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Abstract: Conservative gene families in plants, which are closely related to innovations in
flowering plants, have long and complex evolutionary histories. Here, we used the SQUAMOSA
promoter-binding protein (SBP-box) gene family as an example to study conservative gene families
in flowering plants. In total, 11 groups, including nine angiosperm-conservative groups and two
monocot- and eudicot-specific groups, were identified. Among the nine angiosperm-conservative
groups, four are conserved in all land plants and the remaining five are angiosperm-specific.
The five angiosperm-specific groups exhibit structural and functional diversity and evolved together,
along with the evolution of flowering plants. The expansion of SBP genes was affected by miR156,
and the miR156-regulated SBP genes tend to retain more copies. Our results reflect the dynamic
evolutionary process of the different groups, with the identification of two genetic lines via synteny
analyses. In addition, miR156 showed a close evolutionary relationship with SBP genes, suggesting
that it may originate from face-to-face tandem duplication of SBP genes. SBP genes without
an miR156 binding locus are usually functionally conservative or housekeeping like, belonging to
the terrestrial-conservative group. In contrast, SBP genes with miR156 binding sites are selected by
angiosperms to regulate more complex physiological processes.
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1. Introduction

Angiosperms (flowering plants), with at least 300,000 species in multiple families, are the most
diverse and latest-diverging group in the plant kingdom [1–4]. A gene family is a group of genes
with the same characteristics, which usually contain a specific domain, motif, or special structural
composition. Conservative gene families consist of genes whose sequences are conserved over time
and are widely observed in many species. There are many conservative gene families in flowering
plants. They appear in a large range of taxa and often play critical roles. Multiple types have also
been found. For instance, some gene families are the main catalytic carriers of important biochemical
processes in plants. The P450 super family has a large number of plant members and is the key enzyme
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for chemical synthesis [5,6]; some conservative families are important transcription factors (TFs), which,
in plants, are structurally diverse and involved in many development processes and responses to
abiotic and biotic stresses. For instance, the WRKY superfamily is involved in pathogen defense [7],
senescence, and trichome development [8,9], and the MADS-box gene family is strongly correlated
with the origin and evolution of reproductive structures such as flowers and ovules [10].

SQUAMOSA promoter-binding protein (SBP-box) (SBP) genes encode plant-specific TFs (SBP or
SPL) that were first identified in Antirrhinum majus [11]. They were named for their ability to regulate
the expression of SQUAMOSA (a kind of MADS-box) genes. Several characteristics make SBP-box
a representative conservative gene family in plants. First, group members have a long evolutionary
history. SBP genes have been identified in green algae, bryophytes, and angiosperms [12–14].
In addition, the SBP-box gene family has evolved many groups [12–15]. In a previous study, we showed
that the SBP genes of Euphorbiaceae can be divided into 10 groups [16]. The SBP composition of different
plant taxa is usually different [12–14]. In addition, SBP genes can be regulated by miR156 [17,18],
and the evolution of SBP may be influenced by it. Finally, the SBP-box gene family is functionally
diverse. Although it is highly conserved in plants, SBP genes in different groups may be specific to
certain plant taxa [12–14]. These characteristics suggest that the SBP-box gene family is a very typical
conservative gene family. Therefore, it would be helpful to study this family to understand other
conservative gene families in angiosperms.

Over the last two decades, tremendous efforts have been made to explore whole-genome
duplication (WGD) events. WGDs accelerate the birth and death of plant genes and have long
been recognized as an important source of biochemical, genetic, and evolutionary novelty [19–21].
The moves from aquatic to terrestrial, from sporogenesis to seed reproduction, from gymnosperms to
angiosperms, and from monocots to eudicots have typically been accompanied by WGDs. For example,
all seed plants experienced WGD event ζ [22]; all angiosperms experienced WGD event ε [22]; and two
important clades in angiosperms, namely, monocots and eudicots, both experienced WGD events (γ for
eudicots and τ for monocots) [23–26]. However, it seems that flowering plants appeared abruptly and
were soon the most successful organisms on the planet [1,3,19]. Harsh environmental conditions are an
external factor that promotes plant evolution. In the Cretaceous, the Earth was dry and hot, with high
levels of oxygen. However, around the Cretaceous–Paleogene (K–Pg) boundary, global cooling and
darkness were the two main stresses. The following question remains: what role did conservative gene
families play in the success of flowering plants? WGD events promote gene evolution and provide us
with the clues we need to understand plant gene families.

