroptosis markers on the TME, immunotherapy
response, and prognosis of glioma. However, the role played by
necroptosis-related genes in the development and prognosis of
glioma has not been effectively elucidated by current studies.

In this research, we comprehensively assessed the immune
landscape of necroptosis-related genes (NRGs) in glioma
patients. We explored the effect of NRGs on the TME and
immunotherapy of gliomas. We then constructed a risk score
capable of accurately predicting tumor immune status,
prognosis, and sensitivity to chemotherapy. The final risk score
was combined with clinical data to construct a nomogram that
provides guidance for the clinical application.
MATERIALS AND METHODS

Datasets
In Figure 1, we present an overview of the analysis of this
research. The Cancer Genome Atlas (TCGA) database was
searched on January 1, 2022, to obtain the RNA transcriptomic
datasets (HTSeq- per kilobase million (FPKM) and HTSeq-
Counts) and associated clinical information for the patient’s 5
normal brain tissue samples and 698 glioma samples. RNA
transcriptome data (FPKM and counts data) from normal
brains were obtained from the GTEx database (http://xena.
ucsc.edu/) on January 1, 2022. RNA transcriptome data and
corresponding clinical data were collected from the Chinese
Glioma Genome Atlas (CCGA) database for 693 and 325
patients with glioma (12).

The GTEx and TCGA datasets were merged to remove batch
effects by the “Combat” algorithm, and the CGGA dataset was
merged in the same way. Fragments We converted the values as
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transcripts per kilobase million (TPM) from FPKM. The Counts
value matrix was used only to identify differential expression,
while the TPM matrix was used for other analysis. Patients with
missing overall survival values and duplicate samples were
excluded when constructing models for prognostic analysis.
The TCGA set was randomly assigned to the training and test
groups by Perl and caret R packages in a ratio of 2:1. For
validation of the prognostic model, the Rembrandt and CGGA
datasets were utilized as the external validation datasets. The
clinical data of these datasets are available in Supplementary
Tables 1, 2. Since TCGA, Rembrandt, and CGGA databases are
open access data and publicly available, this research did not
need ethical approval. The copy number variation (CNV) and
somatic datasets of glioma were also collected from the Xena and
TCGA, respectively. Data analysis was performed using Perl
(5.34.0) and R (version 4.1.0).

Copy Number, Mutation Analysis, and
Differential Expression Analysis of NRGs
From the necroptosis gene set M24779.gmt of the MSigDB
(http://www.broad.mit.edu/gsea/msigdb/) and previous reports
on necroptosis (19), we ended up with 67 necroptosis-associated
genes (Supplementary Table 3). The Perl and R software were
applied for CNV analysis, the ‘RCircos’ package was applied to
show the distribution of NRGs alterations in chromosomes, and
the ‘maftools’ were used to map the oncoplot of gene mutation.
The ‘limma’ and ‘reshape2’ packages were used to identify
differences in NRGs expression in normal brain tissue and
gliomas. We further performed protein-protein interaction
(PPI) networks for 67 NRGs using the STRING (https://cn.
string-db.org/) and the interaction score was set to the highest
confidence (0.9). The top 50 differentially expressed NRGs
FIGURE 1 | The entire analytical process of the study.
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among th em we r e v i s u a l i z ed u s i n g ggp l o t 2 f o r
correlation analysis.

Consensus Clustering Analysis of NRGs
Prognostic risk network plots were drawn using the
‘RColorBrewer’, ‘psych’, ‘igraph’, and ‘reshape2’ packages.
Based on the expression levels of NRGs, patients with glioma
were classified into distinct NRGclusters using the R package
“ConsensusClusterPlus”.

Clinical Features and Prognosis of Glioma
Based on Molecular Subtypes
A correlation analysis was applied among the differences in
molecular subtypes, as determined by consistent clustering,
and different clinicopathological characteristics and prognosis.
Clinical and pathological characteristics of the patients included
survival time, survival status, gender, age, WHO grade, the status
of radiation therapy or chemotherapy, the presence of mutations
for IDH, 1p/19q codeletion, and MGMT promoter
phosphorylation. Using the “survminer” and “survival” R
packages, we examined prognostic differences of different
subtypes based on Kaplan-Meier curves.

TME, PD-L1, and PD-1 in Different
Molecular Subtypes
Our evaluation of each patient’s immune and stromal
component was performed utilizing the ESTIMATE. To
evaluate the proportions of distinct immune cell types, the
CIBERSORT algorithm was applied (20). By using “ssGSEA”
in the R package “GSVA” (21), we quantified the levels of cellular
infiltration of the immune system. Further analysis was
conducted on the expression of PD-1 and PD-L1 among
the subtypes.

Identification and Functional
Enrichment of DEGs
Functional enrichment analysis of DEGs between distinct
subtypes was conducted with the “clusterprofiler” package
(adjusted p-value < 0.05). The clusterprofiler is a popular
machine learning algorithm, which was extensively utilized in
medical studies (22–27).

Construction of the NRG_Score
NRG_score was constructed to evaluate the necroptosis of
tumors. A univariate Cox regression analysis was applied on
these prognostic DEGs among NRGclusters. Following this,
patients were classified into four geneClusters using the
consensus clustering analysis. The consensus clustering is a
popular bioinformatics algorithm, which was extensively
utilized in cancer-related studies (28–32).

Patients with missing overall survival values and duplicate
samples were excluded. Patients with glioma from TCGA
datasets were randomly classified into the training and test
groups by the Perl and Caret R packages in a ratio of 2:1. For
the training set, the NRG_score was figured out using Lasso Cox
and multivariate Cox regression analysis. In calculating the
Frontiers in Oncology | www.frontiersin.org 3
NRG_score, the following formula was used:

NRG _ score =o Expi ∗Coefið Þ
Expi and Coefi of this equation correspond to the expression and
risk coefficients, respectively. A median risk score was used for
dividing patients into high-risk (NRG_score > median) and low-
risk groups (NRG_score < median). The data was presented in a
graphical format after principal component analysis (PCA) was
conducted utilizing the package ”ggplot2”.

