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Signalling by TGFb superfamily factors plays an important role in tissue

growth and cell proliferation. In Drosophila, the activity of the TGFb/Activin

signalling branch has been linked to the regulation of cell growth and

proliferation, but the cellular and molecular basis for these functions are

not fully understood. In this study, we show that both the RII receptor

Punt (Put) and the R-Smad Smad2 are strongly required for cell and tissue

growth. Knocking down the expression of Put or Smad2 in salivary

glands causes alterations in nucleolar structure and functions. Cells with

decreased TGFb/Activin signalling accumulate intermediate pre-rRNA

transcripts containing internal transcribed spacer 1 regions accompanied

by the nucleolar retention of ribosomal proteins. Thus, our results show

that TGFb/Activin signalling is required for ribosomal biogenesis, a key

aspect of cellular growth control. Importantly, overexpression of Put

enhanced cell growth induced by Drosophila Myc, a well-characterized

inducer of nucleolar hypertrophy and ribosome biogenesis.
1. Introduction
Tissue growth is a very complex process that requires interplay between mul-

tiple signalling pathways to ensure that an organ achieves its proper size and

shape. Transforming growth factor beta (TGFb) and bone morphogenetic

protein (BMP) signalling pathways play multiple roles during animal develop-

ment through the regulation of cellular growth, proliferation, differentiation

and survival [1]. At the cell surface, the secreted polypeptides of the TGFb

superfamily (TGFb, BMP, Activin and Nodal) bind tetrameric complexes of

type I (RI) and type II (RII) serine/threonine kinase receptors. Ligand binding

allows the active RII receptors to phosphorylate serines and threonines within

the GS domain of RI receptors, which in turn phosphorylate and activate

Smads. Receptor-activated (R) Smads then associate with the common-mediator

(Co) Smad and the complex is shuttled to the nucleus where it regulates target

gene expression [1]. TGFb signalling can either suppress or promote cell growth

and proliferation, a phenomenon described as the TGFb paradox in the context

of cancer progression [2,3]. TGFb is also an important promoter of epithelial–

mesenchymal transition (EMT), where its activity leads to increased protein

synthesis and cell size through activation of the PI3K, Akt and mTOR complex

1 [4]. Furthermore, the activity of TGFb receptor I kinase was shown to be

required for glucose-induced hypertrophy in both fibroblasts and epithelial

cells [5]. Similar to high glucose, adding TGFb to these cells caused an increase
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in protein synthesis and cell size [5]. In a subsequent study,

treatment with the anti-TGFb1 neutralization antibody

(1D11) was shown to protect mice from obesity and diabetes

[6]. Thus, the control of cell growth by TGFb in different cell

types and contexts is expected to play important roles in

diabetes and cancer pathology.

The TGFb pathway is evolutionarily conserved in Droso-
phila, where both the BMP and TGFb/Activin branches are

crucial regulators of developmental processes [7]. Put is a

common RII receptor for both signalling branches, and it het-

erodimerizes with branch-specific RI receptors to ensure

pathway specificity. In the TGFb/Activin branch, Put binds

the RI receptor Baboon (Babo) that phosphorylates Smad2

(also known as Smox) in response to the Activin-b (Actb),

Dawdle (Daw) and Myoglianin (Myo) ligands [8–11]. The

TGFb/Activin pathway was shown to regulate axonal out-

growth and remodelling [12–14], as well as proliferation of

neuroblasts and wing imaginal disc cells [8,9,15].

In a recent eye-targeted double-RNAi screen, we identified

a genetic interaction between several Drosophila TGFb signal-

ling members (including Put, Baboon and Smad2) and the

nucleolar regulator Viriato (Vito)/Nol12 [16]. Previously, we

had shown that Vito acts downstream of dMyc to ensure a

coordinated nucleolar response during dMyc-stimulated

growth [17]. Thus, Vito could play a role in dMyc-mediated

increase in the rate of ribosome biogenesis in the nucleolus,

one of the main mechanisms by which dMyc drives growth

[18]. Because the mechanisms enabling TGFb signalling to

induce cell growth and proliferation are poorly understood,

we pursued the analysis of the novel link between TGFb

signalling and nucleolar-based events. Here, we study the

cell-autonomous functions of TGFb/Activin signalling in cell

growth, using the salivary gland as a model tissue. During

larval stages, the salivary gland is an endoreplicative tissue

where overall growth correlates directly with cell growth, and

that allows easy characterization of subcellular structures.
2. Results
2.1. TGFb/Activin signalling is required for tissue