The evolution of a gene family is a dynamic process. As changes occur in the physiological
processes and phenotypes of plants, the structures and functions of a gene family may also be
undergoing constant change. Typically, ancient WGDs in plants have been accompanied by key
innovations [20], including the formation of vessels and flowering mechanisms, and the formation and
evolution of many flower organs [21]. In a specific gene family, both the composition and function
may change after a WGD [21,27–30]. The influence of different WGDs in different periods on a certain
gene family may differ. At least 10% of all floral regulators in Arabidopsis thaliana can be traced back to
the common ancestors of the angiosperm [31]. The TF gene families that are involved in responses to
biotic and abiotic stresses tend to have retained large numbers of copies during the three waves of
angiosperm WGDs [32]. The evolutionary trajectories of the different taxa of angiosperms are diverse.
All eudicots experienced γ [23,24,26], while all monocotyledons experienced τ [25]. After τ, Gramineae
experienced σ and % [25], unlike other monocots. Angiosperms also feature diverse physiological
and reproductive processes and phenotypes among different taxa. Some plants are androgynous and
others are diclinous; some plants blossom each year and others blossom only once in their lifetime.
The gene families associated with these processes or phenotypes may experience a distinct evolutionary
trajectory for different taxa. Therefore, the evolutionary process of a specific conservative gene family
may be in a synchronous relationship with the physiological and phenotypic evolution of flowering
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plants. Hence, the evolutionary patterns of a specific conservative gene family during typical periods
of its evolution need to be studied.

In this study, we comprehensively analyzed the SBP genes in 22 angiosperms and investigated
their dynamic evolution to better understand the SBP-box gene family of flowering plants. First,
22 sequenced plant genomes, which represent major lineages of flowering plants, were used to predict
SBP genes, and phylogenetic analyses were performed to obtain a comprehensive SBP-box gene family
classification. Then, an evolutionary profile of SBP genes was created in phylogenetic analyses of
angiosperms and other typical control species, providing a map of the evolution of the SBP genes.
Moreover, the dynamic evolution of different SBP groups and the correlations between SBP and miR156
were assessed based on synteny relationships, and a possible model of the emergence of miR156 was
developed. Finally, we performed a preliminary functional exploration of different groups of SBP genes
by analyzing their upstream regulatory sequences, along with their tissue-specific and stress-treatment
expression profiles. We performed comprehensive analyses of the angiosperm SBP-box gene family
and its dynamic evolution to provide a reference for the study of other conservative gene families
in plants.

2. Materials and Methods

2.1. Data Sources

The genomic and proteomic sequences of Brachypodium distachyon, Ananas comosus, Sorghum
bicolor, Panicum hallii, Oryza sativa, Musa acuminate, Setaria italica, Elaeis guineensis, Zea mays, Brassica
rapa, Camelina sativa, Phaseolus vulgaris, Vigna angularis, Cajanus cajan, Medicago truncatula, Solanum
lycopersicum, Capsicum annuum, Nicotiana tabacum, Prunus persica, Malus domestica, and Prunus mume
were taken from the NCBI database [33]. The genomic and proteomic sequences for A. thaliana
were downloaded from the TAIR database [34]. The SBP protein sequences for A. thaliana, O. sativa,
Physcomitrella patens, Selaginella moellendorffii, Picea abies, Amborella trichopoda, and Chlamydomonas
reinhardtii were obtained from the PlantTFDB database [35]. The pre-miR156 sequences and
mature-miR156 sequences for A. thaliana and O. sativa were obtained from the miRBase database [36].

2.2. SBP Gene Identification and Characterization

Both a genome-wide Hidden Markov Model (HMM) search and local Blastp were performed to
identify possible SBP genes [37,38]. The HMM model of PF03110 was downloaded from Pfam [39].
A local version of the HMMER v3.2.1 program was used to perform the hmmsearch, and the E-value
was set to the default value. The known sequences of A. thaliana SBP proteins were used as queries
in the Blastp process, and the E-value was set to 1 × 10−10. The results obtained by the two methods
were combined and left for later analyses after removing redundancy. To ensure the authenticity
of the SBP domain, all retrieved sequences were tested using the SMART v8.0 tool and the NCBI
Conserved Domain Database (CDD) [40,41]. Sequences with incomplete SBP domain structures were
completely discarded. Some basic physicochemical parameters of SBP proteins, such as the protein
length, molecular weight (Mw), and isoelectric point (pI), were predicted using the ExPaSy Proteomics
Server [42]. Additional conserved motifs outside the SBP domain of all SBP proteins were identified
by MEME v5.1.0 [43]. The settings for the minimum width, maximum width, maximum number of
motifs, and minimum sides were specified as 6, 150, 15, and 2, respectively.

