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Abstract

High-throughput sequencing and single nucleotide polymorphism (SNP) genotyping can be used to infer complex
population structures. Fine-scale population structure analysis tracing individual ancestry remains one of the major
challenges. Based on network theory and recent advances in SNP chip technology, we investigated an unsupervised
network clustering method called Super Paramagnetic Clustering (SPC). When applied to whole-genome marker data it
identifies the natural divisions of groups of individuals into population clusters without use of prior ancestry information.
Furthermore, we optimised an analysis pipeline called NETVIEW, a high-definition network visualization, starting with
computation of genetic distance, followed clustering using SPC and finally visualization of clusters with CYTOSCAPE. We
compared NETVIEW against commonly used methodologies including Principal Component Analyses (PCA) and a model-
based algorithm, ADMIXTURE, on whole-genome-wide SNP data derived from three previously described data sets: simulated
(2.5 million SNPs, 5 populations), human (1.4 million SNPs, 11 populations) and cattle (32,653 SNPs, 19 populations). We
demonstrate that individuals can be effectively allocated to their correct population whilst simultaneously revealing fine-
scale structure within the populations. Analyzing the human HapMap populations, we identified unexpected genetic
relatedness among individuals, and population stratification within the Indian, African and Mexican samples. In the cattle
data set, we correctly assigned all individuals to their respective breeds and detected fine-scale population sub-structures
reflecting different sample origins and phenotypes. The NETVIEW pipeline is computationally extremely efficient and can be
easily applied on large-scale genome-wide data sets to assign individuals to particular populations and to reproduce fine-
scale population structures without prior knowledge of individual ancestry. NETVIEW can be used on any data from which a
genetic relationship/distance between individuals can be calculated.
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Introduction

Genetic variation among and within populations arises from

many factors such as mutation, migration, bottlenecks and

admixture, and carries the signatures of random drift and natural

selection. The complex interplay of these forces may give rise to

the formation of populations which are genetically sub-structured.

Uncovering such population sub-structures can give insight into

the history and evolution of populations. Furthermore, identifying

population sub-structures and assigning individuals to sub-

populations is potentially useful in association studies, where

sub-structures have to be accounted for to reduce spurious

associations [1] and provide useful information for conservation

of genetic resources [2]. Rapid innovations in high-throughput

sequencing and array technologies have led to the identification of

large numbers of SNPs and to the development of SNP chips in a

number of species [3,4,5]. These developments are providing new

biological insights into complex population structures [6]. There is

also growing interest to detect population sub-structures in

‘‘unrelated’’ samples in humans [7,8,9], livestock [10,11,12], dogs

[13] and other biological populations (e.g. plants [14]). An efficient

analytical tool for population structure analysis would utilise all

available high-density SNP data to identify sub-structures in the

absence of prior ancestry information.

To date, the two most common approaches for identifying

population structure and assigning individuals to their population

of origin are based on methods derived from PCA [15] and model-

based algorithms implemented in programs such as STRUCTURE

[16,17], ADMIXTURE [18] and more recently fineSTRUCTURE [19].

As discussed below, these two approaches have limitations in their

prior assumptions, their capacity to handle large-scale genomic

data or in visualizing and interpreting analysis outputs.

PCA is a classical non-parametric linear reduction technique for

uncovering population structure by arranging all principal

components (PCs) according to the explained variance. Based

upon this principle, two different PCA approaches have mainly

been used. In population-based association studies, PCA uses

covariance among normalized genotype scores of samples to

correct for population stratification [20,21], whilst in population

genetics, Principal Coordinate Analysis (PCoA) as well as

Multidimensional Scaling (MDS) are applied, which utilize allele

sharing distances (ASD) between samples to infer population

clusters [12,22,23]. As such, PCA is not capable of assigning
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samples to clusters nor estimating number of clusters (K), hence

this analysis is commonly applied in combination with standard

clustering tools, e.g. k-means [24] and Model-based Clustering

(Mclust) [25] to allocate the individuals to their ‘‘true’’ cluster [26].

In order to determine the optimal number of clusters with k-means

and Mclust different criterions are applied e.g. Calinski criterion

[27] and Bayesian Information Criterion (BIC) [28]. It has been

shown that this two-stage strategy is a powerful tool for the

identification of population clusters using genome-wide SNP data

sets including thousands of individuals and many thousands of

SNPs [29]. However, this approach is less useful for visualization

of population data sets which consist of closely related sub-

populations [30]. In such population data sets, the commonly

applied PCA-scatter plots (i.e. top 1–3 PCs) can highlight the

difference of the most distinct sub-populations but could be

limiting in separating the closely related sub-populations [31]. The

number of PCs can be increased [32] and genetically distinct sub-

populations can be excluded in an iterative process to increase the

resolution of the PCA-scatter plot [30,33]. Since visualization at

higher than 3-D space is not effective, the interpretation of PCA-

based methods becomes difficult and limited.

In contrast to PCA-based methods the program STRUCTURE uses

a model-based algorithm to identify population structure. This

method has been used in numerous population structure studies

[34,35]. However, the detailed modelling of the data causes

intensive computational demands [21,26,36], making this algo-

rithm impractical to apply on high-density SNP data sets.

Recently, alternative model-based algorithms as implemented in

the programs ADMIXTURE [18] and frappe [37] have been used for

uncovering genome-wide population structures [38,39]. These

algorithms are computationally efficient and can be easily applied

on genome-wide SNP data sets to infer individual ancestry.

However, these methods are still sensitive to the nature of sample

collection (e.g. inclusion of closely related individuals) and

therefore require a data-validation check. Commonly this data-

validation check is done by calculating identity-by-descent (IBD)

for all pairs of individuals and removing one individual from each

pair with a proportion IBD above some threshold (e.g. IBD more

than 0.125 [40]). Furthermore, current methods (PCA- and

model-based approaches) infer population structures, supposing

that no sub-structures exist within the populations. As sub-

structures frequently exist within populations, these methods do

not represent any information on the relatedness of individuals

within the population, for example in the analyses of populations

with strong founder effects and closely related individuals.

