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Increasing evidence points to host Th17 inflammatory responses as contributing to the severe lung
pathology and mortality of lower respiratory tract infections from coronaviruses. This includes host
inflammatory and cytokine responses to COVID-19 caused by the SARS-2 coronavirus (SARS CoV2). From
studies conducted in laboratory animals, there are additional concerns about immune enhancement and
the role of potential host immunopathology resulting from experimental human COVID-19 vaccines.
Here we summarize evidence suggesting there may be partial overlap between the underlying immu-
nopathologic processes linked to both coronavirus infection and vaccination, and a role for Th17 in
immune enhancement and eosinophilic pulmonary immunopathology. Such findings help explain the
link between viral-vectored coronavirus vaccines and immune enhancement and its reduction through
alum adjuvants. Additional research may also clarify links between COVID-19 pulmonary immunopa-
thology and heart disease.

© 2020 Published by Elsevier Masson SAS on behalf of Institut Pasteur.
1. Introduction: COVID19 and Th17

COVID19 caused by the SARS-2 coronavirus (SARS CoV2) has
emerged as the third major lower respiratory tract coronavirus
infection in the 21st century, after severe acute respiratory syn-
drome (SARS) and Middle East respiratory syndrome (MERS). The
hallmark of each of these infections is a viral pneumonia accompa-
nied by host inflammation leading to pulmonary edema and a syn-
drome that resembles acute respiratory distress syndrome (ARDS)
[1]. New information has highlighted a critical role for host Th17 in-
flammatory responses in the pathogenesis of COVID19 pneumonia
and edema [2]. This includes the release of key cytokines including
IL-17 and GM-CSF [2], and other elements of exacerbating viral
immunopathogenesis through downregulating Treg cells, promot-
ing neutrophil migration, but simultaneously inducing Th2 re-
sponses [2,3]. Importantly, IL-17 can also induce pulmonary
eosinophilic responses and allergic disease, in part by promoting
eosinophil production from the bone marrow and recruitment
and extravasation into the lungs [4e6].

Th17 cells differentiate in part through the actions of IL-6 [7],
and IL-6 has been shown to have an important role in the lung pa-
thology associated with SARS infection [8]. There is additional evi-
dence to suggest the SARS N protein is a potent inducer of IL-6
responses, and may mediate coronavirus lung pathology [9].

Although confirmatory studies have yet to be performed, IL-6
induced by the presence of coronaviruses in the lung appears topro-
mote in susceptible hosts Th17 responses that may lead to severe
lungpathology that includeseosinophilia. Thesefindingspotentially
on behalf of Institut Pasteur.
provide a rational basis for evaluating anti-IL-6 monoclonal anti-
bodies as new therapies for COVID19 [10]. In addition, IL-8 produc-
tion is also generated under Th17-polarizing conditions [11].
2. Immune enhancement and coronavirus vaccines

Beyond direct virus-induced pathology, immune enhancement
associated with eosinophilic infiltration and immunopathology is
a potential safety concern linked to first-generation vaccines to pre-
vent severe acute respiratory syndrome (SARS) [12]. A similar phe-
nomenon may have derailed early efforts to develop an inactivated
whole virus human vaccine against respiratory syncytial virus
(RSV) [13].

The mechanisms of immune enhancement from SARS vaccina-
tions are still not well understood. In some cases, they have been
postulated as a component of antibody-dependent enhancement
(ADE) seen in several other human viral infections such as dengue
fever [14], while others differentiate eosinophilic immunopa-
thology fromADE. A key element of eosinophilic immunopathology
is the appearance of inflammatory infiltrates comprised of mono-
nuclear cells, especially eosinophils, in histopathologic sections of
the lungs or livers of vaccinated experimental animals, following
live virus challenge. The prominence of lung eosinophils has led
some investigators to conclude that immune enhancement occurs
through Th2-type immunity [15]. Indeed, a document titled
“Consensus considerations on the assessment of the risk of disease
enhancement with COVID-19 vaccines: Outcome of a Coalition for
Epidemic Preparedness from the CEPI alliance (https://taskforce.