Acquisition of Clinical Specimens,
RNA Isolation, and Quantitative
Real-Time Polymerase Chain
Reaction PCR (RT-qPCR)
Six pairs of gliomas and non-tumor tissues adjacent to the
tumors were collected from glioma patients at Zhongshan City
People’s Hospital. The removed samples were immediately
stored at -80°C until use. Informed consent was obtained from
all patients with glioma participating in this research. The ethics
committee of Zhongshan City People’s Hospital reviewed and
approved the study.

Total RNA was extracted from glioma tissue using TRIzol
reagent (Thermo Fisher Scientific, USA). RNA was reverse
transcribed to Complementary DNA using HIScriptIIIRT
SuperMix (Vazyme, Nanjing, China). The qRT-PCR analysis
was performed using SYBR Green qPCR Master Mix (Vazyme,
Nanjing, China) on ABI QuantStudioTM 5 (Agilent
Technologies, USA). In all PCR experiments, data were
quantified using the 2-DDCt method and normalized by
GAPDH. Primers for specific target genes (Supplementary
Table 4) were synthesized by Genepharma Biotech
(Shanghai, China).

To further assess the changes in protein levels of these genes,
typical immunohistochemical results were obtained from the
Human Protein Atlas (HPA) and analyzed for histochemistry
score (H-SCORE). The staining intensity was divided into 4
grades: negative, grade 0; weakly positive, grade 1; positive, grade
2; strong positive, grade 3. Score H-SCORE according to the
percentage of positive staining, H-SCORE = ∑ (Pixi) = (weakly
positive Pi × 1) + (positive Pi × 2) + (strong positive Pi × 3)
(where Pi represents the percentage of positive cells in the
number of all cells in the section, and i represents the staining
intensity; the total score range is 0 ~ 300).

Survival, TMB, CSC, Mutation,
Drug Sensitivity Analysis in High
and Low-Risk Groups
We compared the difference of NRG_score in two groups. PCA
analysis was applied to verify the differentiation of patients
among the two groups. The receiver operating characteristic
(ROC) and Kaplan-Meier survival analysis were applied for the
prognostic prediction of patients. To assess the immune cells
infiltrating the glioma, CIBERSORT was conducted. In addition,
we evaluated the correlation of the 11 NRGs in the model with
the infiltrating immune cells. The ESTIMATE package was
applied to compare the TME between the two risk groups. We
June 2022 | Volume 12 | Article 899443
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also evaluated the differences between TMB, gene mutations,
PD-L1, PD-1, and CSC between the two risk groups. Using the
“pRRophetic” package, semi-inhibitory concentrations (IC50)
were calculated to assess the sensitivity of gliomas to common
chemotherapy agents.

The Development and Validation
of a Nomogram
Using the ‘RMS’ package, we compiled the risk scores with the
patient’s clinicopathological information and developed a
predictive nomogram. In this nomogram, every variable
corresponds to a score, and the total score is calculated by
averaging all variables for one patient. The prediction power of
the nomogram was assessed using time-dependent ROC curves
for each dataset. To describe the accordance between the
predicted and observed survival outcomes for 1-, 3-, and 5-
years, calibration plots of the nomogram were analyzed. We also
compared the accuracy of the WHO grade and the nomogram in
predicting 1-, 3-, and 5-year survivals using time-dependent
ROC curves.

Statistical Analyses
The statistical analysis was conducted using R (4.1.0). A p-value
or adjusted p-value of 0.05 is used as the level of
statistical significance.
RESULTS

The Landscape of Genetic
and Transcriptional Variation
of NRGs in Glioma
The overview of the analysis of this research was presented in
Figure 1. This study involved 67 NRGs in total. We first
summarized the frequency of somatic mutations in these
NRGs in glioma patients and found that LGG patients had a
relatively high frequency of mutations (Figure 2A). As shown in
Figure 2A, mutations occurred in 451 (89.13%) of 506 LGG
samples, with missense mutations being the most common
mutation classification. Among them, IDH1 had the highest
mutation rate (77%), followed by ATRX (37%), EGFR (6%), and
IDH2 (4%). As shown in Figure 2B, out of 365 samples of GBM
patients without IDH1 mutation, 144 (32.60%) patients had
mutations in NRGs, with EGFR having the highest mutation
rate (20%), followed by ATRX (4%), FLT3 (2%) and BRAF (2%).
Next, we explored the impact of mutations in these NRGs on the
prognosis of glioma patients. As shown in Figure 2C, patients
with a high tumor mutation burden (TMB) had significantly
lower survival rates than those with lower TMB. Furthermore,
the mutation frequency of NRGs gradually increased with
increasing glioma grade (Figure 2D).

These NRGs were examined for the frequency of somatic
copy number variation (CNV) in glioma from the TCGA cohort,
and we found that CNV was frequent across all NRGs. The
incidence of NRG deletion in glioma samples was mostly greater
than the incidence of acquisition. Among them, CDKN2A,
Frontiers in Oncology | www.frontiersin.org 4
TARDBP, TNFRSF1B, BNIP3, SIRT3, and TLR3 had a higher
incidence of loss, while EGFR, MYC, BRAF, TNFRSF1A,
DIABLO, GATA3, and TNFSF10 had a higher incidence of
CNV gain (Figure 2E). The location of these NRGs on
chromosomes with altered CNVs is depicted in Figure 2F.