Recently, we and others have shown that network theory can be

used for uncovering fine-scale population structure [41,42].

Network-based procedures sub-divide the population into a

network of nodes or community structures, based on the density

of the connections within and between different sub-groups, which

provides a means to identify and visualize the structure of the

respective global population. Network analyses have been

successfully applied in a wide variety of contexts, e.g. in the

analysis of epidemiology [43], in identifying graph structures in the

Internet and world wide web [44] and for deriving community

structures in social and biological networks [45]. To identify these

community structures, many different algorithms have been

developed, including vertex similarity [46], the vertex degree

gradient [47], the resistor network [48] and the Potts Hamiltonian

Model [49].

Here, we describe the application of an unsupervised network

clustering-method, so called Super Paramagnetic Clustering (SPC)

as implemented in the software program SORTING POINTS INTO

NEIGHBOURHOOD (SPIN) [50,51], which uses the Potts Hamiltonian

Model to identify stable clusters in networks [52]. We evaluate the

performance of SPC extensively on three previously described data

sets: simulated [19], human [53] and cattle [31]. We demonstrate

the utility of SPC to detect complex population structures using

very dense SNP genotype data, to assign individuals to sub-

populations and to determine the optimum number of clusters. To

our knowledge this is the first application of SPC to large-scale

genomic data for population applications.

We integrated SPC output into high resolution visualisation

programmes and constructed a population analysis pipeline which

we call ‘‘NETVIEW’’. We show that it is feasible to visualize and

detect fine-scale population structure as well as the genetic

relatedness of individuals, thereby detecting important key

individuals (highly connected individuals) and less significant

individuals (less connected individuals) from ‘‘unrelated’’ samples

of a population.

Methods

Development of NETVIEW

NETVIEW, a high-definition network visualization, is an analysis

pipeline which consists of 5 distinct components: (A) data

preparation and editing, (B) calculation of a genetic-relationship

or genetic-distance matrix among all individuals/samples, (C)
network construction, (D) clustering of individuals within the

population network, and finally (E) network-based visualization of

the clustering results.

The NETVIEW procedure is shown schematically in Figure S1

and at http://sydney.edu.au/vetscience/reprogen/netview.

A: Data preparation and editing. NETVIEW can handle any

data from which a relationship or distance between pairs of

individuals can be estimated. Genotypic data from SNP chips now

presents the typical data input of choice. Such data sets often

require editing and quality control (QC) filtering in order to

minimize spurious artefacts associated with genotyping. Many

proprietary scripts or public domain software packages are

available for this purpose. We frequently use PLINK as described

in its manual (http://pngu.mgh.harvard.edu/̃ purcell/plink/)

[54]. Typically we check data for the presence of duplicate

samples by comparing genotype similarity among all samples and

remove one of each duplicate. In general, SNP arrays do not call

all SNPs with equal efficiency or completeness, and we remove

SNPs and samples with a call rate ,90%. The SNPs with extreme

deviation from Hardy Weinberg Equilibrium (HWE), assessed

using P-values ,0.001 in Fisher’s exact test, and with very low

minor allelic frequency ,0.01 (MAF) are excluded from the

analysis to provide ‘‘common’’ well-defined, non-duplicated SNPs

for the calculation of the relationship matrix. Our preference is to

use SNPs only with known positions although this is not essential;

it is a prerequisite only if haplotype-based similarity is the basis for

estimating relationships. The exact thresholds for different

inclusion criteria can be modified for different data sets, as

described below.

B: Computation of genetic distance matrices. NETVIEW

requires an input matrix of genetic relationships or distances

between all individuals in the network construction step. The most

frequently used methods to determine genetic distances among

individuals in diversity studies are genetic model-based distances

(e.g. Wright’s FST [55] and Nei’s standard genetic distance [56]) as

well as ASD [57]. Model-based distances quantify the extent of

genetic differentiation among individuals based upon the allele

frequencies of marker genotypes within predefined sub-popula-

tions. Hence, in all studies in which model-based distances are

applied, knowledge of individual ancestry is a prerequisite.

Fine-Scale Population Networks
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Contrary to model-based distances, computation of classical ASD

is only based on genotypic or haplotype information [54].

Commonly, genome-wide ASD are calculated as one minus the

average proportion of shared alleles, which can be identical by

state (IBS) or descent (IBD) as obtained through PLINK [54] or

similar [19]. It is common for population structure analyses to rely

on ASD derived from IBS-based relationships [12,53]. We

exemplify NETVIEW based on ASD derived from IBS [54] and

shared haplotypes [19]. However, as explained above, NETVIEW

can also be applied on model-based distances.

C: Network construction based on genetic

distances. Given the pair-wise distances between all individuals

(D), a fully connected population network is created using SPC [50].

In this network individuals are considered as nodes, and

connections between a pair of individuals as edges. In population

networks the thickness of edges are used to reflect the genetic

distance between individuals as described below. SPC computes

such a network using an algorithm which requires the specification

of the maximum number of nearest neighbours (k-NN) an

individual can have. Based on the k-NN specification, the pair-

wise distances between nearest neighbours and the distances of

these neighbours to all other individuals in the data set are

considered. Individuals without a nearest neighbour in the

population network are then connected to individuals, which have

the smallest genetic distance with the individual in question. The

topological structure of the population network generated by this

procedure depends on the parameter k-NN. There is no suitable

objective procedure to optimize k-NN. We set k-NN = 10 as the

default value, as suggested by previous applications [50], and also

recommend exploring lower k-NN for very small sample

collections (i.e. data sets with less than 10 samples per sub-

population). The network construction is described in detail in

Blatt et al. [50] and Text S1.