https://taskforce.org/brighton-collaboration-cepi-covid-19-web-conference/;
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micinf.2020.04.005&domain=pdf
www.sciencedirect.com/science/journal/12864579
http://www.elsevier.com/locate/micinf
https://doi.org/10.1016/j.micinf.2020.04.005
https://doi.org/10.1016/j.micinf.2020.04.005
https://doi.org/10.1016/j.micinf.2020.04.005


Commentary / Microbes and Infection 22 (2020) 165e167166
org/brighton-collaboration-cepi-covid-19-web-conference/;
https://brightoncollaboration.us/brighton-collaboration-cepi-
covid-19-web-conference/), has questioned the use of alum and
other adjuvants that might promote Th2 responses.

However, some of the published literature argues against the
primary role of Th2 cells in directly promoting immune enhance-
ment [16]. For example, alum actually diminishes immune
enhancement in laboratory animals vaccinated against the SARS
coronavirus using either inactivated virus or virus-like particle vac-
cines [17,18]. We have made a similar observation with a recombi-
nant protein receptor binding domain vaccine [19].

Moreover, immune enhancement occurs primarily following the
use of virus-vectored vaccines, especially using vaccinia constructs
expressing coronavirus antigens [20e24]. In at least one study,
mice exhibiting immune enhancement following SARS virus chal-
lenge were noted to upregulate their Th1 cytokines and downregu-
late their anti-inflammatory cytokines such as IL-10, despite
exhibiting eosinophilic infiltrates [24], although another study
concluded lack of adequate Th1 induction was responsible [25].

Aside frommixed Th1 and Th2 responses, could Th17 responses
also explain coronavirus-vaccine immune enhancement (Fig. 1)?
While vaccinia and other vectored vaccines induce substantial im-
mune enhancement in both the lungs and liver of experimental an-
imals [20e24], which in some cases have been linked to viral
expression of the N protein [15], none of these studies specifically
examined Th17 responses. However, it is notable that immune
enhancement is linked to both IL-6 and IL-8 production [22,24],
each a prominent cytokine associated with Th17, as well as many
other types of immune responses.

As highlighted above, the presence of eosinophilic immunopa-
thology can be linked to Th17 responses [4e6]. While commonly
thought of as the product of Th2 responses, numerous studies
confirm that tissue eosinophilia can also fall under the control of
Th17 responses. IL-17 and Th17 induction promote eosinophilic
activation and infiltration [15], and eosinophil extravasation from
the bone marrow into the lungs [4]. Moreover, eosinophilia has
been shown to be sustained by Th17 cells [26,27].

3. Heart disease

Despite these concerns, notwithstanding the fact that COVID-19
involves severe pulmonary dysfunction, there remains the un-
known contribution of cytokine storm, enhanced Th17 responses,
or pulmonary eosinophilia to end-stage mortality [28]. Indeed, ev-
idence increasingly suggests that severe morbidity andmortality as
seen during COVID-19 may have far more to do with heart dysfunc-
tion than pulmonary failure [29,30]. Severe heart failure could in
Fig. 1. Mechanisms of eosinophilic immunopathology linked to viral-vectored coro-
navirus vaccines.
fact be the main cause of respiratory and other organ system failure
in severe, life-threatening disease. In this respect, heart failure from
myocarditis and cardiomyopathy has also been linked to IL-17 pro-
ducing T cells and IL-17-promoting cytokines [31].

4. Concluding comments

More research is needed into the underlying mechanisms of
eosinophilic immunopathology associated with coronavirus vac-
cines and the relevance of this observation to clinical outcomes.
However, the potential role of Th17 responses has a number of im-
plications in terms of the production and clinical development of
COVID-19 vaccines. These include adjuvant selection and vaccine
dose and route. Implicating Th17 also can also inform on the selec-
tion of the safest vaccine strategy among the virus-vectored and
nucleic acid-based platforms, as well as recombinant protein sub-
unit vaccines. Such decisions will be validated in the coming
months as several vaccines for COVID-19 enter the clinical pipeline
and undergo extensive evaluation for both efficacy and safety. In
addition to the possibility of Th17 and eosinophil-dependent
immunopathology, future COVID-19 vaccine studies might focus
on the cardioprotective effects of vaccination.
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