growth and nucleolar dynamics
To study possible cell-autonomous functions of TGFb signal-

ling in salivary gland cell growth, we downregulated the

expression of the RII receptor Put (figure 1). RNA interfer-

ence (RNAi) was targeted to the post-mitotic salivary

glands and eye imaginal discs using the ey-Gal4 driver [17].

The two putRNAi lines we used (VDRC37279 and

NIG-FLY7904R-3) target non-overlapping regions of put and

inhibited the progression of photoreceptor differentiation in

the eye imaginal disc (electronic supplementary material,

figure S1a–c). This phenotype mimics mutant put phenotypes

[19], and confirms the specificity and efficiency of the RNAi

knockdown. Importantly, knocking down put expression

in the salivary glands caused a strong reduction in

cellular area (figure 1a–c,h) with a strong effect on tissue

growth (figure 1g). In particular, expression of the stronger

putRNAi37279 caused a significant decrease in salivary gland

area (84%, p , 1 � 1024; figure 1c,g), and completely inhib-

ited the onset of the photoreceptor differentiation (electronic

supplementary material, figure S1c). Our recent work

established a genetic interaction between put and vito,
which encodes for a regulator of nucleolar organization and

tissue growth [16]. Because uncoordinated nucleolar hyper-

trophy has been associated with defective cell growth

[17,20], we evaluated whether Put controlled nucleolar

dynamics. We stained salivary glands with anti-Fibrillarin,

a nucleolar protein involved in pre-rRNA processing, or

anti-AH6 to label nucleoli and DAPI for DNA (figure 1d–f,
and not shown). Knocking down put caused an expansion

of the nucleolar area, reflected in an increased ratio between

nucleolar and nuclear areas. Expression of putRNAi7904R-3

resulted in a 62% increase in the nucleolar/nuclear area

ratio ( p , 1 � 1024), whereas expression of putRNAi37279

caused an even stronger increase (127%, p , 1 � 1024;

figure 1i). Thus, for put depletion in salivary glands, we

observe a direct correlation between increased nucleolar/

nuclear ratio and diminished tissue growth (R2 ¼ 0.99468).

This suggests that put controls nucleolar dynamics during

salivary gland cell growth. Importantly, the weaker

putRNAi7904R23 did not significantly affect nuclear size

(figure 1j ), suggesting that the reduced nuclear size caused

by the stronger putRNAi37279 (figure 1j ) is secondary or a

consequence of the observed nucleolar alterations.

The RII receptor Put heterodimerizes with RI receptors Tkv

or Babo to mediate BMP and TGFb/Activin signalling,

respectively. To study the contribution of each signalling

branch to nucleolar regulation, we knocked down the

expression of the TGFb/Activin-branch-specific R-SMAD,

Smad2 [8,21], and of the BMP-branch-specific R-SMAD Mad

[22,23], either alone or in combination (figure 2). To validate

the efficiency and specificity of the RNAi lines for Smad2

and Mad, we targeted their expression to the developing eye

imaginal disc. In agreement with previous observations,

downregulation of TGFb/Activin signalling by smad2RNAi

affected growth of the eye disc (electronic supplementary

material, figure S1e) [8], whereas downregulation of BMP sig-

nalling by madRNAi strongly interfered with both tissue

growth and patterning (electronic supplementary material,

figure S1f ) [24]. Importantly, expression of smad2RNAi

caused a strong increase in the nucleolar/nuclear area ratio in

salivary gland cells, which is not induced by madRNAi

expression (figure 2f ). Furthermore, co-expression of madRNAi

failed to enhance the increase in nucleolar size, or the decrease

in cellular and tissue size, induced by smad2RNAi (figure 2 and

electronic supplementary material, figure S1g–j). In addition,

salivary glands of larvae mutant for put or for babo, the Activin

branch-specific RI receptor, also displayed a nucleolar

phenotype, not observed in mutants for tkv, the BMP branch-

specific RI receptor (figure 3a–f ). Taken together, these results

show that the TGFb/Activin pathway is required for growth

and normal nucleolar dynamics.
2.2. TGFb/Activin is required for the coordination
of the ribosome biogenesis