D: Clustering of individuals within the population

network. In order to interpret the existence of sub-populations

within the population network, all individuals get clustered based

on genetic distance by an unsupervised clustering procedure. Here

also SPC is used in a model based simulation framework (described

in Blatt et al. [50] and Text S1) which generates clusters at

different thresholds of genetic distance (Note that here genetic

distance is analogous to the temperature gradient used in the

detailed description of the method and as applied to physical

analysis or material stability). The optimum threshold and

corresponding equilibrium state, so called ‘‘super-paramagnetic

state’’, is identified by the algorithm itself by measuring the

variation in cluster size along a gradient of thresholds of genetic

distance [58]. The state where the size and hence number of

clusters is stabilized is determined by a Hamiltonian cost function

as described in detail in Text S1 and Blatt et al. [50]. The results of

the analyses at different thresholds of genetic relationship are

combined and provide the hierarchical clustering of all individuals.

We term the thresholds of genetic distance at which a cluster

configuration (size and number) is identified as the cluster stability

(CS). Consequently the resultant hierarchical population structure

can be described as the branching of identified populations at a

specific CS. Branching at high CS signifies clusters with strong

internal genetic relationships, whereas clusters defined with low CS

indicate less stable population structures which may arise from

either internal sub-structures or a high number of external links to

other populations.

The main output from SPC consists of a re-ordered distance

matrix of all individuals based on the final optimal clustering, and

a hierarchical tree of cluster relationships. SPC provides the

clustering relationships in the form of a binary matrix for presence

or absence of a connection between any pair of individuals in the

data set. This binary relationship matrix is multiplied with the

relationship matrix, to define the strength between connected

individuals i.e. thickness of the edges. This cluster relationship

matrix is then visualized in the network visualization step.

E: Network visualization following clustering. In NET-

VIEW we have applied open source software CYTOSCAPE (http://

www.cytoscape.org) [59] for visualizing the final network which is

based on the cluster relationship matrix from SPC as described in

the previous section. We used the network analysis tools software

(NEAT) [60] to transform the cluster relationship matrix into a

format required by CYTOSCAPE where, population structure is now

represented in terms of nodes, edges between nodes and thickness

of edges. In the final network presentation, the relationships

between the individuals within a cluster are described such that

more closely related individuals are co-located, and distantly

related individuals are separated. In addition the thickness of an

edge expresses the strength of relationship in proportion to the

genetic distance between two nodes. Similarly, in general more

closely related clusters are co-located on the network as a whole

but the separation is not to scale in relation to the genetic distance

(For the actual hierarchal relationship between clusters the SPC

tree is more informative). Overall the network visualized shows

detailed relationships among individuals grouped within and

between populations and provides a high-definition network

visualization (NETVIEW) of the populations. Important key

individuals within populations can easily be detected by the node

size which is based on the number of direct connections to the

node (degree centrality). It should be noted, that using CYTOSCAPE

different visualization styles for networks can be applied. For

population networks we found it more attractive to apply the

circular and organic layout style. Using the circular visualization

style the relationship between individuals and their connectivity

can be easily investigated, whilst the organic visualization provides

a more meaningful NETVIEW for closely related populations and

populations containing sub-structures.

Results

Application of NETVIEW

We demonstrate the application and utility of NETVIEW in three

population data sets. The first data set is a simulated population of

400 individuals genotyped for 2.5 million SNPs where the

relationship between individuals is known and predetermined

[19]; the second is a typical human data set related to diversity and

HapMap studies where the data set comprises a relatively small

number of populations, a large effective population size (Ne),

limited natural selection, and high-density SNP genotypes [53].

For the third and final data set we have chosen a cattle population

diversity HapMap data set where many breed groups exist, most

with a relatively small Ne, intense directional selection, and

genotyped for relatively low-density genome-wide SNP profiles

[31]. In order to provide meaningful comparisons of the output

generated under NETVIEW in each application, we used equivalent

relationship input matrices applied in the previously published

studies (i.e. shared haplotypes for the simulated data set [19], and

genotype-based IBS for the human and bovine sample collection

[31,53]).

A: Simulated population data set. The simulated data used

in this study reflects real human population structures as presented

and analysed by Lawson et al. [19]. To imitate these population

structures, the simulation starts with a high Ne (Ne = 5000) and an

exponential growth rate until present day. To simulate the present

Ne , 3100 [61], Ne drops through a bottleneck. After this

Fine-Scale Population Networks
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Figure 1. SPC and NETVIEW analysis of the simulated data set. (A) Population structure used for creating the simulated data (adapted from
Lawson et al. [19]). (B) SPC tree of clusters representing the grouping of individuals with k-NN = 10. The individuals have been separated into 5
clusters, representing the three main populations and the additional existence of two sub-populations (PopA1 and PopA2, PopB1 and PopB2). Each
cluster is represented by a box; with Y axis positions indicating the stability of each cluster, whilst the X-axis positions are indicating the proximity
between clusters. (C) High-definition network visualization (NETVIEW) of the simulated population structure. Each individual is represented by a node;
with the different shades denote the sample origin. The thickness of edges varies in proportion to the genetic distance and has been used to visualize
individual relationships within and between populations. The node size varies in proportion to the numbers of edges per node, and illustrates how
well each individual is connected within the population.
doi:10.1371/journal.pone.0048375.g001
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demographic event the population splits into three populations

(PopA, PopB, PopC) 3000 years ago, whilst two populations

additionally split 2000 (PopA1 and PopA2) and 1000 (PopB1 and

PopB2) years ago respectively (Figure 1A). It was assumed that one

generation was 26 years. From the final five populations, data on

80 samples from each population were used in this study. The

same recombination maps as described in Phase II Hapmap [62]

were used to simulate 100 regions, each spanning 5 Mb. There

were about 2.5 million SNPs after considering SNP alleles

observed in more than one individual. We used the haplotype-

based relationship matrix between individuals from these data as

provided by Lawson et al. [19], where patterns of haplotype

similarity of each individual are used to reconstruct the pair-wise

relationship between all individuals along each chromosome. The

final genome-wide ‘‘co-ancestry matrix’’ is the average of the

results along each chromosome, and provides the input matrix on

the ancestral relationship between all individuals in the population.

