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Background/Aim. Abnormal proliferation and migration of vascular smooth muscle cells is one of the main causes of ath-
erosclerosis (AS). .erefore, the suppression of abnormal proliferation and migration of smooth muscle cells are the important
means for the prevention and inhibition of AS..e clinical effects of Guanxinping (GXP) tablets and preliminary clinical research
on the topic have proved that GXP can effectively treat coronary heart disease, but its underlyingmechanism remains unclear..is
study aimed to confirm the inhibitory effect of GXP on the abnormal proliferation of mouse aortic vascular smooth muscle
(MOVAS) cells and to explore the underlying mechanism. Methods. MOVAS cells were divided into two major groups:
physiological and pathological groups. In the physiological group, MOVAS cells were directly stimulated with GXP, whereas in
the pathological group, the cells were stimulated by endothelin-1 (ET-1) before intervention by GXP. At the same time,
atorvastatin calcium, which effectively inhibits the abnormal proliferation of MOVAS cells, was used in the negative control
group. CCK8 assay, scratch test, ELISA, Western blotting, and immunofluorescence staining were performed to observe the
proliferation and migration of MOVAS cells and the expression levels of related factors after drug intervention in each group.
Results. In the physiological group, GXP had no significant effect on the proliferation and migration of MOVAS cells and the
related factors. In the pathological group, a high dose of GXP reduced the abnormal proliferation and migration of MOVAS cells.
Further, it reduced the expression levels of PI3K; inhibited the phosphorylation of Akt (protein kinase B); upregulated IκB-α
levels; prevented nuclear factor kappa B (NF-κB) from entering the nucleus; downregulated the expression of interleukin 6 (IL6),
IL-1β, and iNOS; and upregulated the ratio of apoptosis-related factor Bax/Bcl-2. .ere was no significant difference between the
high-dose GXP group and the atorvastatin calcium group (negative control group). Conclusion. Our findings revealed that GXP
was able to inhibit the proliferation and migration of MOVAS cells by regulating the PI3K/Akt/NF-κB pathway.

1. Introduction

.e proliferation and migration of vascular smooth muscle
cells (VSMCs) is one of the main causes of atherosclerosis
(AS). Under physiological conditions, VSMCs regulate
vascular tension and blood pressure. VSMCs proliferate and
migrate excessively and secrete inflammatory factors under
conditions of vascular injury, inflammation, and oxidative
stress [1]..erefore, we only need to inhibit the proliferation
and migration of smooth muscle cells in the pathological
state but not in the physiological state.

ET-1 is a peptide synthesized by endothelial cells, which
can accelerate the AS process. In the physiological state, ET-
1 releases nitric oxide (NO) and prostacyclin by binding to
endothelin type A (ETA) and endothelin B (ETB) receptors,
thus regulating the relaxation, proliferation, and migration
of VSMCs. In a pathological state, ETA and ETB receptors
are highly expressed in vascular smoothmuscles, stimulating
smooth muscle cells to contract, proliferate, and migrate
[2, 3]. Atorvastatin calcium is one of the 3-hydroxy-3-
methylglutaryl coenzyme A reductase inhibitors, which
plays an antiatherosclerotic role by reducing plasma lipids
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and inhibiting intimal smooth muscle cell accumulation [4].
Further, atorvastatin calcium can inhibit the proliferation
and migration of VSMCs by inhibiting PI3K/Akt signaling
pathway but has no obvious effect on VSMCs in a physi-
ological state [5].

Akt, a member of serine threonine kinase, has three
different subtypes: Akt1, Akt2, and Akt3, which play an
important role in cell proliferation and survival [6]. PI3K is
the upstream signaling factor of Akt, which promotes Akt
phosphorylation by activating t308 and s473. PI3K/Akt can
affect the process of AS by regulating the proliferation and
migration of smooth muscle cells [7]. .e activation of
PI3K/Akt signaling can affect macrophage apoptosis by
promoting antiapoptotic factors Bcl-xl and Bcl-2 and
inhibiting proapoptotic factor Bcl-2-associated X (Bax);
thus, it is a key determinant of the number of athero-
sclerotic plaque cells [8]. Furthermore, NF-κB, a key nu-
clear factor, which usually combines with inhibitor of κB
(IκB) to maintain an inactive state, can mediate cell pro-
liferation and apoptosis [9]. NF-κB is implicated in mul-
tiple pathological processes of atherogenesis, such as
inflammation, oxidative stress, and VSMC proliferation
[10]. Accordingly, the expression of NF-κB increases when
PI3K/Akt signaling pathway is activated [11].