The increased size ratio of the nucleolus apparently contradicts

the reduction in tissue growth observed when the TGFb/Acti-

vin pathway is attenuated. One possibility is that the increase

in size is reflecting a defective, rather than a gain of nucleolar

function (e.g. a defective production of ribosomes). The

nucleolus plays a major role in cell growth through the coordi-

nation of three steps in ribosome biogenesis: transcription of

pre-rRNA by polymerase I, processing of pre-rRNA, and



control

salivary gland size

sa
liv

ar
y 

gl
an

d 
si

ze
 (

ar
b.

 u
ni

ts
) 200 000

100 000

50 000

0

150 000

ce
llu

la
r 

ar
ea

 (
ar

b.
 u

ni
ts

)

ra
tio

 n
uc

le
ol

ar
-n

uc
le

ar
 a

er
a 

20 000 0.6

0.4

0.2

0

10 000

5000

0

15 000

50 000

40 000

30 000

20 000

10 000

0

cellular area nuclear area

n.s.

***

***

***

***

***

***

***

nu
cl

ea
r 

ar
ea

 (
ar

b.
 u

ni
ts

)

nucleolar–nuclear ratio

DNA
RhPh

DNA
RhPh

DNA
RhPh

DNA
Fibrillarin

DNA
Fibrillarin

DNA
Fibrillarin

ey>putRNAi7904R-3 ey>putRNAi37279

co
ntr

ol

pu
tR

NAi7
90

4R
-3

pu
tR

NAi3
72

79

co
ntr

ol

pu
tR

NAi7
90

4R
-3

pu
tR

NAi3
72

79

co
ntr

ol

pu
tR

NAi7
90

4R
-3

pu
tR

NAi3
72

79

co
ntr

ol

pu
tR

NAi7
90

4R
-3

pu
tR

NAi3
72

79

(g) (h) (i) ( j)

(b)(a) (c)

(d ) (e) ( f )

Figure 1. TGFb/Activin signalling is required for tissue growth and nucleolar dynamics. (a – c) Salivary glands show a substantial reduction in overall size upon put
depletion. Low magnifications images of salivary glands from third-instar Drosophila larvae expressing (a) UAS-lacZ (control), (b) UAS-putRNAi7904R-3 and (c) UAS-
putRNAi37279 under the control of the ey-Gal4 driver. Salivary glands of the indicated genotypes were stained for the cell limits with RhPh (red) and counterstained
with DAPI (blue). (d – f ) Put requirement for salivary glands growth is linked to an increase in nucleolar size. (d ) Localization of the nucleolar marker Fibrillarin in
control nuclei of salivary glands. (e) put RNAi7904R-3 results in ectopic accumulation of Fibrillarin. ( f ) Strong putRNAi37279 induction results in expansion of the
Fibrillarin at the nucleolus. (g) Scatter plot representative of put requirement for salivary gland growth. (h) Salivary gland growth deficit is linked to a decrease
in the cellular area. (i) put depletion causes an increase in nucleolar/nuclear area ratio in the salivary glands. ( j ) Scatter plot showing nuclear area quantification of
the described genotypes (n ¼ 25 – 40; ***p , 1 � 10 – 4). Scale bars: (a – c) 200 mm, (d – f ) 20 mm.
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assembly of the large (60S) and small (40S) ribosome subunits