It should be noted that PCA and ADMIXTURE results of the

Figure 2. PCA scatter plots of the simulated data set. Projection of individuals from 5 populations onto a two dimensional (X,Y) subspace of
four PCs. The panels A to D show pair wise comparison of PC combinations. Each individual is represented by a datum point. Each sub-population is
denoted by a separate colour. The variation captured by each PC is indicated in parenthesis next to the axis label.
doi:10.1371/journal.pone.0048375.g002
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simulated data set as presented in Figures 2 and 3 were also

performed and published by Lawson et al. [19] on a slightly

different sample collection. Recently Lawson et al. [19] analysed

this data with the software fineSTRUCTURE [19] that provides a

tree-like representation of the data which can be compared to

SPC’s output tree.

NetView. Applying SPC on the simulated data every individ-

ual has been allocated to its correct sub-population. A hierarchical

tree of clusters obtained from the analysis of the entire simulated

data set is presented in Figure 1B. As shown in the figure, the SPC

tree starts to split into three major groups and ends up with a final

organization of clusters, where all individuals have been separated

to each of the five single sub-populations along a continuous

gradient of cluster stability. The shape of the hierarchical tree

observed reflects the simulated population scenario, by separating

the populations into the three main populations including a further

differentiation of PopA and PopB into the respective sub-

populations at more recent time events. The hierarchical structure

of the tree shows that the sub-populations PopA1 and PopA2, and

PopB1 and PopB2 are more closely related (Figure 1B). However,

the tree reveals little information about the relationship between

individuals within the sub-populations. In order to reveal this the

high-definition network visualization of the simulated population

structure was undertaken.

Under network visualization, each individual is presented by a

node as shown in Figure 1C, with different shades denoting the

origin of the samples. The thickness of edges, which varies in the

proportion to the genetic distance, has been used to visualize

individual relationships within populations. The node size, which

varies in proportion to the numbers of edges per node (degree

centrality) illustrates the connectivity of each individual within the

population and shows a relatively greater or lesser genetic

relatedness of the individual within the sub-population.

The topology of the network visualization highlights the

existence of clusters of populations and additional expression of

the fine-scale population structure within the identified sub-

populations. Furthermore, the high-definition visualization shows

that the majority of individuals of each population are highly

interconnected, which indicates that no further sub-structures exist

within the identified sub-populations. The values of degree

centrality, quantifying the relative representation of each individ-

ual within the population, immediately highlights the connectivity

of each individual, simultaneously revealing important key

individuals and less connected ‘‘orphans’’.

The results of NETVIEW were compared with PCA results and

ADMIXTURE on this data set as shown in Figure 2 and Figure 3.

PCA and k-means analysis. Given the genome-wide

proportions of shared alleles between individuals (A), we directly

applied PCA on A to compute its singular PCs. To determine the

number of significant PCs we have used the empirical method

Horn’s parallel analysis as implemented in the statistical

programme package paran (http://www.r-project.org). This meth-

od employs Monte Carlo estimates to retain most significant PCs,

according to the given significance level and number of iterations.

Here, we chose a significance level of P = 0.01 and 10,000

iterations, which have been suggested in the modified version of

Figure 3. Cluster assignment of the simulated population data following analysis by ADMIXTURE using 2–5 clusters (K). Individuals are
presented by a single vertical column divided into K colours. Each colour represents one cluster, and the length of the coloured segment corresponds
to the individuals estimated proportion of membership in that cluster. For each K, 10 iterations were performed. The panels A to D represent the
cluster patterns at K = 2 to 5.
doi:10.1371/journal.pone.0048375.g003
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Horn’s parallel analysis [63]. After determining the number of

significant PCs, k-means clustering was applied on low-dimen-

sional data (i.e. number of significant PCs) to allocate the

individuals in the given number of clusters. In order to determine

the optimal number of clusters we computed the Calinski criterion

[27] as implemented in the statistical programme package vegan

(http://www.r-project.org) for each K, increasing K from 2 to 7.

Horn’s parallel analysis resulted in 4 significant PCs accounting

for 33%, 20%, 0.08% and 0.02% of the variation among all

individuals. Individuals are projected onto the sub-space of the

four significant PCs on a pair-wise comparison of the PCs where

each individual is represented by a datum point, and each sub-

population is denoted by a different colour. In contrasting PCA1

vs PCA2, the three founder populations PopA, PopB and PopC

are clearly differentiated (Figure 2A) corresponding to the first tree

branch in the unsupervised SPC analysis (Figure 1B). A clear

differentiation between sub-population PopA1 and PopA2 oc-

curred by contrasting PC1 vs PC3 (Figure 2B) and contrasting

PC2 vs PC3 (Figure 2C) whilst the final contrast of PC3 vs PC4

showed the full separation of all five populations (Figure 2D),

corresponding to the most recent branching of all populations in

the SPC analysis (Figure 1B). The Calinski criterion clearly

identified the true number of clusters (Figure S2). Using k-means

clustering on the low-dimensional data (4 PCs) and the predeter-

mined optimal number of clusters (K = 5) all individuals were

correctly assigned to their respective sub-populations.

Admixture. We applied ADMIXTURE on the entire simulated

data set for each value of K, increasing K = 2 to 5 (the true

number of populations). Convergence between independent runs

at the same K was monitored by comparing the resulting log-

likelihood scores (LLS) following 10 iterations, and was inferred

from stabilized LLS with less than 1 LL unit of variation between

runs. Convergence was observed for all K values (K = 2 to 5). Ten-

fold cross validation was performed and cross validation errors

were computed to determine the optimal number of clusters as

suggested by ADMIXTURE at each value of K.

Following cross-validation ADMIXTURE suggests an uppermost

hierarchical structure of K = 1 and shows a clear point of change

in the slope of the error rate by further increasing K to 3, however

the error rate values from K = 1 to 5 were in a narrow range

(Figure S3).