Comparing the differential expression of 67 NRGs in 1153
normal brain tissues (GTEx 1148, TCGA 5) with 698 glioma
tissues (TCGA), we found 63 DEGs (all FDR <0.05, Figure 2G).
As shown in Figure 3A and Supplementary Table 5, NRGs were
categorized as highly expressed, lowly expressed, or not
differentially expressed (|FoldChange| <1.2) in gliomas. Among
them, 35 genes, including EGFR, MYC, CDKN2A, TERT, IDH1,
GATA3, PLK1, ID1, and TLR3, were up-regulated; 16 genes,
including TSC1, HDAC9, USP22, STUB1, ATRX, MAPK8, ALK,
HSP90AA1, and BNIP3, were down-regulated; and the
expression of 16 genes, including MLKL, AXL, BACH2,
SQSTM1, IPMK, MAP3K7, CFLAR, and BCL2, was not
significantly changed. To further explore the interactions
between these NRGs, a PPI network was constructed. The
result revealed that ZBP1, CASP8, CD40, CFLAR, CYLD, FAS,
FADD, RIPK1, and RIPK3 were the hub genes (all combined
score > 0.9) (Figure 3B). The relevant heatmap of the top 50
NRGs in TCGA was shown in Figure 3C. Our analysis revealed
significant differences in genetic profiles and expression levels of
NRGs between normal brain tissue and glioma, suggesting a
potential role of NRGs in glioma.

Identification of NRGclusters in Glioma
To explore the important role played by NRGs in glioma
patients, a comprehensive analysis was performed. Univariate
regression analysis (Supplementary Table 6) showed that 50 of
these NRGs had prognostic value (P<0.05). As shown in
Figure 4A and Supplementary Table 7, NRGs interacted, co-
expressed, and had a combined effect on the prognosis of glioma
patients. Most of NRGs were positively correlated with each
other and were risk factors.

Further investigating the role played by the NRGs in gliomas,
we utilized a consensus clustering algorithm to examine subtypes
of glioma patients according to the expression of NRGs
(Supplementary Figure 1A-F). It appears that k = 3 is the best
choice for classifying the dataset into NRGcluster A, B, and C
(Figure 4B). In this scenario, the different subtypes are strongly
correlated within groups and weakly correlated between groups.

Using ssGSEA to assess immune activity among glioma
patients of different subtypes, we explored the role of
necroptosis in glioma immunity. It was found that the
infiltrating immune cells differed significantly between
NRGclusters (Figure 4C and Supplementary Table 8). The
infiltration level of immune cells was commonly high in
NRGcluster C compared to the other two subtypes, especially
activated CD8 T cells, activated dendritic cells, activated CD4 T
cells, gamma delta T cells, MDSCs, immature B cells, natural
killer cells, macrophages, and neutrophilia, etc.

Following this, we analyzed the immune checkpoints of these
subtypes and found that both PD-1 and PD-L1 expression was
higher in NRGcluster C than those in the other two subtypes
(Figures 4D, E). TME scores of these NRGclusters were assessed
June 2022 | Volume 12 | Article 899443
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FIGURE 2 | The landscape of genetic and transcriptional variation of NRG in glioma. Mutation frequencies of 67 NRGs in 506 patients with LGG (A) and 365 GBM
patients without IDH1 mutation (B) from the TCGA dataset. (C) Kaplan-Meier survival analysis of the high TMB and low TMB groups. (D) Comparison of TMB
score in gliomas of different grades. (E) The CNV variation frequencies of 67 NRGs in the patients with LGG or GBM from the TCGA dataset. (F) Locations of CNV
alterations of 67 NRGs on 23 chromosomes. (G) The differential expression of 67 NRGs between gliomas and normal brain tissue. NRGs, necroptosis-related genes;
LGG, low grade gliomas; GBM, glioblastoma; TCGA, The Cancer Genome Atlas; CNV, copy number variant; ***P<0.001, **P<0.01, *P<0.05.
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 8994435

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ba et al. NRGs and TME in Glioma
utilizing the ESTIMATE, and similar to previous results, they
were higher in NRGcluster C than those in the other two
subtypes (Figure 4F).

Identification of geneClusters
Based on DEGs
To further investigate the biological mechanisms underlying the
differences in several NRGclusters, we applied the “limma”
package to find DEGs of three subtypes and obtained 2012
DEGs by taking intersections (Figure 5A). The GO functional
enrichment analysis of these DEGs revealed that they were
enriched in biological processes related to immunity
(Figure 5B and Supplementary Table 9). The KEGG analysis
revealed that DEGs were enriched in pathways related to
immune and inflammatory responses (Figure 5C and
Supplementary Table 9). The previous results suggest that
NRGs may be critical in tumor immunity. To further
investigate the underlying regulatory mechanisms of NRGs, we
Frontiers in Oncology | www.frontiersin.org 6
initially conducted the univariate Cox regression analysis on
2012 DEGs and found that 1,866 of them were associated with
prognosis (Supplementary Table 10). Then, based on these
prognosis-related DEGs, a cluster analysis of samples was
performed (Supplementary Figure 2A–F), and it was found
that the samples of glioma patients in TCGA could be divided
into geneClusters A-D 4 subtypes optimally (Figure 5D).

