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ABSTRACT

The cyanobacterium Arthrospira is among the most well-known food supplements
worldwide known as “Spirulina.” While it is a widely recognized health-promoting
natural product, there are no reports on the molecular diversity of commercially
available brands of “Spirulina” supplements and the occurrence of other cyanobacterial
and heterotrophic bacterial microorganisms in these products. In this study, 454-
pyrosequencing analysis of the total bacterial occurrence in 31 brands of “Spirulina”
dietary supplements from the Greek market was applied for the first time. In all samples,
operational taxonomic units (OTUs) of Arthrospira platensis were the predominant
cyanobacteria. Some products contained additional cyanobacterial OTUs including a
few known potentially toxic taxa. Moreover, 469 OTUs were detected in all 31 products
collectively, with most of them being related to the Proteobacteria, Firmicutes, Bac-
teroidetes, Actinobacteria and Verrucomicrobia. All samples included heterotrophic
bacterial OTUs, ranging from 9-157 per product. Among the most common OTUs
were ones closely related to taxa known for causing health issues (i.e., Pseudomonas,
Flavobacterium, Vibrio, Aeromonas, Clostridium, Bacillus, Fusobacterium, Enterococcus).
The observed high cyanobacterial and heterotrophic bacterial OTUs richness in the
final product is a point for further research on the growth and processing of Arthrospira
biomass for commercial purposes.

Subjects Agricultural Science, Aquaculture, Biodiversity, Food Science and Technology,
Microbiology
Keywords Arthrospira, Spirulina, Food supplements, Cyanobacteria, Bacteria, Pyrosequencing

INTRODUCTION

In the present health food market, the filamentous cyanobacterium Arthrospira, has been
widely used as a dietary supplement under the usual commercial designation “Spirulina,”
due to its high nutritional value (e.g., high quantities of proteins, large amounts of
essential fatty acids, polysaccharide, vitamins, minerals, and pigments) and its putative
beneficial health effect (e.g., antioxidant, antiviral, anticancer activity), (Becker, 1994;
Gantar & Svircev, 2008; Gershwin & Belay, 2008; Hu, 2004).
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Arthrospira is usually presented under the taxonomically incorrect name Spirulina
(Vonshak e Tomaselli, 2000). Since 1852, the classification of the genus Spirulina, based
mainly on morphological features, has been a subject of long debate between taxonomists.
In the last decades of the 20th century, new information have drastically changed the
criteria that are used for the taxonomic classification of cyanobacteria (Castenholz,

1989; Komdrek & Anagnostidis, 2005). According to the current polyphasic approach,
which combines morphological, cytological, ecological, biochemical and molecular
criteria, the genus Spirulina has been re-evaluated, leading to the recognition of two
separated genera, Arthrospira and Spirulina (Komdrek ¢ Anagnostidis, 2005). Although,
the name Arthrospira has become universally accepted for the cultivated species, further
clarification of their systematic position in the genus Arthrospira is still ongoing. Komdrek
(2016), in his revision on the taxonomy and nomenclature of Arthrospira species, has
recommended the replacement of the commercial species name Arthrospira platensis,
with the taxonomically-correct name of Arthrospira fusiformis. The complicated and

still debated taxonomy of Arthrospira and its relationship with Spirulina raises serious
concerns regarding the “identity” of traditionally edible cyanobacteria and as a conse-
quence, regarding their nutritional quality (e.g., unlike Spirulina, Arthrospira contains the
unsaturated fatty acid y-linolenic acid) and the safety (e.g., unlike Spirulina, Arthrospira
is known to be potential toxin producer) of their products (Ballot et al., 2004; Gantar ¢
Svircev, 2008; Lugomela, Pratap & Mgay, 2006; Vonshak & Tomaselli, 2000).

The growing consumers’ demand for cyanobacterial products as dietary supplements
has offered the opportunity for rapidly growing commercial cultivation of Arthrospira
all over the world. Since Arthrospira has an optimum growth temperature in the range
of 35-38 °C, large-scale cultivation is mainly located in tropical, sub-tropical and warm
temperate climate zones. Principal producers such as Earthrise Nutritionals in California
and Cyanotech Corporation of Hawaii, USA; Hainan DIC Marketing in Hainan Island,
China and Siam Algae Company in Bangkok, Thailand, produce together about 1,300 t
(dw) of Arthrospira annually (Gershwin ¢» Belay, 2008). Today, China seems to be
the most actively engaged country in cultivating Arthrospira, aiming to reach annual
production to 10° t (dw) (Lu, Xiang & Wen, 2011).