The assignment of individuals to separate clusters shows that

ADMIXTURE successfully splits the three founder populations (PopA,

PopB and PopC), but is unable to differentiate the more closely

related sub-populations PopA1 and PopA2 and PopB1 and PopB2.

For instance, given K = 2 and K = 3, ADMIXTURE confirms the

findings of PCA on the first two significant PCs by allocating

individuals from PopB to one and individuals from PopA and

PopC to the other cluster (Figure 3A) and further separating PopC

from PopA (Figure 3B). At K = 4 the sub-populations PopA1 and

PopA2 become differentiated, with individuals from PopA2

associated with a high proportional membership of PopA1

(Figure 3C). ADMIXTURE could not differentiate populations PopB1

and PopB2 at any given K (Figure 3A-D).

To test the sensitivity of NETVIEW to varying sample size, we

further analysed different sub-sets of the data by reducing the

number of individuals by randomly sampling 10, 20 and 40

individuals from each population. To imitate a heterogeneous

sample collection, we additionally applied NETVIEW on a data set

consisting of 80 samples from PopA1, 40 samples from PopA2, 20

samples from PopB1, 10 samples from PopB2 and 5 samples from

PopC. The results of NETVIEW were compared with PCA results

on the same sample sizes. For the data set containing 40 samples

per population, all the individuals of the five populations have still

been assigned to their correct sub-populations by SPC (Figure

S4A), although the detected clusters were less significant, as the

clusters were detected at a lower level of cluster stability and that

the clusters were projected in a slightly different neighbourhood

within the network visualization (NETVIEW). For the sample size 20

and 10 individuals per population, the clusters became less stable

and closely related sub-populations PopB1 and PopB2 (SPC tree

Figure S4B) and PopA1 and PopA2 (SPC tree Figure S4C) were

assigned to single clusters. Visualizing the network structure, which

shows population structure in finer detail, it can be seen that sub-

structure exists within the closely related populations based on the

number of internal links between individuals within the population

(NETVIEW in Figure S4B and S4C). However, a clear cluster

solution cannot be seen at this depth of sampling. In this context,

we also noticed that a value of k-NN = 10 is possibly overestimat-

ing the genetic distance threshold using data sets with less samples

per population, e.g. applying k-NN = 3 on the data set with 10

samples per population, all individuals were accurately clustered

into 5 populations (Figure S4D).

Horn’s parallel analysis on varying sample size resulted in 4

significant PCs for the data sets containing 40 and 20 samples per

population, whilst for the data set with 10 samples per population

only 3 significant PCs were retained. Performing k-means

clustering on the low-dimensional data (4 PCs) of the sub-sets

containing 40 and 20 samples per population, all individuals were

successfully allocated to their populations, whilst using 10 samples

per population only individuals from PopC were correctly

clustered to their population. It seems that for a very small sample

size PCA performs better than NETVIEW especially when k-

NN = 10 is used.

Applying NETVIEW to the heterogeneous sample collection, the

closely related populations PopA1 and PopA2 clearly differentiate,

whilst PopC and PopB were assigned to one cluster, before they

were separated into two distinct populations (Figure S5A). PCA

matches the results from NETVIEW, by separating PopA1 and

PopA2 contrasting PCA1 vs PCA2, whilst PCA1 vs PCA3 provide

better differentiation between PopC, PopB1 and PopB2 (Figure

S5B). Therefore both PCA and NETVIEW are sensitive to

heterogeneous and varying sample size.

B: Human HapMap Data set. The human data set used

here has previously been described in detail by Pemberton et al.

[53]. Briefly, it comprises 1,397 samples from 11 populations: 87

African Americans from the South-western United States (ASW);

165 Utah residents with ancestry from Northern and Western

Europe (CEU); 137 Han Chinese in Bejing, China (CHB); 109

Chinese in Metropolitan Denver (CHD); 101 Gujarati Indians in

Housten, Texas (GIH); 113 Japanese in Tokyo, Japan (JPT); 110

Luhya in Webuye, Kenya (LWK); 86 Mexican Americans in Los

Angeles, California (MXL); 184 Maasai in Kinyawa, Kenya

(MKK); 102 Toscani in Italy (TSI) and 203 Yoruba in Ibadan,

Nigeria (YRI). Eight of these populations (ASW, CEU, CHD,

GIH, LWK, MKK, MXL, and YRI) include well documented

parent/parent/offspring trios (172) and parent/offspring duos (41)

as well as highly related individuals (36 full siblings and 23 half

siblings) [53,64]. For the final computation of ASD between the

1,397 individuals, 1,409,608 autosomal SNP genotypes were used,

following the SNP quality controls as described in Pemberton et al.

[53].

The SPC analysis on the entire human data sets indentified 128

clusters in total, by allocating closely-related individuals (full-

siblings, half-siblings, duos and trios) into 116 single clusters (for

reasons of over-crowding, the SPC tree is not shown). The network

visualization of the SPC analysis on the entire data set highlights

the impact of including a large proportion of the previously
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reported closely related individuals (Figure S6). A few notable

features of including such closely-related individuals are that firstly

the trio/duo sub-groups form separate mini-clusters among

themselves and then are connected to the main cluster of

unrelated individuals – see, for example, the ‘‘spoke and hub

like’’ characteristics of the CEU and YRI populations in Figure S6.