To verify the differences in prognosis across geneClusters, we
performed survival analysis. According to the Kaplan-Meier
curve, the prognosis of glioma patients in geneCluster A was
worse than those in the other two subtypes (P < 0.001,
Figure 5E). Subsequently, we compared the clinicopathological
data and DEGs in patients of the 4 geneClusters. We found that
poor prognosis in the geneCluster A group was associated with
age > 40 years, WHO class IV, unmutated IDH, and
unphosphorylated MGMT promoter (Figure 5F). In addition,
the expression of NRGs was also generally significantly different
between geneClusters(Figure 5G).
A

B C

FIGURE 3 | The differential expression, PPI network, and expression correlation of NRGs. (A) Differential expression of NRGs in normal brain tissue and glioma. (B)
The PPI network of NRGs. (C) The correlation of expression of NRGs.
June 2022 | Volume 12 | Article 899443
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Development and Validation of the
Risk NRG_Score
NRG_score was constructed based on the prognosis-related
DEGs of different subtypes. We divided the TCGA glioma
patients into training (n = 444) and validation sets (n = 218)
in the ratio of 2:1, utilizing the package “caret”. We then applied
Lasso regression analysis to screen out the optimum 23
prognostic genes among the DEGs (Figures 6A, B). The
Subsequent multivariate Cox regression analysis was conducted
on them, and we finally got 11 genes, including 5 low-risk genes
(SEMA4G, NRG3, IDI1, ARHGAP12, CALN1) and 6 high-risk
genes (SCYL2, PTDSS1, H2AX, PHF11, FAM171A1, PPM1M)
(Figure 6C). According to the multivariate cox regression
results, the formula of NRG_score was constructed as follows:
risk score = (0.0268*expression of SCYL2) + (0.0176*expression
of PTDSS1) + (-0.0540*express ion of SEMA4G) +
(-0.0235*expression of NRG3) +(-0.0079*expression of IDI1)
+(0.0017*expression of H2AX) + (0.0367*expression of
PHF11) + ( -0 .0129*expres s ion of ARHGAP12) +
(0.0046*expression of FAM171A1) + (0.0214*expression of
PPM1M) + (-0.0225*expression of CALN1).

The glioma patients of TCGA were assigned to high-risk
(NRG_score > median, n = 222) and low-risk (NRG_score <
median, n = 222) groups. The expression of most NRGs is
significantly different between the high and low risk groups
Frontiers in Oncology | www.frontiersin.org 7
(Figure 6D). The PCA analysis (Figure 7A) showed that
NRG_score was able to discriminate patients well.

We explored the distribution of NRG_score among different
subtypes. The NRG_scores of patients in three NRGclusters are
statistically significantly different (P<0.01) (Figure 7B).
Similarly, the NRG_score also differed significantly among
several geneClusters (Figure 7C), with geneCluster A patients
having the highest risk score, geneCluster C having the lowest
risk score, and geneClusters B and D in the middle. Next, we
examined the distribution of patients within the NRGcluster
groups, the geneCluster groups, and the NRG_score risk
groups (Figure 7D).

Based on the previous results, we found that the higher the
NRG_score, the lower the survival rate of glioma patients.
Further validating the result, we ranked all patients according
to the NRG_score. According to the NRG risk distribution
plot, the number of patients who died increased with
increasing risk scores, and most of these deaths were attributed
to patients with high-risk scores (Figures 7E, F). We present the
expression level of the genes involved in the risk model
(Figure 7G). In the high-risk group, glioma patients had a
lower survival rate than that in the low-risk group (P < 0.001;
Figure 7H). In addition, the NRG risk score had high prognostic
predictive performance, with AUC values of 0.887, 0.930, and
0.893 for 1-, 3- and 5-year survival, respectively (Figure 7I).
A B

D E
F

C

FIGURE 4 | NRGclusters of gliomas divided by consensus clustering algorithm and clinicopathological characteristics of distinct subtypes. (A) Interactions of NRGs
in glioma. The thickness of the line that connects a pair of NRGs indicates the strength of their association. Positive correlations are indicated in red and negative
correlations in blue. (B) Heatmap of the consensus clustering matrix (k = 3) dividing glioma patients into the three NRGclusters. (C) The comparison of infiltration
levels of immune cells in three NRGclusters. (D, E) Expression of PD-1 and PD-L1 in three NRG clusters. (F) Correlation between three NRGclusters and TME
scores. TME, tumor microenvironment; ***P<0.001, **P<0.01, *P<0.05, ns P > 0.05.
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F

G
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FIGURE 5 | Identification of gene subtypes based on DEGs. (A) The Venn diagrams for the three NRGclusters. (B, C) Functional enrichment analysis of GO and
KEGG for DEGs among three NRGclusters. (D) Heatmap of the consensus clustering matrix (k = 4) dividing glioma patients into four geneClusters. (E) Kaplan-Meier
survival analysis of the four geneClusters. (F) The clinicopathologic features of the four geneClusters. (G) The differential expression of 67 NRGs among the
geneClusters. DEGs differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; NRGs, necroptosis-related genes.
***P<0.001, **P<0.01, *P<0.05.
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 8994438
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To further validate the excellent prognostic predictive
performance of NRG_score, we utilized the same formula to
calculate the risk scores of patients in the internal test dataset and
two external validation sets of CGGA and Rembrandt, and we
divided the patients into two risk groups.We found that the number
of patients who died increased significantly with increasing
NRG_score in the internal test group (Supplementary
Figure 3A), the two external validation sets of the CGGA
(Supplementary Figure 3B), and Rembrandt (Supplementary
Figure 3C). According to the survival analysis of the three
validation sets (Supplementary Figures 3D–F), the survival rate
of glioma patients was higher in the low-risk group than that in the
high-risk group (P<0.001). The analysis of the predictive prognostic
performance of NRG risk score (Supplementary Figures 3G–I)
found that the AUC values of 1-, 3-, and 5-year survival remained
high for the three validation sets, and the apparent NRG risk scores
had excellent predicting prognostic power.

Validation of Expression Levels of 11
Genes in the Prognostic Model
To further evaluate the expression levels of genes in the model in
clinical samples, we subjected 6 pairs of gliomas and their
adjacent normal tissues to RT-qPCR analysis. As shown in
Figure 8, 11 genes were significantly differentially expressed in
glioma and adjacent normal brain tissues. In glioma tissues, most
Frontiers in Oncology | www.frontiersin.org 9
genes were upregulated in expression levels, while CALN1
expression was downregulated.

