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Beta-glucans enable functional reprogramming of innate immune cells, a process defined
as “trained immunity”, which results in enhanced host responsiveness against primary
(training) and/or secondary infections (resilience). Trained immunity holds great promise
for promoting immune responses in groups that are at risk (e.g. elderly and patients). In
this study, we modified an existing in vitro model for trained immunity by actively inducing
monocyte-to-macrophage differentiation using M-CSF and applying continuous
exposure. This model reflects mucosal exposure to b-glucans and was used to study
the training effects of a variety of soluble or non-soluble b-glucans derived from different
sources including oat, mushrooms and yeast. In addition, trained immunity effects were
related to pattern recognition receptor usage, to which end, we analyzed b-glucan-
mediated Dectin-1 activation. We demonstrated that b-glucans, with different sources and
solubilities, induced training and/or resilience effects. Notably, trained immunity
significantly correlated with Dectin-1 receptor activation, yet Dectin-1 receptor
activation did not perform as a sole predictor for b-glucan-mediated trained immunity.
The model, as validated in this study, adds on to the existing in vitro model by specifically
investigating macrophage responses and can be applied to select non-digestible dietary
polysaccharides and other components for their potential to induce trained immunity.

Keywords: b-glucan, trained immunity, macrophage model, resilience, dectin-1
INTRODUCTION

An important feature of the adaptive immune system is the ability to develop long-lasting memory
responses. Over the past years, it has been clearly established that innate immune cells also retain a
memory of previous challenges with the long-recognized hypo responsiveness following
lipopolysaccharide challenges (LPS tolerance) and, the more recent established, hyper
responsiveness following b-glucan challenges (trained innate immunity) (1, 2). These properties
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of innate immune cells have been termed ‘innate immune
memory’ and are a consequence of long-term functional
reprogramming of innate immune cells following an initial
trigger (3). First indications for trained innate immunity in
humans emerged from epidemiological studies on vaccine
responses. In these studies, it was established that vaccination
did not only lead to protection against a specific pathogen, but
also to cross-protection against unrelated pathogens (4). The best
described example is that of Bacillus Calmette-Guérin (BCG)
vaccination against Mycobacterium tuberculosis, reducing
neonatal mortality due to sepsis, respiratory infection, and
fever (4). Next to offering cross-protection against pathogens,
vaccination with BCG has also been shown to elicit anti-tumor
immune effects. BCG vaccination reduced melanoma burden in
adults but also associated with a reduced risk of developing
melanomas in newborns (5–8). Preclinically, the pre-treatment
of mice with a fungal b-glucan resulted in diminished tumor
growth mediated through epigenetic effects on innate effector
cells, providing evidence for the anti-cancer effects of immune
training (9). These observations suggest that enhanced immune
responses as a result of trained innate immunity might also be
beneficial in immunotolerant states such as cancer.

Several studies have now shown that tolerance, a counter-
regulatory mechanism to protect against collateral tissue damage
in response to inflammation, can be reversed by induction of
trained immunity to reinstate cytokine production upon re-
challenge (10, 11). A study in healthy volunteers showed that
b-glucan treatment resulted in enhanced responsiveness both by
in vivo as well as ex vivo LPS-tolerized monocytes (11). Reversal
of tolerance could be especially relevant for hospitalized elderly
patients who often suffer from an attenuated immune response
as a consequence of a previous insult, leading to increased
susceptibility to secondary infections such as pneumonia (12).
Recent data would suggest that supplementation of elderly with
b-glucans could offer increased protection against the
development of upper respiratory tract infections (13).