The biomass of Arthrospira used for commercial exploitation as part of the human
diet, is produced nearly exclusively in outdoor open systems, either obtained through
a controlled cultivation process in open raceway ponds or harvested from natural
environments (Ballot et al., 2004; Becker, 1994; Grewe ¢~ Pulz, 2011; Hu, 2004; Li ¢ Qi,
1997). Outdoor closed systems using greenhouses ponds have been introduced in mid
latitude areas (e.g., China and Europe) in order to rise the production period per year (L,
Xiang & Wen, 2011; E Vardaka & KA Kormas, pers. obs., 2015). Advanced technology
of closed photobioreactors is being successfully implemented to commercially produce
Arthrospira (e.g., in Ritschenhausen, Thuringia, Germany); however, their use is very lim-
ited probably due to the high construction and operation cost (Grewe ¢ Pulz, 2011).The
main limitation of outdoor open/closed systems seems to be the risk of contamination by
fungi, bacteria and protozoa, and competition by other cyanobacteria and microalgae that
tend to dominate, regardless the original species used as inoculum (Tredici, 2004). This
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risk is much higher in natural environments, where the biomass harvested is essentially

a mixture of multiple species of cyanobacteria and other microorganisms (Carmichael,
Drapeau & Anderson, 2000). These challenges can be magnified as processes are scaled up
(harvesting, drying and packaging) affecting the final quality of the product.

Although there is an existing threat concerning the involuntary inclusion of microbial
contaminants in the dietary supplements, which may include potentially toxin-producing
cyanobacteria or unwanted pathogens, to the best of our knowledge, no reports on
the microbial content of such supplements have been published, based on sequencing
methodologies. The present study serves as a “first step” to assess possible bacterial con-
tamination of “Spirulina” supplements and consequently to allow for further studies and
a stricter monitoring of these products. Thus, we applied 454-pyrosequencing analysis
of the 16S rRNA gene in order to investigate whether commercially available brands of
“Spirulina” supplements in the Greek market—with most of them having international
commercial circulation- contain other prokaryotes in addition to Spirulina/Arthrospira,
and to characterize prokaryotic phylotype richness of these products for the first time.
Since these supplements are directly and largely consumed by the public, the presence
of any non-target microorganism is of importance as a possible source of microbial
contamination.

MATERIALS AND METHODS

Sample collection and handling

A total of 31 “Spirulina” dietary supplements of different brands were obtained from
internet distributors, pharmacies and health food retail in Greece in 2013. Based upon the
product labels and/or website information, most of the “Spirulina” products, originate
from controlled cultures (open ponds) of different geographical origin (Europe, Asia,
USA and Australia) and have international selling distribution network (Table 1). Four
of the products come from greenhouse cultured ponds that operate in Greece. The

most common species name referred in the labels of “Spirulina” dietary supplements is
Arthrospira (Spirulina) platensis (16/31), while 15/31 products were labeled as containing
“Spirulina.”

“Spirulina” samples were in the form of tablets (19/31), capsules (6/31), powders
(3/31), candies (1/31), drops (1/31) and bar (1/31) (Table 1). Capsules were aseptically
removed from the capsular form of samples before further analysis. Tablets, powders,
candies and bar forms were homogenized aseptically using a mortar and pestle. Approxi-
mately, 100 mg of each sample or a maximum of 10 drops was used for DNA extraction.
Each sample for the DNA extraction consisted of a pooled triplicate sample. Three
tablets/capsules/powder/candies from the same product batch were pooled together while
for the liquid sample three bottles were mixed together before sampling the 10 drops.