This is also evident in the other populations for closely-related

family members forming small individual clusters linked to the

main sub-population. Secondly, the internal close relationship

amongst related individuals within the MXL, ASW/MKK

populations shows evidence of sub-clustering, as shown by the

uneven distribution and strength (thickness of edges) of cross links

(edges) amongst members of the same population. By contrast, the

even distribution of cross links amongst members of the same

population (LWK, TSI, CHB/CHD, and JPT) suggests that these

members are unrelated individuals. Furthermore, there is also

evidence of single members falling outside the main cluster circle

of a population, suggesting that these members are less related to

its assigned population as a whole, possibly due to admixture or

unknown origin. Removal of close genetic links in the test

population by excluding progeny from any trio/duo combination

resulted in a SPC tree of 11 clusters and is shown in Figure 4A. The

hierarchical structure of this tree demonstrates that individuals

from populations with South Asian, American, European, East

Asian and African ancestry form distinct clusters and are in

agreement with previous analyses on the HGDP-CEPH panel and

release 2 of phase III of the HapMap using MDS [53] and model-

based algorithm frappe [65]. In addition, it is now evident that two

sub-structures exist within GIH and MKK population. The

NETVIEW of this analysis is shown in Figure 4B where 9 distinct

clusters are evident. A key feature in the topology of the network

can readily be noted that the GIH population consists of two

major-well defined sub-populations and that the internal relation-

ship amongst members of the MXL population remains evident

after removal of the trio relationships, suggesting unknown

internal relationships. The NETVIEW analysis also shows that both

the TSI/CEU population and the MKK/ASW are visualized into

two single networks, respectively, with evidence of internal sub-

structures in these populations. Under an alternative (organic)

network visualization option, NETVIEW highlights the population

sub-structures within ASW and MKK population (Figure 5A) and

clearly identifies individuals cross-linking the TSI and CEU

population (Figure 5B).

The relatedness of individuals within the population is clearly

visible by NETVIEW, for instance the strong relatedness of

individual NA18124 in the Han Chinese population and

individual NA19213 in the YRI population is shown in

Figure 4B, with 16 and 15 population-wide links, respectively.

We consider these individuals as significant since there were no

close (kinship) relationships evident for these individuals. This

feature is not readily seen in conventional population analyses such

as model-based approaches (e.g. STRUCTURE), where information

on individuals is not captured to this level of detail [8]. This level

of detail on individual members shows an outlier previously

reported by Pemberton et al. [53] within the JPT population

(NA18976) found to be connected to two Chinese individuals

sampled in Denver (CHD) and a previously unreported outlier

African American individual (NA20291) which was found to be

connected to the YRI population through a single link (Figure 4B).

C: Bovine HapMap Data set. Finally, we used a data set on

multiple breeds of cattle which consisted of a total of 501 animals,

representing 12 Bos taurus breeds (N = 331) with European origin, 2

Bos taurus breeds (N = 45) with African origin, three Bos indicus

breeds (N = 73) and 2 admixed breeds (N = 48), as well as two buffalo

breeds namely Bubalos quarelis (N = 2) and Bubalus bubalis (N = 2). A

detailed description of the breeds and samples used by the Bovine

HapMap consortium is given in [31] and is also listed in Table S1.

The animals within each breed were documented to be unrelated

for $4 generations. It has been documented that each breed

includes one or two sire/dam duos and at least one sire/dam/

offspring trio. For 8 of the 14 breeds, samples were sourced from

multiple geographical locations as detailed in Table S1. All

samples were genotyped using the 50K Illumina Bovine

BeadChip. For the present analysis we included samples with a

genotype call rate .0.9 and excluded the 4 buffalo samples. The

final bovine data set used in this study includes 477 animals from

Figure 4. SPC and NETVIEW analysis of human HapMap reference population after removal of closely related individuals. (A) SPC tree of
clusters representing the grouping of 1,159 unrelated individuals. All individuals have been separated into 11 clusters, representing 9 distinct
populations and the existence of sub-structures within GIH and MKK samples. (B) NETVIEW of the 1,159 assumed unrelated individuals. The topology of
the network highlights the sub-structures within GIH, MXL and MKK and reveals a close relationship between CEU and TSI as well as between ASW
and MKK. The identified outliers and key individuals of the population are indicated by their HapMap ID.
doi:10.1371/journal.pone.0048375.g004

Figure 5. Alternative (organic) NETVIEW of populations with
evidence of internal sub-structures. Organic visualization style of
(A) ASW/MKK and (B) TSI/CEU as implemented in software CYTOSCAPE

[59]. The network structure of this visualization highlights the existence
of sub-structures and clearly identifies cross-linking individuals.
doi:10.1371/journal.pone.0048375.g005
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19 genetically distinct sub-populations with genotypes on 32,653

autosomal SNPs.

The SPC analysis of the entire bovine data set successfully

allocated all animals to their respective breed. For the JER breed

group, animals were separated in two clusters (JER_1 and JER_2)

based on the geographical origin of the samples, whilst for the

RGU breed group; all animals were clustered with the ANG

cluster (breed group). The hierarchical structure of the SPC tree

reflects that cattle breeds are highly structured according to sub-

species (Bos taurus vs Bos indicus), geographic origin (African vs

Indian, vs European) and primary purpose (dairy or beef)

(Figure 6A). At the base of the tree, the most readily differentiated

sub-clustering occurred between Bos indicus and European Bos

taurus, with further evidence of African taurine (NDA) and an

ancestral indicine/taurine hybrid (SHK) forming separate breeds

groups. Within the European taurine based groups, the two

admixed breeds (SGT and BMA, both with European taurine

content) clearly separate out from the remaining European taurine

breeds. This tree is in broad agreement with the STRUCTURE and

PCA results reported by the Bovine HapMap group who have

generated the data [31].

Also evident are the different levels of cluster stability (CS) at

which each cluster separates, which suggests that different sub-

structures exist within the European cattle breeds and that these

breeds are less related to each other, compared to Bos indicus and

admixed breeds possibly as a result of SNP-discovery ascertainment

bias [11]. The final position of the clusters suggests that the GIR

and NEL samples are highly related, whilst BRM, LMS, PTM and

ANG cluster out at lower positions, indicating the existence of sub-

structures or co-relationships with other breeds. The network

visualization of the bovine data highlights the transitional position

of the admixed breeds SGT/BMA and SHK between the Bos indicus

breeds and the Bos taurus breeds (Figure 6B). Furthermore, the

network visualization also shows the transitional position of breeds

within the Bos indicus and Bos taurus breeds groups (i.e. BRM, PTM

and LMS), as shown with the highest numbers of external links to

other breeds. The network structure within breeds additionally

reveals sub-structures within the LMS, ANG, and SHK clusters.