Trained innate immunity can be induced by a number of
compounds containing danger-associated molecular patterns
(DAMPs) or microbe-associated molecular patterns (MAMPs),
such as oxidized low density lipoprotein (oxLDL), raw bovine
milk and fungal cell wall derived b-glucans (13–15). In fact, yeast
b-glucans are one of the best characterized stimuli to induce
trained innate immunity (16, 17). Beta-glucans are large
polysaccharides produced by a large variety of eukaryotic and
prokaryotic organisms. All b-glucans share the same b-1,3-
glucan backbone, however, the source and extraction methods
determine the b-1,4 or b-1,6 branching patterns, insertions and
impurities in the final commercial preparation (18, 19). While
for some b-glucans such as oat (20), zymosan (21) and baker’s
yeast (22) immune-modulatory activities have been described,
for many others it is still unknown. The recognition of b-glucans
by various immune cells is dependent on specific pattern
recognition receptors (PRRs), which can initiate numerous
downstream responses, including phagocytosis, respiratory
burst, and secretion of cytokines and chemokines (23).
Interestingly, immune cells derived from individuals deficient
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for the PRR Dectin-1 could not be trained with fungal b-glucans,
which suggest that the C-type Lectin Dectin-1 is the primary
candidate to confer innate immune training by b-glucans upon
innate immune cells (24). Small intestinal routes of nutrient
uptake can include capture by phagocytic immune cells through
direct luminal sampling or the M-cell/Peyer’s patch route (25,
26). For b-glucans specifically, capture by gut-associated
lymphoid tissue (GALT)-associated immune cells and/or
epithelial cells has been demonstrated (27). Once internalized,
b-glucan containing immune cells can travel to the different
organs of the immune system were smaller b-glucan fragments
are released over several days to further interact with immune
cells via complement receptor 3 (CR3) and to modulate the
functional capacity of immune cells (28, 29). These
bioavailability studies were performed in mice and it remains
to be determined whether it works similarly in humans.
However, clinical efficacy data on b-glucan interventions and
described effects on supporting innate immune functions would
support a comparable mechanism (30).

The currently existing trained immunity model is not
dedicated to investigate macrophage responses to continued
oral exposure to b-glucans. In addition, limited b-glucans have
been tested to provide insight into which physicochemical
properties relate to induction of trained immunity. Therefore,
we aimed to modify the current trained immunity model to
reflect mucosal b-glucan exposure by introducing M-CSF-
differentiated macrophages as well as continued exposure to b-
glucans. To this end, we tested a broad panel of different
commercially available dietary b-glucans for their potency to
induce training and resilience. Metabolic and secretory markers
of trained immunity were correlated to Dectin-1 activation with
the aim to determine whether Dectin-1 activation could be a
substitute for trained immunity in determining the potency of
b-glucans.
MATERIALS AND METHODS

Reagents
Weused nine different b-glucans as previously described (31); yeast-
a (Megazyme, Bray, Ireland), yeast-b (Immitec, Tonsberg, Norway),
zymosan (InvivoGen, Toulouse, France), yWGP (InvivoGen) (all
yeast-derived), curdlan [bacteria-derived, Alcaligenes faecaeli,
(Megazyme)], lentinan [Lentinula edodus (31)], grifolan (Grifola
frondosa [Hangzhou New Asia International Co., Ltd, Hangzhou,
China)], schizophyllan [Schizophyllum commune (InvivoGen)] (all
fungi-derived), and oatbG [oat-derived, (Megazyme)]. Their
characteristics, such as solubility, protein content, molecular
weight distribution, branching and linkages, monosaccharide
composition, total saccharide content (i.e. purity) as well as LPS/
LTA contamination levels have been reported previously (31).

Isolation and Culture of Human Monocytes
Buffy coats from healthy donors were collected after written
informed consent (Sanquin, Nijmegen, The Netherlands).
Isolation of human peripheral blood mononuclear cells
June 2021 | Volume 12 | Article 672796
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(PBMCs) was performed by dilution of the buffy coat fractions
1:1 with sterile phosphate-buffered saline (PBS) (Sigma Aldrich,
Zwijndrecht, The Netherlands) containing 2% fetal bovine serum
(FBS) (HyClone™ Fetal Bovine Serum, Fisher Scientific,
Loughborough, UK) and loading onto Greiner Bio-One™

LeucoSEP™ Polypropylene Tubes that were pre-loaded with
15 ml Ficoll-Paque plus (GE Healthcare Life Sciences). Cells
were centrifuged at 200xg for 5 min followed by centrifugation at
500xg for 10 min. The interface layer, containing PBMCs, was
isolated and the cells were washed three times in PBS containing
2% FBS. After washing, cells were diluted in 8 ml MACS buffer (2
mM EDTA, 2% FBS in PBS), after which 1 ml of CD14
microbeads (Miltenyi Biotec, Leiden, The Netherlands) was
added per buffy coat followed by an incubation step for 15 min
at 4°C and mixing every 5 min. Cells were washed and
resuspended in 0.5 ml MACS buffer, and monocytes were
isolated using positive selection with the quadroMACS system
and LS Columns according to the manufacturer’s protocol
(Miltenyi Biotec). Sorted cells were frozen in FBS with 10%
dimethyl sulfoxide (DMSO) (Sigma Aldrich) and stored in
liquid nitrogen.