To further assess the changes in protein levels of these genes,
typical immunohistochemical results obtained from the Human
Protein Atlas (HPA) were presented. Among them, NRG3 and
PHF11 protein expression data were not available in HPA. As
shown in Figure 9, the differential trends in protein expression
levels of the other nine genes were approximately the same as
those in the mRNA expression levels. The above results verified
the expression changes of 11 genes in the model at mRNA and
protein levels and laterally confirmed the reliability of the genes
included in the model.

Comparison of TME and Checkpoints
Between the Two Risk Groups
To assess the correlation between NRG scores and TME, we
utilized the CIBERSORT algorithm to assess the level of immune
cells infiltration. The NRG_score was positively correlated with
CD8 + T cells, M1 macrophages, M0 macrophages, M2
macrophages, activated NK cells, follicular helper T cells, and
neutrophils, and negatively correlated with CD4 memory resting
T cells, Eosinophils, activated mast cells, and monocytes
(Figure 10A). We also found that the high-risk group had
significantly higher TME Scores, reflecting a higher level of
immune cells infiltration (Figure 10B).
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FIGURE 6 | Identification of representative candidate prognostic genes and differential expression of NRGs between the high and low-risk groups. (A) The LASSO
regression analysis of the candidate prognostic genes. (B) The partial likelihood of deviance of the prognostic genes. (C) Forest plot of the multivariate Cox
regression analysis for candidate genes. (D) The differential expression of NRGs between the high and low-risk groups. ***P<0.001, **P<0.01, *P<0.05.
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FIGURE 7 | Development of the risk NRG_score in the training dataset. (A) PCA analysis based on the NRG_score. The blue and yellow dots represent the high-
and low-risk groups, respectively. (B) Comparison of NRG_score in different NRGclusters. (C) Comparison of NRG_score in different geneClusters. (D) Alluvial
diagram of the distribution of subtypes with different NRG_score and survival outcomes. (E) The ranked dot of the distribution of the NRG_score. (F) Scatter plots of
the distribution of the survival status in patients from high- and low-risk groups. (G) The expression of genes in the NRG_score model in patients from two risk
groups. (H) Kaplan-Meier survival analysis of the two risk groups. (I) ROC curves of the NRG_score model for predicting the sensitivity and specificity of 1-, 3-, 5-
year survival in patients with glioma.
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FIGURE 8 | RT-qPCR analysis on the expression levels of 11 genes in the prognostic model in 6 pairs of gliomas and their adjacent normal tissues. ***P<0.001,
**P<0.01.
FIGURE 9 | Protein expression levels of genes incorporated in the prognostic model between normal brain and glioma tissue as demonstrated by
immunohistochemical analysis and the H-SCORE analysis. Bar = 100µm. *p < 0.05.
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In addition, we evaluated the correlation between the
expression of 11 genes in the risk model and the abundance of
immune cells. There was a significant correlation between
the expression of 11 genes and immune cells (Figure 10C).
In addition, 33 immune checkpoints including PD-L1, PD-1,
and CTLA-4 were differentially expressed in the two
groups (Figure 10D).
Frontiers in Oncology | www.frontiersin.org 12
Correlation Between NRG_Score and
Mutation, CSC, and Drug Sensitivity
To further evaluate whether glioma patients could benefit from
immunotherapy, we conducted a tumor mutation analysis.
According to the results, a significantly higher TMB was
observed in the high-risk group than that in the low-risk group
(Figure 11A), indicating that immunotherapy was more likely to
A
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FIGURE 10 | Comparison of TME and checkpoints between the high- and low-risk groups. (A) Correlations between infiltrating immune cells and NRG_score.
(B) Correlations between TME scores and NRG_score. (C) Correlations between the abundance of infiltrating immune cells and expression of NRGs in risk score
model. (D) Expression of immune checkpoints between the two risk groups. TME, tumor microenvironment; NRGs, necroptosis-related genes. ***P<0.001,
** P<0.01, *P<0.05.
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be effective in patients in the high-risk group. According to
Spearman correlation analysis, TMB correlated positively with
NRG_score (R=0.59, p<0.001, Figure 11B). Following this, we
examined the correlation between CSC and NRG_score, and
found it to be negative (R=-0.51, p<0.001, Figure 11C),
suggesting low tumor stem cell characteristics and high
differentiation in patients with high NRG_score. Furthermore,
we examined the distribution of somatic mutations between two
risk groups. We found that IDH1, CIC, FUBP1, and ATRX
mutation frequencies were significantly higher in patients of the
low-risk group than those in patients of the high-risk group,
Frontiers in Oncology | www.frontiersin.org 13
while PTEN, TTN, EGFR, andMUC16 genes were mutated more
frequently in patients of the high-risk group (Figures 11D, E).