GXP is the experience prescription by Qi-yi Li, a famous
Chinese Medicine professor. Professor Li summed up the
theory of Gualou xiebai baijiu decoction in the synopsis of
prescriptions of the golden chamber and the Danggui buxue
decoction in the differentiation of endogenous and exoge-
nous diseases. Gualou xiebai baijiu decoction and Danggui
buxue decoction have been widely used to treat coronary
heart disease.

Subsequently, Li added and removed two prescriptions
to get GXP. GXP is a composition of five herbs, including
Polygonatum sibiricum, Angelica sinensis, Panax noto-
ginseng (Burkill) F.H.Chen, Trichosanthes kirilowii Maxim.
Peel, and Nardostachys chinensis, and has been used clin-
ically for decades; it has also been approved as a hospital
preparation since 2001..e quality of GXP can be controlled
[12, 13]. .rough analyses via LC-MS/MS and LCMS-Q-
TOF methods, it can be concluded that in the charge quality
comparison plot (M/Z: 200∼750), there are many compo-
nents and concentrations of ethyl acetate extracted species,
especially Nardostachys chinensis and Trichosanthes kir-
ilowii Maxim. Peel, in the large range of charge mass ratio
(M/Z: 750∼1200); the n-butanol extract has more compo-
nents and higher concentrations of particularly Angelica

sinensis and Panax notoginseng (Burkill) F.H.Chen [14]..e
effective components of GXP are mainly Notoginsenoside
R1, Ginsenoside Rg1, and Ginsenoside Rb1 [12]. Previous
network pharmacological studies have shown that GXP is
closely associated with Akt and IL-6 (Table 1, Figure 1).
Combined with previous studies, it can be seen that GXP can
reduce the expression of NF-κB. Accordingly, we next
speculated whether the antiatherosclerotic effect of GXP is
associated with the PI3K/Akt/NF-κB pathway. .us, we
studied the relationship between the effect of GXP on the
proliferation andmigration of VSMCs and PI3K/Akt/NF-κB
pathway [15].

2. Materials and Methods

2.1. Animal and Preparation of Medicated Serum. All ex-
perimental protocols in this study were approved by the
Ethics Committee of Jiangsu Province Hospital of Chinese
Medicine. All procedures were performed in accordance
with ethical standards and laboratory care by the National
Institute of Health, China. 6-week-old male Sprague-Dawley
rats, weighing 200–220 g, were purchased from Hangzhou
Medical College, Zhejiang, CHN (SCXK2019-0002). .e
dosage for each mouse was according to the human and rat
dosage conversion formula: rat dosage (mg/kg)� human
(70 kg) dosage× 0.018/0.2 kg. GXP group was given GXP
tablets (2.43 g/kg·bid, Jiangsu Province Hospital of Chinese
Medicine, CHN), atorvastatin calcium group was given
atorvastatin calcium (0.018 g/kg·bid, Lepu, CHN), control
group was given equal volume of distilled water [16, 17].
Fasting for 12 h after 3 days of intragastric administration,
and 1 h after intragastric administration on the 4th day, mice

Table 1: .e topology parameters of key targets.

Key target Target name Betweenness Closeness Degree
INS Insulin 0.074702 0.866197 104
IL6 Interleukin 6 0.032431 0.831081 98
AKT1 Serine-threonine protein kinase 1 0.031843 0.825503 97
VEGFA Vascular endothelial growth factor A 0.018029 0.793548 91
TNF Tumor necrosis factor 0.020198 0.788462 90
TP53 Tumor protein 53 0.015012 0.763975 85
EGF Epidermal growth factor 0.021643 0.759259 84
JUN Jun proto-oncogene 0.010376 0.754601 83

Figure 1: PPI network of GXP in the treatment of atherosclerosis.
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were anesthetized by inhalation of ether. Blood was taken
from the abdominal aorta to obtain medicated serum.
During the experiment, every effort was made to minimize
the pain of animals [18].