2.3. Phylogenetic Analyses and Detection Orthologous Genes

The SBP protein sequences of these 22 species were aligned using MUSCLE v2.0 [44], and the
alignments were used for phylogenetic analyses. Both the Bayesian method in MrBayes v3.2.7 and the
maximum likelihood method in PAUP* v4.0 [45,46] were implemented. The orthologs among these
species were detected using OrthoFinder v1.0.6 [47].
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2.4. MIR156 Prediction

MiRNAs were predicted using a homologous search based on mature miRNA sequence
conservation in plant species. The mature miR156 sequences were downloaded from miRBase [36].
A total of 470 mature sequences were deposited in miRBase (Release 22.1). After all redundancies
were removed, the remaining unique sequences were kept as miRNA reference sequences, and they
were subjected to Blastn against the genome [38]. Output sequences > 18 nt in length and with
less than three mismatches compared to the miRNA sequences were collected for further analyses.
The predicted miRNAs of mature sequences, along with sequences 200 nt upstream and downstream,
were used as assumed miRNA precursor sequences. If either the upstream or downstream sequence
was less than 200 nt, the entire available sequence was used as an miRNA precursor sequence.
Sequences in protein-coding genes were removed, and the remaining sequences were subjected to
RNA secondary-structure prediction using MFold v3.6 [48]. All sequences met the criteria given in
a previous study and could be used for subsequent analyses [49]. The sequence logo was created using
WebLogo v2.8.2 [50].

2.5. MiR156 Target Prediction

The target sequences of SBP genes were predicted using psRNATarget [51]. All well-identified
mature sequences of miR156 were downloaded from the miRBase database [36]. All miR156 mature
sequences were put into psRNATarget as query sequences, and they were then made into searches
with default parameters. The sequence logo was created using WebLogo v2.8.2 [50].

2.6. Gene Duplication and Synteny Analyses and Estimations of Synonymous (Ks) and Nonsynonymous (Ka)
Substitutions per Site and Their Ratio

Tandem duplications are defined as two paralogs that are adjacent or separated by one
non-homologous gene in the same chromosome, while segmental duplications are homologous
and distributed in two blocks of the same or different chromosomes. Where each gene was analyzed as
the anchor point, both 30 coding genes upstream and 30 downstream of the anchor points were used
to form micro-fragments. Blastp searches were conducted between these micro-fragments and the
orthologous fragments were those containing no less than 10 gene pairs from the same gene family with
an E-value ≤ 1 × 10−10 [38]. The same method was used for synteny searches and segment duplication
searches, although synteny relationships describe those between species. Ka, Ks, and their ratio in all
of the duplicated SBP gene pairs were estimated using the KaKs_calculator v2.0 [52,53], following the
MA model (which combines multiple computational models and averages them) [54]. It should be
noted that only the SBP genes located on chromosomes were used for the exploration of duplications
and synteny relationships. Considering that some genes show synteny with multiple other genes
(one-to-more situation), we took the average of these Ks values. If a one-to-more situation came
from different species, they were not averaged. In addition, according to the synteny relationships,
a heatmap cluster was developed. Each synteny was counted once for the two genes making up that
synteny. The R package Pheatmap v1.0.12 was used to cluster different groups and genes [55].

2.7. Conservative Analysis

All SBP genes from 22 angiosperms were regarded as the reference group, and SBP genes from
the five species of C. reinhardtii, P. patens, S. moellendorffii, P. abies, and A. trichopoda were used as
control groups. We adopted both OrthoFinder v1.0.6 search and phylogenetic relationships to find the
sequences sharing a common ancestor for reference and control species [47]. A phylogeny analysis
followed the above-mentioned algorithms. In addition, the HMM profiles of each group were created
by HMMER and were used to find the homologous gene of each group [37].
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2.8. Upstream Regulatory Element Analyses

At the transcription initiation site upstream, −100 to 2000 nt were collected. All of these upstream
sequences were uploaded to Binding Site Prediction (PlantTFDB) to predict their possible TF-binding
sites [35]. Then, the binding sites identified were transformed into the A. thaliana TFs with the
homologous binding site. Finally, Gene Ontology (GO) analyses were conducted using the R package
clusterProfiler v3.12 [56,57].

2.9. Tissue Expression and Stress Response

The normalized expression data for AtSPL genes in different tissues and under different treatments
were retrieved from AtGenExpress Visualization Tool. To visualize the tissue-expression data,
the normalized data were log transformed and presented using Pheatmap v1.0.12 (an R software
package) [55]. To show the response-expression profiles of SBP genes under different stresses,
we counted the number of experiments in which the value of the expression changed significantly (the
expression value was double the control group or less than half) under each stress condition.

3. Results

3.1. The SBP-Box Gene Family Is Diverse in Angiosperms

To fully understand the SBP-box gene family in flowering plants, we selected nine species from
four families of monocots and 13 species from four families of eudicots. The chosen monocots were
B. distachyon, A. comosus, S. bicolor, P. hallii, O. sativa, M. acuminate, S. italica, E. guineensis, and Z. mays,
and the eudicots were B. rapa, A. thaliana, C. sativa, P. vulgaris, V. angularis, C. cajan, M. truncatula,
S. lycopersicum, C. annuum, N. tabacum, P. persica, M. domestica, and P. mume. Because O. sativa and
A. thaliana are well-studied model plants, we took their SBP information from a public database.
We identified the SBP genes of the other species to obtain more reliable SBP information (Table 1).
A total of 522 SBP genes were obtained from 22 species, of which 310 were eudicots and 212 were
monocots (Table 1 and Table S1).