We then evaluated the predictive value of NRG_score on
patients’ chemotherapeutic drug sensitivity. We found that the
IC50s for angiogenesis inhibitors such as sunitinib, and sorafenib
were lower in patients of the high-risk group than those in
patients of the low-risk group (Figure 11F and Supplementary
Figure 4A). For the commonly used EGFR tyrosine kinase
inhibitors, the sensitivity differed between the risk groups.
Compared to the low-risk group, patients in the high-risk
group had lower IC50 values for Erlotinib (Supplementary
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FIGURE 11 | Correlation between NRG_score and mutation, CSC index, and drug sensitivity. (A) Comparison of TMB in two risk groups. (B) Spearman correlation
analysis between TMB and the NRG_score. (C) Spearman correlation analysis between CSC index and the NRG_score. (D, E) The waterfall plot of somatic mutation
features in the low- (D) and high-risk (E) groups. (F–I) Comparison of chemotherapy sensitivity in glioma between two risk groups.
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Figure 4B) and higher IC50 values for Gefitinib and Nilotinib
(Figure 11G and Supplementary Figure 4C). In addition, the
IC50 values of Temsirolimus (Figure 11H), Tipifarnib
(Figure 11I), Bicalutamide (Supplementary Figure 4D),
Gemcitabine (Supplementary Figure 4E), Parthenolide
(Supplementary Figure 4F), Salubrinal (Supplementary
Figure 4G), and vinblastine (Supplementary Figure 4I) were
lower in the patients of the high-risk group than those of the low-
risk group, while IC50 value of shikonin (Supplementary
Figure 4H) was higher in patients of the high-risk group than
that in the low-risk group. It appears that the NRG_score may be
used to predict patients’ drug sensitivity, even in the sense of
guiding the selection of different classes of drugs in the
same category.

Development and Validation of a
Nomogram to Predict Survival
To make the NRG_score easier to apply clinically, we combined
it with the clinicopathology of glioma patients to develop a
nomogram for predicting patients’ prognosis (Figure 12A ands
Supplementary Table 11). The AUC values of the nomogram
for predicting the 1-year, 3-year, and 5-year survival rates of the
training set were 0.908, 0.927, and 0.896, respectively
(Figure 12B), and the calibration curves also suggested high
accordance between the predicted probabilities and the observed
probabilities, indicating the high reliability of the nomogram
(Figure 12C). Similarly, we also demonstrated high accuracy of
nomogram in predicting 1-, 3-, and 5-year survival with high
reliability in an internal validation set (Figure 12D), and two
external validation sets (CGGA (Figure 12E), and Rembrandt
(Figure 12F–I).

Subsequently, we compared the predictive accuracy of our
nomogram with that of the WHO-grade in the training and
validation datasets. We found that the AUC values of 1,3,5-year
survival (Supplementary Figures 5A, E, I) were higher than
those predicted by WHO grade in the training dataset. The same
results were obtained in the internal validation dataset
(Supplementary Figures 5B, F, J), the CGGA external
validation set (Supplementary Figures 5C, G, K), and the
Rembrandt external val idation set (Supplementary
Figures 5D, H, L), indicating that the nomogram has better
predictive performance than that of the WHO grade.
DISCUSSION

Targeting necroptosis has also emerged as a promising
therapeutic approach to bypass apoptosis resistance and
support anti-tumor immunity. However, the role played by
necroptosis-related genes in the development and prognosis of
glioma has not been effectively elucidated by current studies.
Ferroptosis-related genes (33), pyroptosis-related genes (34), and
autophagy-related genes (35) have been reported in the literature
for predicting survival in patients with glioma. However, the
effect of necroptosis-related genes (NRGs) on predicting the
survival of patients with gliomas and on the tumor
Frontiers in Oncology | www.frontiersin.org 14
microenvironment in gliomas has not been reported.
Therefore, our study stil l has some theoretical and
clinical significance.

In this study, we first analyzed the overall variation of 67
NRGs at the genetic and transcriptional levels in glioma
patients. Based on candidate NRGs, we divided patients into 3
NRGclusters and 4 geneClusters. To further investigate the
potential role of NRGs in regulating immunity in patients with
glioma, we found that the level of immune cells infiltration and
TME scores were generally higher in geneCluster C than those in
the other subtypes. Immune checkpoint comparison also
revealed that PD-L1 and PD-1 were higher in geneCluster C
than those in the other subtypes.

To further investigate the biological behavior behind the
differences in several NRGclusters, we screened the differential
genes and performed GO, KEGG functional enrichment analysis,
and found that DEGs were enriched in immune and
inflammation-related pathways, indicating that NRGs are
indispensable for these processes.

As well, we conducted the univariate Cox regression, Lasso
regression, and multivariate Cox regression analysis on the DEGs
to screen out prognosis-related genes, and four geneClusters
were identified based on the consensus clustering analysis. A
survival analysis revealed significant differences in prognosis
among the four subtypes. The patients were randomly assigned
to training and validation groups. And by lasso regression and
multivariate cox regression analysis, we finally screened for 11
genes to construct a risk score model. It was found that the model
had excellent predictive performance when it came to predicting
the prognosis of patients in these datasets.

Moreover, the risk score correlated and predicted well for
treatments such as TMB, immune checkpoint, immune cell
infiltration, and CSC. Furthermore, the risk score can be used as
a guide in predicting the sensitivity to chemotherapy drugs. To
facilitate more clinical application, we combined the
NRG_score with clinical information and developed a
nomogram to predict the prognosis of patients with glioma in
datasets. ROC curves and calibration plots demonstrated that
the nomogram was highly predictive and reliable. Moreover,
the predictive powers of the nomogram were more accurate
than those of the WHO grade. As such, the nomogram may be
applied to predict the prognosis of patients suffering from
gl iomas. The study makes i t c lear that NRGs are
indispensable to glioma progression, immunomodulation, and
treatment, and that they can provide a guide for sensitive drug
screening during chemotherapy, which could provide new ideas
for individually targeted therapies.

We screened for DEGs between a normal brain and glioma
tissue from 67 NRGs and constructed PPI networks to explore
hub genes. It was found that ZBP1, CASP8, CD40, CFLAR,
CYLD, FAS, FADD, RIPK1, and RIPK3 were the hub genes.
Yang et al. (36) reported that the DNA-dependent activator of
IFN regulatory factors (ZBP1) plays an important role in IFN
signaling during anti-necrotic apoptosis. ZBP1 is involved in
regulating RIPK1/RIPK3-FADD-caspase-8 cell death complex
assembly, along with their important regulatory role in
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necroptosis (37, 38). Osborn et al. (39) reported that the Fas-
associated death domain (FADD), a negative regulator of
necroptosis , plays a vi ta l role in T cel l receptor-
mediated necroptosis.