Within LMS the sub-structures may arise due to different origins

of the samples, where samples have been taken from USA and

France. Within the ANG, the network identifies RGU samples as a

sub-population of the ANG breed, whilst the sub-structure within

SHK may indicate samples of different origin or heterogeneous

sample collection. Other breeds which include samples of different

origin show that in extreme cases such as JER the samples from

different origins cluster as two separate clusters but with a close

connection between them. The network visualization also high-

lights heterogeneity in sample relationships within breeds, as

evidenced by mini-clusters of closely related samples and small

sub-groups within the main breed cluster, i.e. GNS, BRM, NEL,

PMT and NDA. These high-resolution features of sub-structure

are not readily evident from PCA results and STRUCTURE analyses

shown by the Bovine HapMap consortium [31] and highlight

unique attractive features offered by NETVIEW.

Discussion

We have introduced a network-based clustering procedure (SPC)

to population genetic analysis to infer high-resolution population

structure without any a priori ancestry information from high

density genotypic data. Furthermore, we combined SPC results

with network visualisation tools into an analysis pipeline called

‘‘NETVIEW’’ for high definition network visualization. We com-

pared our results with two popular methods namely non-

parametric (e.g. PCA [15]) and parametric approaches (e.g.

ADMIXTURE [18]). An overall comparison of the three presented

approaches including the different input parameters and the

various output styles are provided in Table 1.

In order to evaluate the efficiency of NETVIEW to detect fine-

scale population structure, we have compared our findings across

three previously published data sets. For the simulated data set,

PCA coupled with k-means clustering performed well to separate

the samples into distinct genetic groups, using four significant PCs

and a predetermined optimal number of K. ADMIXTURE could

neither determine the correct number of clusters nor correctly

separate close related sub-populations that would have suggested

recent admixture. By contrast SPC analyses of the same data

revealed a hierarchical structure between groups that perfectly

corresponded to the known phylogenetic relationship between

them. Given the network structure in NETVIEW which is derived

through the clustering procedure, additional information on the

relatedness of individuals within their respective populations can

be shown. For instance important key individuals within groups

and the position of less related individuals can be readily

visualized. The combination of all these findings implies that

populations can be structured into different sub-populations on a

very fine scale.

The real human and bovine genotype data presented in this

study, describe two different population structures. The human

population structure represents a population with distinct groups;

where samples have descended from a few well-differentiated

ancestral populations as a discrete grouping. The bovine data

exemplifies a more continuous population structure with many

closely related sub-populations described as breed and admixed

breeds. Model based approaches like ADMIXTURE are more

effective in the characterisation of distinct groupings, whilst PCA

based approaches perform better on continuous groupings [66].

Applying SPC on the two different types of data sets clearly

demonstrates the efficiency of this approach to handle the

combination of discrete and continuous sub-populations. This is

effectively shown by not imposing a partition on the European

population (CEU and TSI) and Angus breeds (ANG and RGU)

when there are no natural sub-populations present. This is

consistent with recent findings by Gusev et al. [67] who also could

not demonstrate separation between CEU and TSI populations

based on genome wide IBD sharing. Iterative removal of

individuals with strong cross links subsequently resulted in two

distinct populations by Gusev et al. [67] and confirms our findings

under NETVIEW (Figure 5B). In this context, we have demonstrat-

ed the ability of NETVIEW to reveal unknown fine-scale population

sub-structures (e.g. GIH, MKK and JER) and to identify closely

related (admixed) individuals between populations (e.g. CEU and

TSI), which is useful for the design of genome-wide association

studies [1]. The network visualization of the human data set shows

that NETVIEW additionally provides fine-scale population sub-

structures, and reveals information about each individual simul-

taneously, detecting important key individuals and closely related

individuals (trios and duos) as well as family structures (e.g. MXL).

In this context, we have demonstrated that NETVIEW is a useful

tool to detect unexpected genetic relatedness among samples and

incorrect sample assignment, knowledge of which is important in

the interpretation of phylogenetic studies [68]. As such NETVIEW

can be used as an editing tool to eliminate such individuals from

population studies, when unrelated samples are required as in the

case of ADMIXTURE and STRUCTURE. Application of NETVIEW can

also demonstrate inappropriate sample collection in phylogenetic

studies when small and inadequate sample sizes are selected for
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population analyses as shown in the analysis of the simulated data

set.

In this study we observed that k-NN = 10, seemed to be a

reasonable starting point for most analyses. However, we have

also noted that for this number of k-NN, experimental designs

including less than 20 samples per population will be of limited

value. Hence, for such small data sets per population, we suggest

to start with k-NN = 10 and additionally re-run NETVIEW with a

smaller number of k-NN, simultaneously investigating different

cluster solutions. Step-wise reduction of the number of k-NN

allows examination of the population structure at different levels

of resolution and simultaneously describes a zoom in effect as

Figure 6. SPC and NETVIEW analysis of the Bovine HapMap data. (A) SPC tree of clusters representing the grouping of 477 animals represented
in the Bovine HapMap data set [31]. The animals have been allocated into 19 clusters, representing 18 out of 19 breeds and the existence of sub-
structures within JER (JER_1 and JER_2), and a merged Angus cluster (ANG and RGU). (B) NETVIEW of 477 bovine HapMap samples from Bos taurus, Bos
indicus and admixed origins. The topology of the network reflects the genetic relatedness between cattle breeds and reveals sub-structures within
LMS, SHK and ANG cluster.
doi:10.1371/journal.pone.0048375.g006
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shown on the simulated data set, whilst increasing k-NN will

allow for a more detailed analysis of admixture between

populations.

We believe that network analyses can especially be useful to

study the population structures of indigenous breeds and wild

species where population information is often lacking, hereby

Table 1. Overall comparison of the three different approaches currently applied to study genome-wide population structures.

Name Applicability Performance

NETVIEW Genotype or Haplotype based Determines population clusters based on

distance matrix k-nearest neighbors (k-NN).