Table 1. Source and number of SBP genes of each species.

Organism Source Number Nomenclature

Arabidopsis thaliana PlantTFDB 16 AtSPL
Brassica rapa This research 29 BrSBP

Camelina sativa This research 45 CsSBP
Phaseolus vulgaris This research 22 PvSBP

Vigna angularis This research 20 VaSBP
Cajanus cajan This research 23 CcSBP

Medicago truncatula This research 17 MtSBP
Solanum lycopersicum This research 16 SlSBP

Capsicum annuum This research 15 CaSBP
Nicotiana tabacum This research 40 NtSBP

Prunus persica This research 16 PpSBP
Malus domestica This research 34 MdSBP

Prunus mume This research 17 PmSBP
Brachypodium distachyon This research 17 BdSBP

Sorghum bicolor This research 19 SbSBP
Panicum hallii This research 19 PhSBP
Oryza sativa PlantTFDB 19 OsSPL
Setaria italica This research 11 SiSBP

Zea mays This research 32 ZmSBP
Ananas comosus This research 17 AcSBP
Elaeis guineensis This research 24 EgSBP
Musa acuminata This research 54 MaSBP
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We constructed phylogenetic trees including all 522 genes. To obtain more accurate results, the trees
were constructed using both the maximum likelihood (ML) and Bayesian methods. The criterion for
reliable results was that each clustered group contained the same genes, regardless of what method
was used. Indeed, we obtained reliable results, with the outcomes of both methods matching; our trees
also had relatively high bootstrap values (Figures S1 and S2). An unrooted tree (Figure 1A) was used
to show the grouping scheme, according to the results of the ML process. In addition, the OrthoFinder
v1.0.6 results suggested that the clustered genes were orthologous. These analyses resulted in 11 groups.
The SBPs were concentrated into three length ranges, namely, the short group (g3), the moderate-length
groups (g1, g6, g7, g8, g9, and ds), and the long groups (g2, g4, g5, and ms) (Figure S3). Most of
the SBP genes were conserved in nine groups (g1, g2, g3, g4, g5, g6, g7, g8, and g9) of angiosperms,
containing both monocot and eudicot SBPs. The monocots and eudicots also exhibited differences: one
group (ds) was eudicot-unique, and one group (ms) was Gramineae-unique. In general, the SBPs of
conserved groups from monocots and eudicots had similar physical and chemical properties (Table 2).
Likewise, the SBP protein structure in each group was highly similar, based on conservative motif
analyses (Figure S4). Due to the high similarities within each group, we display the most representative
structure for each in Figure 1B.
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Figure 1. Phylogenetic grouping of SBP genes in flowering plants and the conservative motif structure
in each group. (A) The phylogenetic tree of SBP genes in flowering plants. Eleven groups were
obtained, namely, g1, g2, g3, g4, g5, g6, g7, g8, g9, ds, and ms. All these groups were divided into three
length ranges (including the long groups, moderate-length groups, and short groups), and the groups
that belonged to the same length range were marked in the same color in the outmost area. (B) The
conserved motif of each group. The motif1, motif2, and motif3 together refer to the SBP domain.
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Groups g1 to g9 were conserved in angiosperms, but their abundance varied between eudicots and
monocots. We counted the average SBP gene number per species in each group (Table 2). Some groups
had a lower abundance in both monocots and eudicots; for example, the average gene number for g2
and g4 was less than 2. Three moderate-length groups (g7, g8, and g9) were relatively abundant in
both monocots and eudicots. Some groups exhibited significant differences between the monocots
and eudicots. Group g1 had less than two SBP genes per species in eudicots, but nearly four genes
per species in monocots. In addition, g3 contained more than five SBP genes per species in eudicots,
but less than two per species in monocots. Most groups of SBP genes were conserved in all or nearly
all species (Table 2), but g6 covered only 54% of eudicots and ms was only present in Gramineae.

Table 2. The protein physical and chemical properties and gene number of each group.