Training and Resilience Model for
Human Monocytes
Monocytes (500,000 cells/well) were added to 24-well tissue
culture (TC) plates (Corning Costar, New York, NY, USA) and
incubated for 24 h at 37°C in RPMI 1640 – Glutamax – HEPES
medium (Gibco, Bleiswijk, The Netherlands) supplemented with
10% FBS, 1% MEM with non-essential amino acids (Gibco), 1%
Frontiers in Immunology | www.frontiersin.org 3
Na-pyruvate (Gibco), 1% Pen/strep (Gibco) with or without 50
ng/ml macrophage colony-stimulating factor (M-CSF) (R&D
systems, Minneapolis, MN, USA) in a total volume of 1 ml for
24 h at 37°C. Next, monocytes were stimulated by adding fresh
medium, 5 µg/ml b-glucan, 10 ng/ml LPS (LPS derived from
Escherichia coli O111:B4, Sigma Aldrich) or a combination of
5 µg/ml b-glucan and 10 ng/ml LPS with or without 50 ng/ml M-
CSF (see Figure 1). After 24 h of stimulation, cells were washed
once with pre-warmed medium, after which culture medium
with or without 50 ng/ml M-CSF was added for another 5 days to
start monocyte differentiation. At day 7, macrophages were
stimulated for 24 h with 10 ng/ml LPS, after which the
supernatant was collected and stored at -20°C for further
analysis (see Figure 1). Alternatively, during the 5 day
incubation period, monocytes were exposed to 5 µg/ml b-
glucan and 50 ng/ml of M-CSF and the medium was collected
and stored at -20°C for further analysis.

Reporter Assay
The NFkB reporter cell lines HEK-Blue™Null1-v cells, HEK-
Blue™-hDectin-1a and HEK-Blue™-hDectin-1b (InvivoGen)
were cultured and maintained in high glucose DMEM
GlutaMAX™ (Gibco) supplemented with 10% heat-inactivated
FBS (Gibco). These reporter cell lines overexpress the Secreted
Embryonic Alkaline Phosphatase (SEAP) reporter gene driven by
an NFkB-inducible promoter. All reporter assays were performed
according to the manufacturer’s protocol. Briefly, cell passage was
performed by trypsinization with 0.05% trypsin-EDTA (Life
Technologies) and a split ratio of 1:10 was used. All cell lines
FIGURE 1 | Experimental set-up of the established in vitro training and resilience protocols. Monocytes were retrieved from cryogenic vials and allowed to settle for
24 h (I) before cells were stimulated with medium, 5 µg/ml b-glucan (yeast-b, yWGP, grifolan), 10 ng/ml LPS or both b-glucan and LPS for 24 h (II). Stimuli were
removed and cells were rested for 5 days (III) and subsequently challenged at day 7 with 10 ng/ml LPS (IV). Supernatant was collected on day 8 to quantify TNF-a
levels measured by means of ELISA (V).
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(passage 4-32) were seeded at 1x106 cells/ml in 100 µl/well in a poly-
D-Lysine coated 96-well microplate (Greiner bio-one, Alphen a/d
Rijn, The Netherlands) overnight at 37°C and 5% CO2. The
following day, reporter cell lines were stimulated for 24 h with
different concentrations of b-glucans (5, 10, 100 and 1000 µg/ml) in
a total volume of 200 µl/well, after which, cell-free volumes of 20 µl/
well were transferred to a 96 well-plate (Corning Costar) containing
180 µl/well QUANTI-Blue™ Solution (InvivoGen). Following a last
incubation of 2 h at 37°C and 5% CO2, SEAP secretion was
measured spectrophotometrically at 635 nm (TECAN, Giessen,
The Netherlands).

Cytokine Production
The production of interleukin (IL)-6 and tumor necrosis factor
alpha (TNF-a) in cell-conditioned supernatants was determined
by means of ELISA (BioLegend, San Diego, CA, USA) according
to manufacturer’s protocol.

Nitric Oxide Production
To measure nitric oxide (NO) production, monocytes were
trained for 5 days with b-glucans and NO was determined in
supernatants on day 6 before stimulation with LPS using Griess
reagent (Sigma-Aldrich).

Lactate Release
To assess release of lactate, monocytes were again trained for 5
days with b-glucans. After stimulation with LPS on day 7,
supernatants were collected. The lactate concentration in
supernatant was measured using a lactate colorimetric assay kit
(Bio-connect, Huissen, The Netherlands).