Molecular analysis

DNA was extracted using the PowerMax Soil DNA Isolation kit (MoBio, Carlsbad,
CA, USA) according to manufacturer’s protocol. Three blank DNA extractions were
included in order to test microbial contamination of the kit; no amplifiable DNA was

Vardaka et al. (2016), PeerJ, DOI 10.7717/peerj.1610 314


https://peerj.com
http://dx.doi.org/10.7717/peerj.1610

Peer

Table1 Commercially available “Spirulina” food supplements from the Greek market. OTUs: bacterial operational taxonomic units.
Product Product type Origin of Cultivation Cyanobacteria Cyanobacterial Heterotrophic
code manufacturing system’ listed on the OTUs bacterial OTUs

company product label richness richness
SP1 Capsule Greece Greenhouse “Spirulina” 3 96
pond
Sp2 Tablet Germany - “Spirulina” 3 91
SP3 Tablet Greece Greenhouse “Spirulina” 4 119
pond
SP4 Powder (raw) - - “Spirulina” 1 15
SP5 Capsule India - “Spirulina” 3 73
SP6 Powder Greece Greenhouse Spirulina 1 78
pond platensis
SP7 Tablet - - “Spirulina” 1 29
SP8 Tablet Taiwan Open Spirulina 1 52
pond platensis
SP9 Tablet - - Arthrospira 1 84
platensis
SP10 Tablet Hawaii Open Arthrospira 3 156
pond platensis
SP11 Tablet - - Arthrospira 3 109
platensis
SP12 Tablet Germany - Spirulina 1 10
platensis
SP13 Tablet Hawaii Open Arthrospira 6 95
pond platensis
SP14 Tablet USA - “Spirulina” 1 39
SP15 Capsule India Open Arthrospira 1 101
pond platensis
SP16 Tablet - - Arthrospira 2 84
platensis
SP17 Tablet Australia - Arthrospira 2 16
platensis
SP18 Tablet Hawaii - Spirulina 1 48
platensis
SP19 Tablet Italy - Arthrospira 4 133
platensis
SP20 Capsule France - Spirulina 1 36
platensis
SP21 Tablet Germany Open “Spirulina” 2 88
pond
SP22 Capsule Greece - Spirulina 2 102
SP23 Powder (raw) - - “Spirulina” 1 118
SP24 Tablet UK - Arthrospira 2 104
platensis
SP25 Tablet Greece Greenhouse “Spirulina” 3 157
pond

(continued on next page)
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Table 1 (continued)

Product Product type Origin of Cultivation Cyanobacteria Cyanobacterial Heterotrophic
code manufacturing system’ listed on the OTUs bacterial OTUs
company product label richness richness

SP26 Tablet - - Spirulina 1 76
SP27 Tablet Cuba Open Spirulina 1 114

pond platensis
SP28 Capsule Australia - Spirulina 3 75

platensis
SP29 Drops Europe - “Spirulina” 3 37
SP30 Candies Europe - “Spirulina” 4 68
SP31 Bar Germany — “Spirulina” 1 9
Notes.

*Where (=), no information available.

detected in these analysis. Tag-pyrosequencing of the 16S rRNA gene was performed
using PCR amplification of the V4-V6 region of the 16S rRNA gene and the primer pair
S-DBact-0341-b-S-17 (5'-CCTACGGGNGGCWGCAG-3") and S-D-Bact-0785-a-A-21
(5'-GACTACHVGGGTATCTAATCC-3") for bacteria (Klindworth et al., 2013).
Sequencing was performed as described in Dowd et al. (2008) in Roche 454 FLX titanium
instruments and reagents after following manufacturer’s guidelines at the MRDNA Ltd.
(Shallowater, TX, USA) sequencing facilities. Data processing and quality control were
performed with the MOTHUR software (v 1.30) (Schloss et al., 2009) including denoising
of the flowgrams using PyroNoise (Quirnce et al., 2009). Sequences with >250 bp and
no ambiguous or no homopolymers >8 bp were included for further analysis. These
sequences were aligned using the SILVA SSU database (release 108, Pruesse et al., 2007).
All sequences were binned into Operational Taxonomic Units (OTUs) and were clustered
(average neighbor algorithm) at 97% sequence similarity (Kunin et al., 2010; Stackebrandt
e Goebel, 1994). Taxonomic classification was based on the SILVA 108 database. The
batch of sequences from this study has been submitted to the Short Reads Archive
(http://www.ncbi.nlm.nih.gov/sra) accession number SRR2057094.