Group Species
Number

Sequence
Number

Average
Number

Average
Length (AA)

Average Molecular
Weight

Average
Isoelectric Point

g1-eudicot 13 22 1.69 306.9091 34,068.8 8.913333
g1-monocot 9 35 3.89 405.4857 43,528.37 8.200286
g2-eudicot 12 18 1.5 722.4444 80,763.75 6.218889
g2-monocot 9 13 1.44 859.6923 95,320.8 5.746154
g3-eudicot 13 70 5.38 167.0857 19,179.53 8.482571
g3-monocot 9 15 1.67 203.2 21,441.35 9.813333
g4-eudicot 11 20 1.82 1031.25 114,075.8 8.3985
g4-monocot 8 12 1.5 1029.75 112,982.2 7.616667
g5-eudicot 13 35 2.69 987.7429 109,648.9 6.420571
g5-monocot 8 15 1.875 983 108,311.9 5.984
g6-eudicot 7 12 1.71 352.5 39,079.3 8.4025
g6-monocot 8 10 1.25 436.9 46,449.51 8.838
g7-eudicot 13 36 2.77 422.0833 46,785.88 8.303889
g7-monocot 9 34 3.78 426.6765 46,448.93 8.961471
g8-eudicot 13 29 2.23 363.1034 39,381.31 8.907143
g8-monocot 9 30 3.33 382.1 40,155.08 8.927667
g9-eudicot 13 32 2.46 368.1563 40,526.01 8.3625
g9-monocot 8 42 5.25 396.4286 42,237.75 7.825714

ds 13 36 2.77 496.0278 54,836.9 7.570833
ms 6 7 1.17 879.2857 98,183.74 6.792857

3.2. Short and Moderate-Length SBPs Are Typical Targets of miR156

Because some SBP genes can be regulated by miR156, it is a key link for exploring the regulatory
relationship between miR156 and SBP. We used mature sequences of miR156/157 (due to the high
similarity between the two, they are both referred to as miR156 here) to search against the SBP mRNA
sequences to determine SBP genes with miR156 binding sites. A total of 346 SBP genes containing
binding sites for miR156 were detected. Moreover, we found that the binding sites in the SBP genes
are not random. All long groups (g2, g4, ms, and g5) contained no target sites, while most of the other
groups contained binding sites (except for g1). Genome-wide predictions of miR156, including all
pre-sequences and mature sequences, were performed (Tables S2 and S3). All details of the miR156s
are given in Supplementary Table S4. A corresponding prediction of the secondary structure was also
performed (Figure S5). The length of the mature sequence for miR156 and its target site were both
generally 20 to 21 nt. The target sequences showed a high consistency at each site, while the miR156
sequences had less consistency at sites 8–13 (Figure S6).

3.3. Evolutionary Profiles of SBP Genes in Typical Ancient WGD Events

After obtaining the grouping scheme for the angiosperm SBP-box gene family, we investigated
the phylogenetic relationships of this family in green plants to explore their evolutionary profiles.
We carried out phylogenetic analyses of SBP genes between angiosperms (we chose A. thaliana and
O. sativa as representative angiosperms) and control plants (Figure 2). All groups were far from aquatic
organisms, because no homologous SBP gene was found in C. reinhardtii. According to the typical
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WGDs and the evolution of the main characteristics of angiosperms, three typical stages (the early
evolution of angiosperms [ε to γ and τ], the differentiation of monocots and eudicots [γ, τ, and later
events to the K–Pg boundary], and the recent evolution of angiosperms [after K–Pg]) were analyzed.
The SBP genes of angiosperms showed different evolutionary profiles in these three typical periods.
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Figure 2. The evolutionary profiles of flowering plant SBP genes compared with other taxa of plants.
The timeline is in the middle, and the approximate time range of each whole genome duplication
event is shown in an inverted triangle linked to the timeline. The dotted line refers to the furthest
traceable time of each species. The red rhombus on the cross of a dotted line and a solid line represents
homologous genes of a group that were found in a species.

In the early evolution of flowering plants, the ancestors of four groups (g1, g2, g4, and g5)
were formed. All of these were homologous to P. patens, allowing them to be traced back to about
500 million years ago [58]. Some conserved functions could be assumed in these groups [59,60].
Many angiosperm-specific SBP genes emerged during the transformation from gymnosperm plants
to flowering plants (after ε, and before γ and τ). Five groups (g3, g6, g7, g8, and g9) were
angiosperm-specific. Like the angiosperms themselves, these groups appeared suddenly in the
long history of plant evolution. Moreover, during the differentiation of monocots and eudicots,
ds appeared as an independent eudicot group, while ms became a specific Graminaceae group,
distinguished from other monocots. Although the SBP phylogenetic composition of monocots and
eudicots was not significantly differentiated during this period, some eudicot and monocot groups
showed obvious differences in their copy numbers (Table 2). However, monocot and eudicot groups
also displayed similar retention tendencies. For example, g7, g8, and g9 exhibited high copy retention in
both eudicots and monocots (Table 2). In angiosperms, some WGDs occurred in individual families or
species. Many copies were formed during these WGDs, resulting in a large degree of gene redundancy.