Statistical Analysis
All experiments were conducted with a minimum of five human
donors. All data were analyzed using GraphPad Prism software
version 5.0 (Graphad, La Jolla, CA, USA). Results were analyzed
using a paired Student’s t-test, one-tailed Spearman’s correlation
test or 2-way ANOVA. A P value <0.05 was considered as
statistically significant. Data are shown as means ± standard
deviation (SD).
RESULTS

Yeast-Derived b-Glucan Induced
Training and Resilience in
M-CSF-Differentiated Macrophages
We investigated whether a yeast-derived WGP (yWGP),
extensively studied for its immunomodulatory activities, a
second yeast-derived b-glucan extract (yeast-b) and a third
fungi-derived b-glucan (grifolan) induce training or resilience
when applying the established model as depicted in Figure 1. To
control macrophage differentiation, the established model (16)
was modified by adding M-CSF at all steps and using FBS instead
of human serum. Yeast-b and yWGP, but not grifolan, enhanced
release of TNF-a following an LPS stimulus at day 7 in both the
established and macrophage training models (Figures 2A, C).
Frontiers in Immunology | www.frontiersin.org 4
Beta-glucan yWGP also increased TNF-a release when
compared to LPS-induced tolerance in the resilience protocol
using either models while yeast provided resilience only in the
adapted model and grifolan was unable to increase TNF-a
release compared to LPS-induced tolerance in either model
(Figures 2B, D).

Yeast-b Induces Training and Resilience in
M-CSF-Induced Macrophages Following
Continuous Exposure
To mimic daily intake of b-glucans, we investigated the effect of
continuous exposure by supplementing b-glucans to day 2 until
day 6 cultures without medium refreshment, as schematically
depicted in Figure 3A. Again, at day 1 the LPS challenge was
provided in the absence of b-glucans, as b-glucans can bind LPS,
and therefore could prolong LPS presence in the medium (32).
Similarly, as observed with single day exposure, continuous
exposure in both the established and M-CSF modified training
models enhanced release of TNF-a following an LPS-stimulation
on day 7 (Figure 3B). Continuous exposure of LPS-activated
cells to yeast-b enhanced the release of TNF-a following a
secondary LPS stimulation on day 7 compared to cells
receiving LPS as primary stimulus and did not receive yeast-b
(Figure 3C). Taken together, our macrophage model of
controlled and M-CSF-mediated macrophage differentiation
and continuous exposure to b-glucans can demonstrate the
induction of trained immunity by yeast-b.

Yeast and Bacteria-Derived b-Glucans
Enhanced Secretion of Pro-Inflammatory
Cytokines IL-6 and TNF-a in Training
and Resilience Protocols With
M-CSF-Induced Macrophages
With our macrophage model of M-CSF addition and continuous
exposure to b-glucans, we next evaluated a range of different
soluble and insoluble b-glucans derived from different sources
for their effect on training and resilience. Next to yeast-b, yWGP
and grifolan, we tested yeast-a, zymosan, curdlan, lentinan,
oatbG and schizophyllan. All were previously characterized for
their physicochemical composition and LPS/LTA contamination
levels (31).

Upon employing the training protocol, supplementation with
yeast-b, zymosan, curdlan, yWGP or yeast-a, all b-glucans
increased TNF-a and IL-6 release compared to medium
control, while lentinan, grifolan, oatbG and schizophyllan
showed no additional TNF-a or IL-6 release (Figures 4A, B).
OatbG even showed a reduction in TNF-a release compared to
medium control. In cultures receiving a primary trigger with LPS
(i.e., resilience protocol), supplementation with yeast-b, zymosan
and yWGP increased TNF-a release following a secondary LPS
triggering compared to the LPS control (Figure 4C). The
observed effect was less strong for IL-6, with only yeast-b and
lentinan showing a significantly increased release of IL-6
compared to the LPS control (Figure 4D). Supplementation
with curdlan also increased TNF-a and IL-6 releases, however,
these releases did not reach statistical significance.
June 2021 | Volume 12 | Article 672796
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Beta-Glucans From Variable
Sources Activated Dectin-1a
and -1b Receptor Isoforms in a
Concentration-Dependent Manner
Dectin-1 is a primary receptor for b-glucans to exert their
immunomodulatory activity. To identify whether the b-glucans
that were tested in this study can also signal via this receptor, the
activation of both Dectin-1 isoforms (i.e., 1a and 1b) was
measured. HEK-Blue Dectin-1 reporter cells and their controls
were stimulated with 5, 10, 100 and 1000 µg/ml of b-glucans for
24 h and their activation measured as described in the materials
and methods. Both Dectin-1a (Figure 5A) and Dectin-1b
(Figure 5B) transfected cells, but not the non-transfected
control cell line Null-1V (Supplementary Figure 1), showed
activation following b-glucan supplementation. When using a
high dose of 100 and 1000 µg/ml, all b-glucans, except oatbG and
yeast-a, showed concentration-dependent activation of both
Dectin-1a and Dectin-1b. Of note, schizophyllan appeared to
lower the activation of both Dectin-isoforms when applying the
Frontiers in Immunology | www.frontiersin.org 5
highest dose. At a dose of 5 and 10 µg/ml, the differences between
b-glucan preparations became more noticeable revealing yeast-b,
zymosan, yWGP, schizophyllan and yeast-b as the most potent
inducers of Dectin-1a and Dectin-1b activation.