Statistical analysis

Since the heterotrophic bacterial OTUs richness was high in the 31 “Spirulina” dietary
supplements samples, and the origin and handling process of each product were not
obvious, the samples were grouped with cluster analysis (Sokal ¢ Rohlf, 1981) using
the Bray-Curtis similarity index in log transformed relative abundance values of the
heterotrophic bacterial OTUs in order to investigate the differences between the samples
attributed to these OTUs. The analysis was performed using the PAST software (Hammer,
Harper & Ryan, 2001).

RESULTS AND DISCUSSION

In this study, we aimed at depicting whether the cyanobacterial biomass of 31 commercial
supplements available in the Greek market (a) are dominated by Spirulina/Arthrospira
spp. and (b) they include other heterotrophic Bacteria, possible originating from the
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Figure 1 Heatmap of occurrence of the operational taxonomic units (OTUs) that were closely related
to cyanobacteria in commercially available “Spirulina” food supplements in the Greek market.

production line of the supplements. For this purpose, we applied 454-pyrosequencing
analysis of cyanobacterial and total bacterial occurrence in these 31 products as one

of the most inclusive tools in revealing the presence of known and yet-uncultivated
bacteria. Although the limitations of the 454-pyrosequencing approach are well-known
(e.g., limited primer universality (Hadziavdic et al., 2014), PCR amplification errors,
nucleotide misincorporation, PCR chimera formation (Stoeck et al., 2010; Pawlowski et al.,
2011), pyrosequencing errors (Kunin et al., 2010)), it can provide a complete picture of the
diversity in such samples on the OTU level.

Cyanobacteria in “Spirulina” products

All of the Arthrospira-related OTUs which were found in the commercially available
“Spirulina” food supplements in the Greek market, were related only to Arthrospira
platensis (Fig. 1), which was recently revised by Komudrek (2016) as Arthrospira
fusiformis. In each sample, A. platensis (A. fusiformis) was clearly the predominant taxon
(81.2-100.0%) among the Cyanobacteria in all but the product SP29, in liquid form
(Table 1), in which Arthrospira spp. comprised only 48.6% and co-dominated with
Microcystis wesenbergii-related OTUs (48.3%).

Although Arthrospira is growing at selective culture growth media (e.g., alkaline
conditions, high salt concentrations) that do not allow the growth of most microorganisms,
it can be subject to competition by cyanobacteria belonging to different genera (Becker,
1994). In our study, 13/31 products contained only A. platensis while in the rest 18 products
an additional one to five cyanobacteria were found (Fig. 1). The most commonly found non-
Arthrospira OTUs were related to Chroococcidiopsis sp. (6/31) followed by Chamaesiphon
subglobosus (5/31), Calothrix sp. (4/31), Phormidium pristleyi (4/31), Microcystis wesenbergii
(2/31), Nostoc commune (2/31), Leptolyngbya sp. (2/31), Anabaenopsis cf. abijatae (1/31),
Pseudanabaena sp. (1/31), Geitlerinema sp. (1/31), Leptolyngbya rozosum (1/31), Microcoleus
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Figure 2 Relative richness of the heterotrophic bacterial operational taxonomic units (OTUs) at the phylum level, found in commercially avail-
able “Spirulina” food supplements in the Greek market.

chthonoplastes (1/31) and Spirulina sp. (1/31). Microcystis, Nostoc and Anabaenopsis species
are known as potentially toxic producing cyanobacteria. Toxin production by cyanobacteria
is species- and strain-specific and depends on environmental conditions (Sivonen ¢ Jones,
1999), thus the presence of cyanotoxins cannot be predicted in this study.

Heterotrophic bacterial DNA in “Spirulina” products

In non-sterile large-scale cultivation systems of cyanobacteria, substances released from
cells or decomposition of dead cells, provide a source of organic compounds for attracting
heterotrophic bacteria (Becker, 1994). The genetic imprint of microbial DNA in the final
“Spirulina” product may reflect the occurrence of bacteria in the different processing steps,
i.e., culturing, harvesting, drying and packaging, of Arthrospira commercial production
facilities. In our study, the bacterial OTU richness associated with “Spirulina” food
supplements was high. A total of 469 unique heterotrophic bacterial OTUs were found in
the 31 products. The unique heterotrophic bacterial OTUs belonged to 20 different phyla,
while 18 OTUs could not be affiliated to any of the known taxa. The majority of the OTUs
were members of five phyla: Proteobacteria (46% of the total number of OTUs), Firmicutes
(19%), Bacteroidetes (11%), Actinobacteria (6%) and Verrucomicrobia (3%). Within
the most diverse phylum (Proteobacteria), the classes of y- and «-Proteobacteria
dominated in terms of OTUs richness (45 and 29% of the Proteobacteria-related OTUs,
respectively) (Fig. 2).