3.4. Expansion Profile Describing the Dynamic Evolutionary Histories

The inheritance and innovation of plant gene families is a complex and dynamic process. A deeper
understanding of the dynamic process of evolution will help reveal the underlying mechanism of that
evolution in plants. To this end, we explored the expansion of SBP by duplication. In total, 339 SBP
genes were found in duplicate relationships. These duplicate genes consisted of many SBP genes (71%)
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(Figure S7A). Segment duplications played the most significant role in SBP expansion (Figure S7B and
Table S5). Interestingly, both intra- and inter-group duplications were found (Table S5), which implies
that some groups may have had genetic and evolutionary relationships. Selection pressure analyses
showed that the intra- and inter-group duplication pairs were all subject to purification selection
(Figure 3A). The Ks values of all inter-group duplications were greater than 1.2 (mostly earlier than γ
and τ). In contrast to the inter-group duplications, 81.2% of intra-group duplications had Ks values of
less than 1.2 (mostly later than γ and τ). Of all intra-group duplications, some miR-regulated groups
had the largest degree of duplicated retention (Figure 3B).
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These analyses provide genetic correlations between groups, but a higher-resolution correlation
must be obtained to reveal dynamic evolutionary histories. Synteny mining among groups revealed
clues that could be used to explore such correlations. All SBP genes which have been identified
as being located on chromosomes were used for synteny analyses. As with the duplication results,
there were both intra-group and inter-group synteny relationships. A total of 442 SBP genes had
synteny relationships, accounting for 98.2% of all SBP genes (Figure S8A). There were significantly more
intra-group synteny relationships (2999) than inter-group ones (1342) (Table S6.1,6.2). Any given group
may have synteny relationships with multiple other groups, but the most relationships often appear
among any given group’s own members (Figure 4A); this was the case for nine groups. Interestingly,
the inter-group relationships were not arbitrary. These are presented as a stacked bar chart in Figure 4B,
organized into eight groups in two clusters. Four with-target groups were directly or indirectly
associated with g1. Group g1 had 30% synteny with g6 and 45% synteny with g7. In addition, g9 was
closely related to g7, having 76% synteny with it. In addition, ds had more than 34% synteny with g9.
In addition, two other with-target groups (g8 and g3) had strong synteny relationships with g4. Because
the synteny relationships involved in each group are not all one-to-one correlations, that is, any given
gene may have synteny relationships with multiple other genes, we conducted cluster analyses for all
synteny relationships. The results support our previous analyses to some extent (Figure S9).

The Ks values for g4–g8, g1–g6, g1–g7, and g7–g9 were calculated, for they all produced more
than 100 pairs of synteny relationships and provide greater statistical significance (Figure 4C). All of
these Ks values mainly fell between 1.2 and 2, consistent with the duplication results (Figure 3A).
For the four groups (g1, g6, g7, and g9) identified in the same cluster, the Ks values for the with-target
groups and g1 (g1–g6 and g1–g7) were larger than those for the two with-target groups (g7–g9),
suggesting that duplications between the angiosperm-specific group and the plant-conservative group
mainly occurred before the expansion of angiosperm-specific groups. After the differentiation of
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the with-target group from the without-target group, the with-target group differentiated into other
angiosperm-specific groups.Biomolecules 2020, 10, x 21 of 21 
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3.5. Coevolutionary Profile of miR156 and SBP Showing the Origin of miR156

There may be evolutionary correlations between miR156 and SBP. We investigated this possibility
and found that there were many duplications (Figure S7B and Table S7) and synteny relationships
among miR156s (Figure S8B and Table S8). This makes us suspect that there are synteny relationships
between miR156 and SBP. If so, it may be that their coevolution could be derived through these
relationships. First, because of the possibility of the co-location of miR156 and SBP, we examined
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coincidence of genes in the micro-fragments formed by SBP and miR156. Co-location was defined as the
co-occurrence of miR156 and SBP in a micro-fragment. After excluding all co-locations, we identified
161 miR156 genes (accounting for 73% of miR156 genes) with synteny relationships with 214 SBP genes
(accounting for 48% of SBP genes) (Figure S8C,D and Table S9). Synteny relationships between miR156
and SBP were found in all groups (Figure 5). Some groups displayed a significant correlation with
miR156 due to their relatively large number of synteny relationships. For seven groups, more than
50 synteny pairs were found (Figure 5). Co-location with miR156 was found for four groups (g1, g7,
g8, and g9) (Table S10). These results further confirm their evolutionary correlations and produce an
adjusted synteny number for these groups (Figure 5 and Table S9).
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Next, we considered the formation of stem-loop structures. We found that the location of the
genes of g1 and g6 provides natural conditions for the formation of miR156, such as AcSBP3 (in g6)
and AcSBP4 (in g1), which are separated by less than 8000 nucleotides, and their 3′ ends are in the
face-to-face form (Table S11). It is very interesting that up to 13 of the 21 g6 SBP genes had a gene from
g1 located close to them (Table S11). In a previous study, we revealed that the distance between g1
and g6 in Euphorbiaceae is consistent with tandem duplication [16]. The data suggest that the same
is true in this study for g1 and g6. In addition, as many as 10 of the 13 pairs of SBP genes are in the
reverse direction. Furthermore, nine of the 10 reverse SBP gene pairs are in face-to-face relationships,
which provide a potential structure for the formation of an miRNA stem-loop frame.