By inhibiting necroptosis, caspase-8 also contributes to
survival (40–42). And it has been reported (43) that inhibition
of caspase-8 leads to CYLD-dependent necroptosis. He et al. (44)
reported that the anti-apoptotic protein CFLAR (CASP8 and
FADD-like apoptosis regulator) plays a key role in necroptosis in
Frontiers in Oncology | www.frontiersin.org 15
T lymphocytes. A large body of literature reports that RIPK acts
as an important sensor, receiving stimuli from both inside and
outside the cell, and is involved in several biological processes
such as immune response, inflammation, and cell death; RIPK1
and RIPK3 are essential for necroptosis (7, 13, 14, 45).

Correlation analysis showed that the expression of numerous
NRGs was positively correlated and most of them were risk
factors, suggesting a common role in regulating necroptosis. In
contrast to previous studies focusing on a single gene, it is equally
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FIGURE 12 | Construction and validation of a nomogram to predict survival of patients with glioma. (A) Nomogram for predicting the 1-, 3-, 5-year survival of glioma
patients in the training set. (B) ROC curves of the nomogram for predicting the sensitivity and specificity of 1-, 3-, 5-year survival in glioma patients in the training
dataset. (C) Calibration curves of the nomogram for predicting 1-, 3-, and 5-year survival in glioma patients in the training dataset. (D-F) ROC curves of the
nomogram for predicting the sensitivity and specificity of 1-, 3-, 5-year survival in glioma patients in the TCGA testing dataset(D), CGGA (E), and Rembrandt (F). (G-
I) Calibration curves of the nomogram for predicting 1-, 3-, 5-year survival in glioma patients in the TCGA testing dataset (G), CGGA (H), Rembrandt (I).
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important to investigate the role played by the gene set as a
whole. Based on the consensus clustering analysis, glioma
patients were divided into three subtypes (43, 44).

We performed two layers of clustering, the first layer is
NRGcluster, and the second layer is geneCluster. The main
purpose of NRGcluster is to find the number of clusters with
the strongest intra-group correlation and the weakest inter-
group correlation. The second layer of clustering builds on the
first layer of clustering to find the differentially expressed genes
among different NRGclusters for a deeper geneCluster. For a
deeper understanding of the differences among these
NRGclusters, we performed enrichment analyses of DEGs
within each subtype. GO and KEGG results also revealed
substantial enrichment in immune and inflammation-related
biological pathways, which suggested that NRG may be
indispensable for the regulation of tumor immunity.

The consensus clustering analysis was conducted on
prognosis-related DEGs, and several geneClusters were finally
derived. The prognosis and expression of NRGs differed
significantly among the geneClusters. To facilitate generalized
application, we developed an NRG_score risk prediction model
and confirmed the high predictive efficacy and reliability of the
model in all datasets. NRG_score was used to categorize patients
into high- and low-risk groups. By comparing the expression of
NRGs in two risk groups, we found that the expression of NRGs
such as ZBP1, RIPK1, RIPK3, FADD, FAS, and MLKL was
widely lower in the low-risk group than those in the high-risk
group, suggesting that the risk score can well reflect the incidence
of necroptosis.

To investigate the mechanisms of immune modulation by
NRGs, we performed a comparative analysis of the infiltration of
immune cells, immune checkpoints, TMB, and CSC in the two risk
groups. High-grade gliomas have a poor prognosis, and although
some patients respond better to radiotherapy treatment, tumor
heterogeneity is high. This highlights the critical role of TME in
glioma development and progression. Targeting the heterogeneity
of glioma TME provides new ideas for the treatment of glioma (46).
There is a combination of immune cells, stromal cells, fibroblasts,
endothelial cells, cellular stroma, and blood vessels surrounding the
TME, which are responsible for the heterogeneity of the tumor as
well as for its development and prognosis (47). It was found that our
NRG_score was significantly related to the infiltration of immune
cells. A positive correlation was found between NRG_score and
CD8 + T cells, M1 macrophages, follicular helper T cells, M2
macrophages, and neutrophils, M0 macrophages, and a negative
correlation was found with activated NK cells, Eosinophils, activated
mast cells, CD4 memory resting T cells, and Monocytes.

Monocytes perform a crucial role in immune surveillance and
immunological response regulation (48, 49). We found that
necrotizing apoptosis was negatively correlated with monocyte
expression. This may be because monocytes migrate to the tumor
region during pathological situations, such as necroptosis in glioma,
and thendifferentiate into immunological cells, suchasmacrophages.
It has been reported (46) that monocyte-derived macrophages are
essential in the regulation of the microenvironment of brain tumors,
which supports our findings. Macrophages (Mjs) generally regulate
Frontiers in Oncology | www.frontiersin.org 16
immune responses and ultimately maintain immune homeostasis
through biological processes such as pathogen phagocytosis and
antigenpresentation (50).Mjs canbe simplifiedas inflammatoryM1
or immunosuppressiveM2Mjs (51), and theM1, andM2ofMj are
convertible between themandexist continuously anduniformly (52).
Our study found that the infiltration of several subtypes of
macrophages was elevated in the high-risk group of gliomas.
Moreover, the pro-inflammatory and immunosuppressive
functions of each macrophage were again uniformly present, which
laterally reflects part of the source of glioma tumor heterogeneity.
FollicularhelperTcells areaclassofCD4+Tcell subpopulations (53),
whose main function is to assist B cells in humoral immunity and
enhance the immune response (54). HighCD8+T cells infiltration is
also a sign of high immune response.We found a higher incidence of
necroptosis and a higher immune response in the high-risk group
than those in the low-risk group.There is also evidence (8) suggesting
that exposure to necrotizing apoptotic cells within the TME is
associated with an increased number of tumor-specific CD8+ T
cells within the tumor tissue. This is in accordance with our results.
NKcells, as innate immunecells, can target tumorcells andperforma
crucial role in tumor detection, elimination of malignant cells, and
limiting tumor metastasis (55, 56). The negative association of
activated NK cells with risk scores found in our study is consistent
with previous studies. Consistent with the results of increased
immune cell infiltration, the TME scores were higher in the high-
risk group than those in the low-risk group, and the expression of
genes in the model was most significantly correlated with immune
cell expression. It is suggested that the immune microenvironment
can be scored and predicted by the correlation between NRG_score
and immune cell infiltration in the risk model.