Heterotrophic bacterial OTUs richness, ranged from 9-157 per product. Ten products
had >100 heterotrophic bacterial OTUs (Table 1). The 50% of OTUs were found to
occur only in one or two “Spirulina” products, while the other 50% were found to
be present at >3-27 of the products. Among the most common OTUs, present in >10
products, OTUs closely related to Azoarcus (27/31), Phycisphaera (27/31), Balneola (25/31),
Nitrosococcus (25/31) were detected (Fig. 3). Although potential pathogenicity of the present
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Figure 3 Heatmap of occurrence of the most common (found in >10 products) operational taxonomic
units (OTUs) that were closely related to heterotrophic bacteria in commercially available “Spirulina”

food supplements in the Greek market.

Vardaka et al. (2016), PeerJ, DOI 10.7717/peerj.1610

. (814


https://peerj.com
http://dx.doi.org/10.7717/peerj.1610

Peer

heterotrophic bacterial OTUs cannot be proved with the length of the produced reads,
the fact that among the most common OTUs were ones closely related to taxa known for
causing health issues (i.e., Pseudomonas, Flavobacterium, Vibrio, Aeromonas, Clostridium,
Bacillus, Fusobacterium, Enterococcus; Fig. 3) shows the need for stricter monitoring of these
supplements. For example, some Bacillus spp. seem to cause health problems when found
in nutritional supplements (Stickel et al., 2009). In a recent study, potentially pathogenic
Clostridium spp. from commercial Arthrospira products that were negative for faecal
coliform tests were isolated (Hoekstra et al., 2011). Moreover, the presence of pathogens
in Arthospira products raises the questions whether some of the sporadic cases of health
effects in humans which have been reported after the consumption of food supplements
(e.g., Iwasa et al., 2002; Mazokopakis et al., 2008) are due to the Arthropsira itself or its
contained bacteria (Hoekstra et al., 2011; Warburton et al., 1998). However, whether these
microorganisms are viable, and thus potentially pathogenic, requires further investigation.
Further testing is also required to evaluate any idea of either nutritional value or public
health risk or both; among them, the measurement of vitamins, trace element levels, and
toxins. Toxin occurrence screening and cytotoxicity assays of the samples of this study are
underway and will be reported elsewhere.

The majority of the heterotrophic bacterial OTUs in our samples were closely related to
microorganisms usually found in aquatic and terrestrial habitats, and waste and wastewater
treatment systems. Moreover, a part of the detected OTUs were closely related to animal
and human microbiota (e.g., skin, gut). This may indicate that water-attracted animals
(e.g., birds, rodents) and humans when handling the product during the different processing
steps (e.g., harvesting, drying) may be a point of microbial contamination.

According to cluster analysis and based on the limited available information from
the product labels and/or their websites, it seems that the occurrence of heterotrophic
bacterial OTUs in our samples is not associated with the geographical origin of the
manufacturing company or the type of cultivation system used (Fig. 4). Cluster analysis
revealed that samples SP31, SP12, SP29, SP4 and SP30 were the most different ones. All these
samples were among the ones with the lowest OTU richness (Table 1). Moreover, samples
SP31, SP30 and SP29 were the only ones which were not in the form of pills or powder
(Table 1), and for this they are expected to include several other ingredients but also
different and more complex preparation process which might increase the microbial
burden of the product.

CONCLUSIONS

In conclusion, this study showed that although the dominant cyanobacterium in the 31
commercially available “Spirulina” products of the Greek market, is Arthropsira spp.,
several of these products contain other cyanobacteria as well. Moreover, more than 450
heterotrophic bacterial OTUs were found across the 31 products, with varying OTUs
richness and abundance. Although this study did not aim at the investigation of the
bacterial cells viability, the unexpected high cyanobacterial and heterotrophic bacterial
OTUs richness detected in some of the products raises the demand for stricter monitoring
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and improvements in the commercial growth conditions of Arthrospira biomass and its
production processes as a food supplement.
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