Dectin-1b Activation by b-Glucans
Correlated With Lactate and
TNF-a Secretion Following
Training of Macrophages
To study the functional consequence of b-glucan-induced
immune training of macrophages in more detail, we
investigated the release of nitric oxide (NO) and lactate. In
both experimental protocols (training / resilience) NO release
was assessed before the LPS challenge at day 7 while lactate
release was measured 24 h after challenge with LPS at day 7.
Nitric oxide secretion was non-significantly increased in
macrophages supplemented with curdlan, and significantly
reduced in macrophages supplemented with grifolan,
schizophyllan, lentinan, yeast-a or yeast-b, when compared to
A B

C D

FIGURE 2 | Beta-glucans induced training and increase resilience in both trained immunity protocols. The protocols of the in vitro training and resilience model for
(A–D) are schematically depicted in Figure 1 and described in the legend to Figure 1, with the adjustment that 50 ng/ml M-CSF was added to step I-III for (C) and
(D) Results from training (A) and induced resilience (B) when applying the established protocol and training (C) and induced resilience (D) when applying the
controlled M-CSF-mediated macrophage differentiation protocol are shown in a bar graph as average pg/ml TNF-a ± SD of n = 5 different donors. Data was
analyzed with paired Student’s t test and statistical significances were indicated: *P < 0.05 compared to the medium control; **P < 0.01 compared to the medium
control; #P < 0.05 compared to the LPS control.
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medium only (Figure 6A). In cultures receiving a primary trigger
with LPS on day 1, yeast-a significantly increased NO secretion
when compared to medium following a secondary LPS challenge
on day 7 (Figure 6B). Macrophages supplemented with yWGP,
zymosan or yeast-b resulted in an increased concentration of
lactate in their medium when compared to medium treated
macrophages (Figure 6C). Macrophages receiving an LPS-
challenge on day 1 followed by supplementation with b-
glucans demonstrated no significant change in lactate secretion
when compared to medium following a secondary LPS challenge
on day 7 (Figure 6D).

Finally, we tested whether Dectin-1 activation correlated with
above mentioned macrophage functions (Supplementary Table 1).
In the training protocol, correlations found between secreted
molecules and Dectin-1b were more significant rather than with
Dectin-1a activation. Notably, TNF-a release, but not IL-6, was
Frontiers in Immunology | www.frontiersin.org 6
found to correlate with Dectin-1b across all b-glucan concentrations
(Figure 7A and Supplementary Table 1). Nitric oxide release and
Dectin-1 activation showed no correlation. Lactate release correlated
with Dectin-1b activation for b-glucan concentrations of 5, 10 and
1000 µg/ml (Figure 7B and Supplementary Table 1). In the
resilience protocol correlations between macrophage functions
and Dectin-1 activation was far less evident. Only a few
correlations were found at the highest b-glucan concentrations for
both Dectin-1 isoforms. At a dose of 1000 mg/ml Dectin-1a and
Dectin-1b activation correlated with NO and/or IL-6, and at a dose
of 100 mg/ml Dectin-1a activation correlated with lactate release. Of
interest, solubility, which is considered a defining feature in non-
digestible polysaccharide functionality (33), significantly correlated
with TNF-a in both protocols (Figures 7C, D). In addition,
solubility of b-glucans also significantly correlated with IL-6 in
both protocols (data not shown).
A