[25]. Defects in the biogenesis of the large or small subunits

(e.g. pre-rRNA processing deficits) lead to nucleolar stress

accompanied by alterations in the localization of ribosomal

proteins and other nucleolar factors [25]. To study if TGFb/

Activin signalling regulates ribosome biogenesis in the sali-

vary gland, we analysed the localization pattern of the

ribosomal protein RpL41 [26]. In the nuclei of control cells,

RpL41 was mainly nucleolar restricted (figure 4a), as pre-

viously observed [27]. Inhibition of TGFb/Activin signalling

activity by putRNAi caused a strong nucleolar accumulation

of RpL41 (figure 4a–c,g). Similarly, we also observed an

increase in the nucleolar localization of Vito (figure 4d–f ).
Nucleolar enrichment of Vito was not homogeneous, as we

detected intranucleolar regions with higher Vito levels

(figure 4d–f ). These results prompted us to further evaluate
the role of TGFb/Activin signalling in nucleolar structure

and ribosome biogenesis. In control cells, immunostaining with

aRpL22, aRpL10A and aRpS6 antibodies showed that these

ribosomal proteins are mainly cytoplasmic, possibly reflecting

a transient association with pre-ribosome subunits at the

nucleolus (figure 5a–a00,c–c00). Interestingly, in putRNAi both

RpL22 and Rpl10A are concentrated in the peripheral nucleo-

plasm and in the nucleolus (figure 5b–b00), whereas RpS6

accumulates in granular intranucleolar spots (figure 5d-d0).
In comparison with control cells, RpL11 is also found at

higher levels in these nucleolar granular spots, where it co-

localizes with RpS6 (figure 5d00). This pattern of nucleolar

accumulation was not a general attribute of all ribosomal

proteins. RpS9 is mainly cytoplasmic in control cells and its

levels decrease in putRNAi without any evidence of nucleolar

re-localization (electronic supplementary material, figure S2).
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Ultrastructural TEM analysis of salivary gland cells where

TGFb/Activin signalling was inhibited by either putRNAi or

smad2RNAi expression confirmed the presence of nucleolar

hypertrophy in these genotypes (figure 5e–g). Further, low-

contrast intranucleolar regions could be observed, although

it is unclear if these regions correspond to the accumulation

spots for Vito and RpS6 observed using confocal microscopy

(figures 4f and 5d ). Moreover, we detected an accumulation

of densely packed particles in the nucleoplasm when com-

pared with control cells ( putRNAi n ¼ 23 out of 23 cells

from seven independent salivary glands, figure 5f– f00;
smad2RNAi n ¼ 10 out of 18 cells from six independent sali-

vary glands, figure 5g–g00). Importantly, only individual
particles were found occasionally in controls (figure 5e00)
and are never found as clusters in our control samples

(n ¼ 0 out of 16 cells analysed from five independent sali-

vary glands, figure 5e–e00). The size of these particles was

on the scale expected for pre-ribosomal intermediates under-

going maturation in the path from the nucleolus to the

cytoplasm [28]. These particles also resemble the particles

found when nucleolar stress was induced in Drosophila
midgut cells by knockdown of Nopp140 [29]. Thus, our

results suggest that ribosome biogenesis had been stalled,

in which case we would expect to detect alterations in

pre-rRNA processing. The rRNA genes are organized in

tandem in several arrays that are transcribed as single units
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(figure 6a) [30]. After being transcribed by RNA polymerase

I, the pre-rRNA is subjected to cleavage, 50 and 30 exonucleo-

lytic digestion, and base modifications to yield the mature
28S, 18S and 5.8S rRNAs (figure 6a) [30,31]. Interestingly,

in both putRNAi and smad2RNAi cells, we detected a

strong accumulation of uncleaved pre-rRNA intermediates
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containing the ITS1 region (figure 6b). To further distinguish

whether this accumulation is derived from an increased tran-

scription or an accumulation of the uncleaved pre-RNA

intermediates, we quantified the relative abundance of pre-

rRNA transcripts containing the external transcribed spacer

(ETS) region. ETS-containing transcripts are short-lived, as

the ETS is the first region to be processed with fast kinetics,

and can be used as a proxy for the pre-rRNA transcription

rate by the RNA polymerase I. Thus, when the levels of

ITS1 were normalized to ETS levels, both TGFb RNAis

present about a threefold increase of ITS1-containing inter-

mediate precursors. Furthermore, the levels of the small

ribosome subunit 18S rRNA were also significantly reduced

in these cells, whereas no significant differences were

detected for the 28S rRNA (figure 6b). Together, these results

point towards stalled ribosome biogenesis.