Creates a hierarchical structure of

population clusters.

Provides a high-definition network

visualization, which allows the identification

of fine-scale population structure and closely

related individuals (duos and trios).

Visualizes the relatedness of individuals

within populations.

Can also be used to determine genome-wide

membership proportions (unpublished result).

Notes: The cluster performance is strongly dependent on the prior choice of k-NN.

It can be recommended to start with k-NN = 10 and also explore other values.

There are also other tuning parameters (Delta T and number of pott spins), but

they are not as important as the k-NN criterion. There is no appropriate method to

determine the optimal number of k-NN.

Non-parametric Any similarity matrix or genotype Creates a visualization of fine-scale

(PCA) matrix (Individuals/SNPs) population structure in 2 or 3 dimensional

space.

Calculates the variation which is explained

by each principal component (PC).

Determines the optimal number of K.

Notes: To cluster individuals to respective populations and to determine the

optimal number of clusters (K), PCA has to be applied in combination with a

clustering tool e.g. k-means. To provide an optimal visualization and interpretation

of the cluster result, the number of significant PCs has to be determined with a test

statistic e.g. Horns parallel analysis (PA). The visualization is limited to 3D-space.

Parametric Genotype matrix Computes individual membership

(ADMIXTURE) proportions between individuals for any

given number of clusters (K).

Identifies admixed individuals.

Determines the optimal number of K with an

implemented cross-validation procedure.

Provides a hierarchical population structure

and FST estimates between the populations.

Notes: Needs a data-validation check of the relatedness between individuals.

Takes different model parameters as input. Determines the number of clusters with

a cross-validation procedure, which is not appropriate for all data sets, e.g.

simulated population structure results. Provides no convergence for cluster runs

when applied to data sets with K .10. Compared to the other two methods, this

procedure gets computational demanding when applied to full sequenced data with

millions of polymorphic sites.

doi:10.1371/journal.pone.0048375.t001
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providing essential information for conservation and genetic

resource management decisions applicable to any species

[69,70]. NETVIEW provides the means to detect putative important

founder/key individuals within populations and to accurately

study gene flow between populations [41,42]. These properties of

network visualization and analysis can be useful in the character-

ization of managed and non-managed populations. The results in

this study show that it is possible to detect fine-scale population

structures only from genetic relationships.

NETVIEW can be applied to livestock (cattle, pigs and sheep),

domestic animals (dog, cat and horse) and their related wildlife

ancestral populations where it is now feasible to collect and analyse

extensive global sample banks for genome wide SNP content on

vertebrate species (http://www.genome10k.org/) [71] and other

organisms.

As we discussed earlier different genetic relationship or distance

matrices can be used in the NETVIEW analysis. For a meaningful

comparison of the results presented in this study we use previously

applied genotype matrix (IBS) for the two real data sets and shared

haplotypes in case of the simulated data set. However, the effect of

the type of relationship matrix, SNP density, minor allelic

frequencies and use of haplotype information on the performance

of NETVIEW require further investigations. With the availability of

next generation sequencing data from large number of sequenced

and non-sequenced species, it would be possible to compute

sequence based genetic relationship matrix and hence allows the

application of NETVIEW to such data sets.

Future applications of NETVIEW can also be extended to high

resolution analysis of admixture which is common in many human

and animal populations [31,65]. The analysis can be done to

detect the systematic and planned occurrence of admixture as

demonstrated in the formation of multi-breed cross bred

populations in livestock to capture the benefit of heterosis, or the

spontaneous occurrence of admixture in population interactions as

seen in human populations. NETVIEW can reveal admixture on a

population basis or down to individuals, and may be extended to

chromosome or sub-chromosome level to examine selective and

adaptive fitness. NETVIEW may also be extended to incorporate

long and short range haplotype information, thereby capturing

historical events on the formation of populations as has been done

in humans [72] and sheep [73].

Supporting Information

Figure S1 Workflow of NETVIEW. Schematically representa-

tion of the 5 different components included in the NETVIEW

procedure.

(PDF)

Figure S2 Calinski Criterion values plotted for each
incremental value of K, increasing K form 2 to 7. The

modal value of this distribution corresponds to the true K(*) or the

uppermost level of structure for the simulated data set, here K = 5.

(PDF)

Figure S3 Cross-validation error plotted obtained
through ADMIXTURE for each incremental value of K for
the simulated data set.
(PDF)

Figure S4 NETVIEW application on reduced numbers of
individuals. SPC trees of clusters representing the groupings of

individuals with common applied k-NN = 10 and corresponding

network visualizations considering (A) 40, (B) 20 and (C) 10

samples per population. (D) SPC tree and network visualization of

10 samples per population with k-NN = 3.

(PDF)

Figure S5 Analysis of heterogeneous sample collection.
(A) SPC tree and network visualization of the heterogeneous

sample collection including 80, 40, 20, 10 and 5 individuals form

population PopA1, PopB1, PopA2, PopB2 and PopC respectively.

(B) PCA scatter plots of the heterogeneous sample collection,

contrasting PC1 vs PC2 and PC1 vs PC3.

(PDF)

Figure S6 High-definition network visualization (NET-

VIEW) of 1,397 individuals from 11 reference populations
represented in the human HapMap data set [53]. Each

individual is represented by a node; with the different shades

denote the sample origin. The thickness of edges, which varies in

the proportion to the genetic distance, has been used to visualize

individual relationships within and between populations. The node

size, which varies in proportion to the numbers of edges per node,

illustrates how well each individual is connected within the

population. The determined mini-clusters of close and less related

individuals are indicated by solid circles. In addition to the main

cluster network, duo and trio relationships are shown as well as

unrelated individuals.

(PDF)

Text S1 Detailed description of network construction
and clustering procedure.

(DOC)

Table S1 Summary of sampled cattle populations
represented in the bovine HapMap data set [31]. Breed

origin, country of sampling and breed characteristics are indicated,

together with the number of sampled animals included in this

study (N).

(DOC)
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