With the development of immunology and molecular biology
for tumors, immune checkpoint-based immunotherapy provides a
new idea for tumor treatment. The PD-L1 and PD-1 perform a
vital role in tumorigenesis and progression and could be a target
for tumor immunotherapy. It has been reported that PD-1 and
PD-L1 exert a vital role in the progression and immunotherapy of
glioma (57). According to Baral et al., The expression of PD-L1
correlates with the WHO grade in gliomas. The expression of PD-
L1 is common in GBM but is mostly restricted to a small
subpopulation of infiltrating T cells, forming a “molecular
barrier” that contributes to tumor immune escape and promotes
tumor malignancy (58). A high PD-L1 expression is related to
prognosis, and therefore screening out the Tipifarnibpatients with
high PD-L1 expression is important for predicting good
immunotherapy outcomes. Consistent with previous findings,
we also found that patients with glioma had higher PD-1, PD-
L1, and worse prognosis in the high-risk group than those in the
low-risk group. Our risk score model can also assist in predicting
PD-L1 expression, which is valuable as a guide to screening out
patients with good responses to PD-1 immunotherapy.

TMB could be utilized to predict the survival of patients after
treatment with immune checkpoint inhibitors (ICIs) in a variety
of cancers. Most patients with tumors with a higher TMB, except
for gliomas, will likely benefit from ICI therapy and have a better
prognosis. Generally, patients with higher TBM gliomas often
have a worse prognosis (59). These patients’ poor prognosis is
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ba et al. NRGs and TME in Glioma
most likely due to their own high WHO grade. A higher TMB in
these patients may be the result of their previous exposure to
temozolomide, which may lead to the development of less
immunogenic subclonal mutations (60). In addition, we found
that patients in the high-risk group had higher TBM values and
that the TMB and the NRG_score were positively related.
Additionally, the NRG_score and CSC showed a negative
correlation. These studies suggest that patients with high-risk
scores have malignantly differentiated tumor cells with
inherently high heterogeneity, which may also result in
different responses to antitumor immunotherapy and low
dependence on TMB. Therefore, the response of patients to
PD-1 and TMB may not always be consistent.

We further investigated the tumor mutations in two risk
groups. We found a lower frequency of IDH1 and CIC mutations
and a higher frequency of PTEN, EGFR, and TTN mutations in
patients from the high-risk group than those from the low-risk
group. Zhang et al. (61) reported that IDH and CIC mutations
occurred primarily in low-grade gliomas and that they were
associated with a significantly higher survival rate. In contrast,
EGFR, PTEN, and TTN were related to worse survival. This is in
accordance with our findings.

From the above results, we speculated that patients screened
from the high-risk group may be easier to benefit from multiple
drugs such as immunotherapy than patients in the low-risk
group. Thus, we assessed the patients’ sensitivity to currently
used chemotherapy and immunotherapy drugs. For angiogenesis
inhibitors, the patients in the high-risk group were more likely to
benefit from sunitinib and sorafenib than from other similar
drugs. And among PI3K-Akt-mTOR pathway inhibitors,
Temsirolimus was preferred over Everolimus for patients with
high-risk glioma. Tipifarnib and Lonafarnib are a class of
Farnesyl transferase inhibitors that induce death in
radiotherapy-insensitive gliomas (62–64). We also found that
patients in the high-risk group were more sensitive to Tipifamib
than Lonafarnib. Interestingly, for the commonly used epidermal
growth factor receptor tyrosine kinase inhibitors, patients in the
high-risk group were more sensitive to Erlotinib, while the low-
risk group should prefer the highly sensitive Gefitinib and
Nilot inib . In addit ion, Bicalutamide, Gemcitabine,
Parthenolide, Salubrinal, vinblastine, and Shikonin have also
been reported for the treatment of glioma (65–69). Patients in
the high-risk group may benefit more from Bicalutamide,
Gemcitabine, Parthenolide, Salubrinal, and vinblastine; While
in the low-risk group, the patients were more sensitive to
shikonin. The results revealed that NRG_score can be used to
predict the drug sensitivity of patients and even provide guidance
in the selection of different drugs in the same class.

To facilitate clinical application, we combined NRG_score with
clinical data to develop a nomogram for predicting the prognosis
of patients. In the training set, the internal validation set, and both
external validation sets of CGGA and Rembrandt, the model
proved to have excellent predictive efficacy and high reliability.

Our study has several limitations. First, there are not many
studies on necroptosis, especially its study in glioma is even less.
The selected NRGs may only be the tip of the iceberg, and more
basic studies are needed to confirm more necroptosis molecules.
Frontiers in Oncology | www.frontiersin.org 17
Secondly, we chose all public data from public databases; it
would be more convincing to use prospective own data.
CONCLUSIONS

We integrated the broad impact of NRGs on tumor immunity,
TME, and prognosis at genetic and transcriptional levels. We
constructed risk scores and a nomogram for the survival
prediction of patients with glioma. The findings of this
research provide new insights into personalized targeted
therapies for gliomas.
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