2.3. Put overexpression exacerbates Myc-induced
nucleolar hypertrophy and cell growth

The ability of Myc to increase ribosome synthesis is an

essential mechanism by which Myc promotes both cell

growth and proliferation, as well as tumorigenesis [32].

In both mammalian and Drosophila cells, this mechanism

requires coordination between nucleolar hypertrophy and

the stimulation of pre-rRNA transcription and processing

[17,18,33–36]. Overexpression of dMyc in salivary gland

cells resulted in dramatic increases in nucleolar, nuclear and

cellular sizes (figure 7a,b,d,e,g,h) [17,37]. dMyc expression

also increases ploidy in these cells, an effect that has been
proposed to be secondary to the strong stimulation of cell

growth [18,38]. It has been shown that the transcription

factor E2F1 acts as a ‘growth sensor’ coupling rates of endo-

cycle progression to rates of cell growth [39]. Remarkably, we

observed that overexpression of Put significantly enhanced

the dMyc-stimulated nucleolar, nuclear and cellular growth

(figure 7c,f,g,h). The overexpression of Put, on its own, was

not sufficient to induce growth in the salivary glands (not

shown). In support of these observations, in the eye imaginal

disc and resulting adult retinas, the overexpression of Put

was also able to synergize with Myc, increasing overall

tissue size (electronic supplementary material, figure S3).

These results suggest that TGFb signalling cooperates with

dMyc to control nucleolar function and mass accumulation.
3. Discussion and conclusions
Taken together, our results show that members of the Activin

branch of the TGFb signalling pathway (the RII receptor Put

and the R-Smad Smad2) are autonomously required for cell

and tissue growth in the Drosophila larval salivary gland.

In this simple tissue model, cell growth control can be

untangled from cell proliferation and ligand gradient control.

Previously, the Activin RI receptor Babo and Smad2 were

shown to be specifically required for cellular proliferation

and overall growth of the wing imaginal disc [15]. Interest-

ingly, the TGFb/Activin branch was not found to affect

any specific transition of the cell cycle or to cause extensive

apoptosis in the wing disc [15]. Recently, TGFb signalling

was also shown to regulate mitochondrial metabolism in
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Drosophila [40], and to promote the Warburg effect (aerobic

glycolysis) in breast tumours [41]. These results, together

with our previous report of a genetic interaction between

members of the TGFb signalling pathways and vito, a nucleo-

lar regulator of growth [16], lead us to focus on the possible

regulation of basic mechanisms of cell growth by TGFb/Acti-

vin. We found that interfering with TGFb/Activin signalling

caused changes in nucleolar biogenesis with increased

relative areas and altered ultrastructure. Furthermore, this

correlated with accumulation of unprocessed intermediate

pre-rRNA transcripts, defects in ribosome biogenesis with a

significant decrease in 18S rRNA and very significant effects

on the nuclear localization of ribosomal proteins. What are

the mechanisms by which TGFb regulates ribosome biogen-

esis? TGFb signalling may regulate the transcription of

targets with direct enzymatic roles in pre-RNA processing

or ribosome biogenesis and nuclear export. The 50 –30 RNA

exonuclease Vito is a strong candidate to fulfil that role. In

the budding yeast, the Vito homologue Rrp17p acts as a func-

tional link between late processing of pre-rRNA and nuclear

export of pre-60S ribosomal subunits [42]. When we inter-

fered with Put function, Vito levels increased, but Vito

accumulated in intranucleolar spots and thus might not be

available at the peripheral nucleoplasm to efficiently chaper-

one pre-ribosomal particles for nuclear export. That would

explain the observed accumulation of RpL10A and RpL22

(and putative ribosomal particles detected by TEM) at the

peripheral nucleoplasm. At the same time, Rrp17p is required

for ITS1 processing [42,43], thus the misregulation of Vito

function in salivary gland cells could cause the observed

increase in pre-rRNA intermediate transcripts, and the

observed accumulation of RpS6 in intranucleolar spots.