B C

FIGURE 3 | Introducing new elements to the established training and resilience protocol to generate a macrophage model system. The protocol of in vitro training
and induced resilience including the addition of M-CSF during step I-III and a prolonged incubation (i.e., day 2 to 6 instead of day 1) with b-glucan in the macrophage
model is depicted in (A) Results from training (B) and induced resilience (C) in presence or absence of M-CSF and prolonged presence of b-glucan are shown in a
bar graph as average pg/ml TNF-a ± SD of n = 5 different donors. Data was analyzed with paired Student’s t test and statistical significances were indicated:
*P < 0.05 compared to the medium control; **P < 0.01 compared to the medium control; #P < 0.05 compared to the LPS control.
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DISCUSSION

There is increasing evidence that b-glucans from different
sources can modulate local and systemic immune responses.
Data of our study clearly underline that b-glucans possess the
ability to induce trained immunity and resilience of the innate
immune system. However, several knowledge gaps remain
regarding their mechanisms of action and structure-activity
relationships. For instance, in human clinical studies it is not
clear whether b-glucans can also be sufficiently absorbed from
the intestinal tract, as Leentjes and colleagues found hardly
detectable serum concentrations of b-glucan in blood (34). In
addition, Lehne and colleagues found low concentrations of
serum b-1,3 glucan without detection of systemic absorption
following oral administration (35).

In contrast, preclinical studies have shown that orally ingested b-
glucans can be absorbed in the gut (27, 28), in particular by
Frontiers in Immunology | www.frontiersin.org 7
macrophages, rather than monocytes, that are present in the
proximal small intestine and are subsequently transported to
distant lymph nodes, bone marrow and spleen (28). The existing
immune training model relies on human serum with unknown and
variable levels of monocyte-differentiation factors to induce
macrophages from monocytes. To remove this variability, we
opted to use M-CSF at a concentration known to yield
macrophages (36). Our findings indicate that both models show
similar induction of both innate immune training and resilience as
measured by the increased release of TNF-a and IL-6 following
supplementation with b-glucan. A limitation of the current models
is that both serum and M-CSF-differentiated monocyte-derived
macrophages may not fully mimic the function of intestinal tissue
resident macrophages (TRMs), that will probably ligate, engulf and
fragment orally ingested b-glucans after intake. Tissue-derived
macrophages originating from different sources were
demonstrated to share over 90% similarity in their genetic
A B

C D

FIGURE 4 | Yeast-b, zymosan, curdlan, yWGP and yeast-a induced training and/or resilience in the macrophages model with continuous exposure. Monocytes
were treated as depicted in Figure 3A. Monocytes were exposed to medium from days 1 to 6, or trained with 5 mg/ml b-glucans from days 2 to 6, before testing
the training effect by challenging them with 10 ng/ml LPS at day 7 for 24 h (A, B). Alternatively, to test induced resilience, monocytes were challenged with LPS at
day 1, from days 2 to day 6 cells were cultured in medium or with 5 mg/ml b-glucans and challenged with 10 ng/ml LPS at day 7 for 24 h (C, D). Supernatants of
conditioned media were collected and TNF-a (A, C) and IL6 (B, D) measured by ELISA. Results are shown in a bar graph as average pg/ml cytokine ± SD of n = 6
different donors. Data was analyzed with paired Student’s t test and statistical significances were indicated: *P < 0.05 compared to the no b-glucan (medium)
control; **P < 0.01 compared to the medium control; #P < 0.05 compared to the LPS control. ***P < 0.001 compared to the medium control.
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repertoire with only limited phenotypic differences, suggesting that
the tissue micro-environment plays an important role in directing
macrophage functionality (37–40). To improve the predictive value
of the current immune cell models, future studies should focus on
enhancing environmental mimicry through, for instance, the
combination with intestinal organoids.

We next considered the exposure strategy for the therapeutic or
preventive supplementation of b-glucans to support host immunity
by replacing the single intake approach with daily intake. So, we
made another change to the established model by providing
continuous exposure instead of a single exposure. Measuring the
effect of b-glucan supplementation in both models revealed that
both the established model as well as the macrophage model led to
enhanced training as well as resilience. Collectively, our macrophage
model reflects mucosal exposure to b-glucans via the oral route and
Frontiers in Immunology | www.frontiersin.org 8
can be used to screen b-glucans for their training and resilience
effects in a similar fashion as the established model.