3.6. Functional Evolutionary Profile Indicating the Functional Differentiation of Each Group

Gene transcription initiation is closely related to the upstream regulatory region. To predict the
functions of each group, we predicted the possible binding TFs for each and performed functional
enrichment analyses of the predicted TFs. To improve the reliability, we deleted annotations that
shared fewer than three species in a group. Following the annotation for each Gene Ontology (GO)
item, we divided all enriched biological processes into four categories (development, reproduction,
signal, and other) (Figure 6 and Tables S12 and S13). Regarding dicots, almost all miR-regulated
SBP genes were associated with relatively high numbers of GO-enrichment items in development
and reproduction (Figure 6A). Similarly, most groups of miR-regulated SBP genes from monocots
were also enriched in these categories (Figure 6B). However, the g3 monocot group (g3-monocot) was
significantly different from the g3 dicot group (g3-dicot), which was enriched in many fewer items
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related to development and reproduction (Figure 6). In addition, the long groups, which are not
miR-regulated groups, had relatively fewer enrichment items related to development (Figure 6).Biomolecules 2020, 10, x 21 of 21 
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To validate these results, we analyzed AtSPL gene expression in various tissues (Figure 7A) and
under various conditions (Figure 7B). Some miR-regulated SBP genes indeed showed a high expression
during certain growth and reproduction processes (Figure 7A). AtSPL3/2/13 (belonging to g3, g7, and g9)
were highly expressed in multiple tissues, and they exhibited strong correlations with growth and
reproduction. AtSPL12/7/14 were highly expressed in nearly all tissues and displayed a housekeeping
expression pattern.
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4. Discussion

4.1. A Consistent Classification Standard Is Helpful for Exploring Conservative Gene Families in Plants

With reliable classification standards as a reference, it is simple to determine similarities and
differences in the analyses of gene families. As genome-sequencing data for plants increase and
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bioinformatics tools are developed, the in-silico identification of gene families will grow. However,
previous studies have often been limited to only a few species, lacking representativeness of the broad
range of angiosperms. Some species may lack individual groups of a gene family. In a phylogenetic
study of A. thaliana and O. sative, all SBP genes were divided into nine groups, but A. thaliana was
absent in one [14]. Different studies may give different classifications. In analyses of A. thaliana,
O. sative, and P. patens, all of the AtSPLs were divided into six groups [13]. However, in another study of
A. thaliana and O. sativa, all AtSPLs were divided into eight groups [14]. The differences in the species
and evaluation criteria used may have led to great differences in the classification results. We obtained
a reliable angiosperm SBP classification through large-scale phylogenetic analyses and described the
evolutionary characteristics for each group, providing a reference for further research.

4.2. Promotion of the Evolution of Angiosperms by the Differential Expansion of the SBP-Box Gene Family
during Typical Ancient WGDs

A certain conservative gene family may have a similar evolutionary profile to a given plant.
The origin of angiosperms can be traced back to at least the Cretaceous [1–4], and the ε event can be
traced to about 200 million years ago [22]. During the Cretaceous, the Earth was dry and hot, with high
oxygen levels. Some typical characteristics of angiosperms were formed during this period, such as
the evolution of the carpel, the emergence of double fertilization, and the origin of the flower [61].
Likewise, the main SBP branches of angiosperms were formed during this period (the grouping scheme
including g1, g2, g3, g4, g5, g6, g7, g8, and g9), and the angiosperm-specific SBP genes (g3, g6, g7,
g8, and g9) all appeared in this period. The SBP gene promotes the adaptation of angiosperms to the
environment and the evolution of angiosperms’ specificity. It is involved in the regulation of floral
organ formation, transformation of the plant from the vegetative phase to the reproductive phase,
the formation of plant morphology, and signal response and stress resistance [17,18,62].

WGDs provide impetus for differentiation and innovation in plants. During the process of the
differentiation of monocots and eudicots, multiple WGDs occurred. Monocots and eudicots showed
different expansion profiles, and the expansions of different types of SBP genes were also different.
The number of SBP copies retained by monocots after τ was much greater than that after γ (which
occurred at a similar time as τ) in eudicots [32]. MiR-regulated groups are involved in multiple aspects
of plant reproduction, growth, and the stress response [17,18,63–66] and tend to retain more copies of
SBP genes. After the γ and τ events, many TF gene families related to development, morphogenesis,
and the response to abiotic and biotic stresses retained large numbers of copies [32,67].

In angiosperms, the innovation of the SBP-box gene family was not shared by a large range of
plants, but it increased the functional complexity through the high retention of copies. The genes
of some multiple-copy groups perform similar functions redundantly [17,18]. Some genes from
different groups may have similar functions [68], and even copies of a group may be functionally
differentiated [69].