Could TGFb regulate ribosome biogenesis through other

novel mechanisms? In fact, in breast cancer cells, a cancer-

specific nuclear translocation of TbRI was shown to regulate

nuclear mRNA processing [44]. Furthermore, in mammalian

cells, TGFb signalling has also been shown to regulate

directly the biogenesis of a set of miRNA at the post-

transcriptional level [45,46]. Surprisingly, R-Smads associated

with the large Drosha/DGCR8/p68 microprocessor complex

have been shown to bind pri-miRNAs and facilitate the clea-

vage of pri-miRNA to pre-miRNA by Drosha [45,46].

Alternatively, TGFb may regulate the expression or nucleolar

recruitment of ribosomal proteins, causing changes in

nucleolar dynamics and indirectly affecting pre-rRNA

processing. In fact, in Diamond–Blackfan anaemia, haploin-

sufficiency for several ribosomal genes has been shown to

affect pre-ribosomal RNA (pre-rRNA) processing and thus

to interfere with ribosome biogenesis [47]. Despite the precise

mechanism, we show for the first time that TGFb/Activin

signalling is required for normal assembly of the nucleolus

and pre-rRNA processing.
4. Material and methods
4.1. Fly strains and husbandry
All crosses were raised at 258C under standard conditions and

for synchronization; all the conditions were analysed after a

single day of egg collection. The following stocks (described

in FlyBase, unless stated otherwise) were used: ey-Gal4,

UAS-lacZ and the wild-type strain w1118. UAS-CD4tdTomato
was used to report salivary glands expression of ey-Gal4 (elec-

tronic supplementary material, figure S4a–c0). AB1-Gal4 and

ptc-Gal4 were used as salivary gland alternative drivers with

similar results to ey-Gal4 (electronic supplementary material,

figure S4d–f0 ). The TGFb RNAis were obtained from different

collections: putRNAi#37279 (VDRC), putRNAi 7904R-3

(Nigfly), smad2RNAi (#2262R-2, Nigfly) and madRNAi

(#31315, TRiP). The following TGFb pathway mutants were

obtained from the Bloomington Stock Center: put135, put10460,

babo32, baboK16912, tkv1 and tkv8. Overexpression studies were

done using UAS-Put [48] and UAS-dMyc [49]. The protein

trap strains used in these studies were RpL41YFP (#115-344

Cambridge Protein Trap YFP insertions) and RpS9YFP (#115-

034 Cambridge Protein Trap YFP insertions).

4.2. Immunostaining
Eye-antennal imaginal discs and salivary glands were pre-

pared for immunohistochemistry using standard protocols.

As the growth conditions strongly affect salivary gland size,

all the experiments were controlled by synchronization of

L3 wandering larvae after a single-day egg collection. To

further control this issue, a controlled the egg laying for 5 h

was set up, and the salivary glands were analysed 96 h

after egg laying (96–101 h AEL; electronic supplementary

material, figure S4g–j0 ).
Primary antibodies used were: mouse anti-Armadillo

N27A1 at 1 : 100 (Developmental Studies Hybridoma Bank,

DSHB), mouse anti-Dlg at 1 : 1000 (4F3, DSHB), rabbit anti-

Viriato (Vito) at 1 : 250 (ABGent), rat anti-DCad at 1 : 100,

mouse anti-AH6 at 1 : 10 (DSHB), rabbit anti-Fibrillarin at

1 : 250 (Abcam, #ab5821), mouse anti-Fibrillarin at 1 : 500

(Abcam, #ab4566), mouse anti-RpS6 at 1 : 100 (Cell Signaling,

#2317), mouse anti-RpL11 at 1 : 100 (Abcam, #ab79352),

mouse anti-RpL10A at 1 : 400 (Abcam, #ab55544), rabbit

anti-RpL22 at 1 : 100 (kind gift from Dr Vassie Ware). To

stain for cellular limits phalloidin conjugated with rhodamine

was used at a dilution of 1 : 1000. Appropriate Alexa-Fluor

conjugated secondary antibodies were from Molecular

Probes. Images were obtained with the Leica SP2 confocal

system or Leica SP5 confocal system and processed with

Adobe PHOTOSHOP.