In our validated macrophage model, multiple b-glucans from a
variety of sources, with reported purity and solubility, were screened
for induction of training or resilience. Results are in line with
literature in that none of the soluble b-glucans, not even the high
molecular weight fraction of such b-glucans, induced TNF-a or IL-6
production in either human monocytes or monocyte-derived
macrophages (33). In contrast with our findings, Pan and
colleagues showed that oat-derived b-glucan induces trained
immunity through metabolic reprogramming (20). The oat-derived
b-glucan used in our studies was highly soluble and induced neither
immune training, resilience nor Dectin-1 activation. A likely
explanation for this discrepancy could be a difference in the
preparation of the tested oat-derived b-glucans, with the
A

B

FIGURE 5 | Activation of Dectin-1a and b isoforms by yeast-b, zymosan, curdlan, yWGP, lentinan, schizophyllan and yeast-a. HEK- Blue™ - Dectin-1a (A) and HEK-

Blue™ - Dectin-1b (B) were stimulated with 5, 10, 100 and 1000 µg/ml of b-glucans. After 24 h of stimulation, the secretion of SEAP was quantified in cell-free
supernatants. Results of SEAP activity analysis are shown in a bar graph as average values ± SD of absorbance at 635 nm from n = 3 independent experiments.
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preparation used in the study by Pan and colleagues potentially
containing an insoluble component. Another explanation could be
the difference in cell origins as Pan and colleagues employed a
monocytic cell line and mouse bone-marrow derived monocytes.
Since PPR interaction by b-glucans are critical for innate immune
training, differential PRR expression between human primary cells
versus mouse immune cells, or human cell lines for that matter, may
further underlie the different findings between the two studies. In fact,
mouse and human Dectin-1 do not similarly mediate b-glucan
recognition nor activation (41) and while primary monocytes and
macrophages constitutively express Dectin-1, the human THP-1 cell
line needs to be activated to do so (42, 43). In addition to analyze
secretion of IL-6 and TNF-a, we also assessed the induction of NO
and lactate secretion. Training of monocytes was shown to induce a
shift in the metabolism from oxidative phosphorylation toward
aerobic glycolysis (44) with lactate being a marker for glycolysis
(10, 16). Using our macrophage model, we validated the metabolic
shift towards increased glycolysis by showing increased lactate release,
associated with increased cytokine production. In contrast, the release
of NOwas not altered as a result of training or resilience induction by
b-glucans. This was also in line with previous findings (16, 45).
Frontiers in Immunology | www.frontiersin.org 9
To the best of our knowledge, we demonstrated for the first
time that human Dectin-1b activation by b-glucans was
significantly and positively correlated with TNF-a secretion and
lactate production following training of macrophages. In
accordance with these results, previous studies demonstrated
that maturation of monocytes was accompanied by enhanced
expression of the Dectin-1b isoform, whereas isoform 1a
expression tended to decline during maturation (46). Moreover,
differentiation of monocytes with M-CSF also increased
expression of Dectin-1b isoform that mainly conveys signals
through the Syk/cPLA2 route (47). In the present study,
particulate b-glucans demonstrated strong and significant
activation of Dectin-1a as well as Dectin-1b receptors, also
observed for some soluble b-glucan at high concentrations. It is
noteworthy that insolubility overall strongly correlated to TNF-a
release in both training and resilience assays. Goodridge and
colleagues demonstrated that soluble b-glucans could reduce
particulate b-glucan activity (33). They reported that, despite
efficient binding to Dectin-1, soluble b-glucans are incapable of
activating this receptor, and their presence might explain the lower
Dectin-1 activation as we observed for schizophyllan specifically at
A B

C D

FIGURE 6 | The induction of training and resilience in macrophages by various b-glucans affects NO and lactate secretion. Human monocytes were trained (A, C)
and resilience was induced (B, D) as described in the legend to Figure 3. Nitric oxide (A, B) was determined before challenging the macrophages with LPS at day 7
and lactate (C, D) release was determined after day 7 of LPS challenge. NO and lactate levels were determined in the supernatant and shown as percentages
relative to non-treated macrophages (medium is set at 100%). Results are shown in bar graphs as average ± SD of n = 3-5 different donors. Data was analyzed
with paired Student’s t test and statistical significances were indicated: *P < 0.05 compared to the no b-glucan (medium) control; **P < 0.01 compared to the
medium control.
June 2021 | Volume 12 | Article 672796