4.3. Short and Moderate-Length SBPs as Important Regulators of Growth and Reproduction in Angiosperms

There are many conservative gene families in plants, but those with many functions and
differentiations are more attractive to study. They react to changes in the environment and respond
quickly. Some SBP genes, regulated by miR156, can be quite variable. Although they appeared much
earlier than angiosperms [70], they are also continuing to evolve as angiosperms do. It appears that
regulation by miR156 determines the fate of SBP genes. Groups without a target site are all conservative
groups of terrestrial plants. Those with a target are all angiosperm-specific groups. The miR156_SBP
module allowed SBP genes to adapt to more complex and variable regulatory processes and participate
in more complex regulatory networks [65]. G1 appears to connect groups with and without target
groups. The SBP genes in g1 were significantly different in length from other terrestrial-conservative
SBPs; although their length is similar to that of angiosperm-specific groups, they do not have target sites.
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Moreover, instead of the functional housekeeping of other terrestrial-conservative groups, they are
involved in angiosperm-specific physiological processes [68,71–73].

4.4. Dynamic Evolutionary Process Analyses Reveal the Expansion Process of Different Groups

The emergence of a new branch of a conservative gene family in plants may be accompanied
by plant innovation [21]. Gene families related to important physiological processes have been
used to determine plant classifications [74]. However, it is difficult to understand the evolutionary
genetic relationships between branches. The duplication of one branch by another is likely to leave
synteny clues. The lack of exploration of these relationships has led to an overall poor description of
inter-branch evolution in previous gene family analyses in multiple species. Using the inter-group
synteny relationships, we made an inferential map (Figure 8A) of the dynamic evolution of the SBP-box
gene family. Different groups of SBP genes do not originate independently, and with-target groups
may form without-target groups. Although moderate-length groups have similar sequence lengths,
they may originate from two lines: line A and B. Line A contains five groups, four of which are
with-target groups and one of which is a no-target group. G6 and g7 may come directly from g1,
and g9/ds may have been produced successively after g7. Line B contains three groups, and its two
with-target groups (g3 and g8) may originate from the without-target group g4.
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Figure 8. A derivation graph of the dynamic evolutionary process of SBP genes in flowering plants and
the presumed model of the emergence of miR156. (A) A derivation graph of the dynamic evolutionary
process of SBP genes in flowering plants. The terrestrial plant conservative groups are circled with
a red dotted line. Angiosperm-specific groups associated with a terrestrial group relate to solid arrows,
and the direction of the arrow represents the direction of evolution. Line A and Line B are circled by
a blue dotted line, respectively. The red ovals refer to miR156 target sequences and the 3′UTR region is
marked with a dotted line. (B) The presumed model of the emergence of miR156. 1O The emergence of
the face-to-face tandem duplication of two SBP genes. 2O The formation of genes containing the ancestor
sequence of MIR156 and MIR156*. 3O The formation of proto MIR156. 4O The formation of pre-miR156.

4.5. MiR156 May Originate From Face-to-Face Tandem Duplication of SBP Genes

The regulation module between a conservative gene family and its regulator miRNA is often
traced to the origin of terrestrial plants. Very long periods of independent evolution make it difficult to
clearly explain the relationships between an miRNA and its target gene. However, three prevailing
models account for the possible emergence of miRNAs, namely, the inverted duplication of target
genes [75], intermittent evolution [76], and inverted-repeat transferable elements [77,78]. Our research
shows that there is another possibility for the generation of miR156. Based on our results, the formation
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of miR156 may be related to tandem duplications between g1 and g6, with a face-to-face relationship
leading to the formation of a stem-loop structure (Figure 8B). Then, this stem-loop structure may have
evolved further to obtain the precursor structure of miR156. In protein structure analyses, we found that
moderate-length and short SBPs seem to be formed through the truncation of long SBPs. The ancestors
of g1 may also have the characteristics of long sequences, but the formation of miR156 led to sequence
loss in g1. There are still many unknowns about the formation of miRNAs, and much work remains to
be done to reveal their generation and evolution.

5. Conclusions

Our results provide a comprehensive phylogenetic classification of the angiosperm SBP-box
gene family. Moreover, we studied the evolution of angiosperm SBP genes, accompanied by several
typical ancient WGDs of flowering plants, and presented the different evolutionary profiles of these
genes corresponding to the WGDs. In addition, synteny relationships between different SBP groups
and between SBP and miR156 were found, and the correlation between SBP genes and miR156 was
elucidated. The dynamic genetic and evolutionary development of different SBP groups suggests
two obvious genetic lines, and a possible path of emergence was proposed for miR156. Furthermore,
an evolutionary map of SBP functional evolution was presented in a preliminary exploration of the
angiosperm SBP-box gene family.
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