4.3. Size measurements and statistics
Salivary gland areas were measured using the Polygon selec-

tion tool of IMAGEJ 1.48r software (NIH, Bethesda, MA),

considering the limits stained by Arm, Dcad or RhPh and

represented as arbitrary units. The cellular parameters

shown in this study were measured using the Polygon selec-

tion tool of IMAGEJ 1.48r. The nucleolar area was determined

using the nucleolar markers RpL41YFP, anti-AH6 or anti-

Fibrillarin and DAPI staining was used to stain for the

nuclear area. The results are presented as the ratio of the

nucleolar area to the nucleus that it corresponds to. The inten-

sity of the nucleolar components was determined using a

fixed ROI circle, and the mean intensity of each nucleolus

was measured using IMAGEJ. To each measurement, another

nucleolar component was used as reference (for example,

AH6 and Fibrillarin). For each genotype, five to six nuclei

from the proximal region of at least five to six independent

salivary glands were used. Statistical analysis and generation

of the graphical output was done using GraphPad PRISM
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v. 5.0. Statistical significance was determined using an

unpaired, two-tailed Student’s t-test, with a 95% confidence

interval, after assessing the normality distribution of the

data with D’Agostino–Pearson normality test.

4.4. Transmission electron microscopy
Dissected third-instar salivary glands were fixed with 2.5%

glutaraldehyde in 0.1 M sodium cacodylate buffer for

30 min and post-fixed with 4% osmium tetroxide. After

washing, salivary glands were incubated with 0.5% uranyl

acetate (30 min) and further dehydrated through a graded

ethanol series (70% for 10 min, 90% for 10 min and four

changes of 100%). Salivary glands were then soaked in pro-

pylene oxide for 10 min and then in a mixture (1 : 1) of

propylene oxide and Epon resin (TAAB Laboratories) for

30 min. This mixture was then replaced by 100% Epon resin

for 24 h. Finally, fresh Epon replaced the Epon and polymer-

ization took place at 608C for 48 h. Ultrathin sections were

obtained using an ultramicrotome, collected in copper grids

and then double contrasted with uranyl acetate and lead

citrate. In total, at least 16 independent cells of five indepen-

dent salivary glands were analysed for each genotype.

Micrographs were taken using a TEM Jeol JEM-1400, with

Orius SC 1000 digital camera (80 kV).

4.5. Quantitative real-time PCR
For qPCR experiments, all the RNAis were induced with the

ey-Gal4 driver, and the salivary glands of wandering L3

instar larvae were dissected. The number of salivary glands

was determined according to its size to yield similar RNA

concentrations (i.e. for w1118 control strain, a minimum of

30 salivary glands were dissected, for ey-Gal4; putRNAi37279

50–60 salivary glands were dissected and 40–50 salivary

glands were dissected for ey-Gal4; smad2RNAi2262R22).

The RNA was extracted using TRIzol (Invitrogen) accord-

ing to the manufacturer’s instructions and treated with Turbo

DNase I (Ambion). cDNA was generated by reverse

transcription with the SuperScript III First-Strand Synthesis

SuperMix for qRT-PCR (Invitrogen). Quantitative real-time
PCR analysis was performed in triplicate in 20 ml reactions

containing iQ SYBR Green Supermix (BioRad), each gene-

specific primer at 250 nM and 1 ml of cDNA template.

Cycling conditions in a BioRad iQ5 instrument were 958C
for 3 min, followed by 40 cycles of denaturation at 958C for

10 s and annealing for 30 s at 538C, 608C or 648C depending

on the primer set. Fold change relative to the expression of

CaMKII, which has been used previously as a control for

gene expression [17], was calculated using the 2–DCT

method [50]. Three to five biological replicates were analysed

for each primer set. The following primer pairs (from 50 to 30)

were used:

CaMKII (control): Fw—TTACACCATCCCAACATAG-TGC

Rev—CAAGGTCAAAAACAAGGTAGTGATAG;

28S: Fw—GGAGGATCTTCGATCACCTGATG

Rev—GCTGCTCAACCACTTACAACAC;

18S: Fw— TGGTCTTGTACCGACGACAG

Rev—GCTGCCTTCCTTAGATGTGG;

ITS1: Fw—TTATTGAAGGAATTGATATATGCC

Rev—ATGAGCCGAGTGATCCAC;

ETS: Fw—GCTCCGCGGATAATAGGAAT

Rev—ATATTTGCCTGCCACCAAAA.
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