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Moerings et al. Non-Soluble b-glucans Train M-CSF-Differentiated Macrophages
a high concentration. Furthermore, these authors showed that
immobilization of soluble b-glucans allows for Dectin-1 activation
potentially due to the formation of a phagocytic synapse. However,
the paper by Goodridge and colleagues does not indicate whether
they investigated Dectin-1a or Dectin-1b. Although the differences
between Dectin-1a and Dectin-1b function remains an
understudied aspect of Dectin-1 function, literature would
suggest that ligand binding might be different between Dectin-
1a and Dectin-1b isoforms (48). Moreover, both isoforms are
differently susceptible to neutrophil elastase cleavage which could
impact the immune response towards pathogens (49). This could
indicate that Dectin-1a or Dectin-1b usage might offer a means to
regulate cellular responses towards b-glucan. Our own findings
suggest that soluble b-glucans are capable of inducing Dectin-1
receptor clustering on HEK cells when applied at high enough
concentrations. This, together with the observed correlations
between Dectin-1b activation and macrophage functions, argues
that Dectin-1b-expressing HEK cells may represent a pre-
screening tool to assess the ability of compounds to train
macrophages. In addition to Dectin-1, the CR3 receptor has also
Frontiers in Immunology | www.frontiersin.org 10
been demonstrated to be necessary to induce training by b-glucans
(24). In fact, blocking of Dectin-1 or CR3 inhibited the priming of
monocytes by b-glucans (23). Therefore, extending the mentioned
pre-screening with a cell line to also identify CR3 activation is
considered a valuable addition.

Finally, we would like to state that our model is limited to
assess direct effects on macrophages, while the translation to the
human in vivo situation will be more complex. Data have shown
that the Dectin-1 receptor is essential for the distribution of b-
glucans by macrophages through the body (50). After ingestion,
b-glucans are slowly degraded and smaller b-glucan fragments
are systemically released to be recognized by and activate CR3
present on various innate immune cells (24, 50). Together these
lead to increased responsiveness of the innate immune response
upon secondary challenges. It is still a matter of debate whether
primary activation of Dectin-1 is necessary and whether b-
glucan binding and uptake is sufficient for the in vivo effect of
b-glucans. Findings presented in this study and reports on in
vitro data clearly indicate a role for b-glucan solubility in the
induction of immune innate training. Although blocking of CR3
A B

C D

FIGURE 7 | Dectin-1b activation and solubility of b-glucans correlate with macrophage functions following training or induced resilience. Scatterplots displaying

SEAP release upon exposure of 5 mg/ml b-glucans to HEK- Blue™ - Dectin-1b cells and TNF-a (A) or lactate (B) release following training of macrophages.
Correlation coefficients of Dectin-1b activation with macrophage secretion of TNF-a and lactate upon exposure of 5, 10, 100 and 1000 mg/ml b-glucans are
displayed in Supplementary Table 1. Correlations between b-glucan solubility and TNF-a release following training (C) or resilience (D) testing in macrophages.
Solubility of b-glucans was measured previously by de Graaff and colleagues (31): oatbG (100%), curdlan (<13%), grifolan (49%), schizophyllan (63%), lentinan (39%),
yWGP (<13%), zymosan (<13%), yeast-a (<13%) and yeast-b (<13%).
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was shown to only partially prevent induction of immune
training (24), future studies should aim to investigate the
activation of CR3 or other PRRs by b-glucan fragments to
provide additional proof whether or not Dectin-1-mediated
uptake of b-glucans is sufficient to induce immune training.
Importantly, b-glucans were shown to reduce tumor onset,
growth and progression in murine models (51). However, b-
glucans from different molecular sizes, soluble/insoluble ratios
and branching patterns may have significantly variable
bioavailability and immune potency, and consequently variable
anti-tumor effects. Therefore, the applied model for b-glucan
selection must fit and represent the intended in vivo activity to
accurately investigate clinical effects of b-glucans.

In conclusion, firstly this study presents a new macrophage-
based in vitro model that reflects mucosal immunomodulation
by b-glucans. We have shown that indigestible b-glucans induce
training and/or resilience in macrophages leading to an increase
in cytokine production and glycolysis. Furthermore, soluble and
particulate b-glucans demonstrated different effects on Dectin-1
activation, which might be an additional explanation for the
difference in trained innate immunity effects of soluble and
particulate b-glucans as previously found by others.

Secondly, our data suggest that both insolubility and Dectin-
1b activation predict whether b-glucans contain the capacity to
induce training or resilience. Therefore, physicochemical analysis
as well as Dectin-1b ligation could be considered a proxy for
induction of training or resilience in macrophages, which in turn
yield a simplified model to identify dietary ingredients with
macrophage training properties. A simplified model to screen
dietary fibers, beyond b-glucans, for their potential to induce
immune training would benefit manufacturers who would aim to
include immune-potentiating ingredients in their products.
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