2.2. Cell Culture. Mouse aortic vascular smooth muscle cells
(MOVAS, ACTT number:CRL-2797) and FBS were pur-
chased from Cellcook Biotech Co., China. MOVAS were
cultured in DMEM (Gibco, USA) medium containing 10%
FBS, 0.2mg/ml G418 (BioFroxx, GER), penicillin, and
streptomycin (Gibco, USA, 1： 100) at 37°C and 5% CO2.
.e cells were divided into physiological group and path-
ological group..e physiological group included the control
group (blank group), low- and high-dose GXP groups, and
atorvastatin calcium group..e pathological group included
endothelin-induced ET-1 group (model group), ET-1 + low-
and high-dose GXP groups, and ET-1 + atorvastatin calcium
group.

2.3. Safety and Toxicity Assay. For the CCK-8 assay, cells
were seeded in 96-well culture plates (4000 cells/well). All
these plates were shaked back and forth with a figure “eight”
to distribute the cells evenly and then incubated for 12 h in a
37°C incubator to make them adherent. .e media of each
group were replaced with the medium containing 2% FBS
（treated with serum starvation） for 12 h. .en, 96-well
culture plates were divided into four groups. Each group was
added separately with 1%, 10%, and 20%medicated serum of
GXP or 10% medicated serum of atorvastatin calcium. After
that, the original mediums were replaced by mediums
containing 10% CCK-8. An automatic microplate reader
(BIOTEK, USA) was used to determine the absorbance at
490 nm when 0 h, 12 h, 24 h, 48h, and 72 h incubation in the
dark.

2.4. Cell Viability Assay. For the CCK-8 assay, cells were
seeded in 96-well culture plates (4000 cells/well). All these
plates were shaked back and forth with a figure “eight” to
distribute the cells evenly and then incubated for 12 h in a
37°C incubator to make them adherent. .e media of each
group were replaced with the medium containing 2% FBS
（treated with serum starvation) for 12 h. .en, each well of
the pathological group was intervented with ET-1 (10̂-
4mmol/L, Aladdin CHN) [19] for 24 h. .en, the blank
group and the model group were added with 10% blank rat
serum..e low- and high-dose GXP groups were added with
1% and 10% medicated serum of GXP. .e ET-1 + low- and
high-dose GXP groups were added with 1% and 10%
medicated serum of GXP as well. Both atorvastatin calcium
group and ET-1 + atorvastatin calcium group were added
with 10% medicated serum of atorvastatin calcium. .e
corresponding serum stimulated each group for 48 hours.
After 48 h, the original mediums were replaced by mediums
containing 10% CCK-8. An automatic microplate reader
(BIOTEK, USA) was used to determine the absorbance at
490 nm after 3 h incubation in the dark [20].

2.5.WoundHealing Assay. A straight line was drawn on the
bottom of the culture dish. MOVAS were subcultured in 8
culture dishes. MOVAS were treated with serum starvation
for 24 h after reaching about 80% of the culture dishes. After
that, the media of each group were replaced with the me-
dium containing 2% FBS （treated with serum starvation)
for 12 h. In the pathological group, MOVAS were treated
with ET-1 for 24 hours..e 200 μl sterile pipette tip was used
to make a scratch along the ruler, which was perpendicular
to the straight line of the bottom..en, the blank group and
the model group were added with 10% blank rat serum. .e
low- and high-dose GXP groups were added with 1% and
10% medicated serum of GXP. .e ET-1 + low- and high-
dose GXP groups were added with 1% and 10% medicated
serum of GXP as well. Both atorvastatin calcium group and
ET-1 + atorvastatin calcium group were added with 10%
medicated serum of atorvastatin calcium..e corresponding
serum stimulated each group for 48 h. .e scratch condi-
tions were photographed at 0 h, 24 h, and 48 h, and the
scratch area was calculated by Image J 1.53 software (NIH,
USA) [21].

2.6. ELISA Assay. Same as the previous experiments,
MOVAS were treated with starvation for 12 h. ET-1
inducted MOVAS of the pathological group for 24 h. And
then, the corresponding drugs stimulated each group for
48 h. .en, the supernatant of the cell culture medium was
collected. .e expression of inflammatory factors (IL-6, IL-
1β, and TNF-α) levels in the cell culture mediumwas assayed
by ELISA kit (.ermo Fisher Scientific, USA) according to
the instructions [22].

2.7. Western Blot Analysis. Same as the previous experi-
ments, MOVAS were treated with starvation for 12 h. ET-
1 inducted MOVAS of the pathological group for 24 h.
And then, the corresponding drugs stimulated each group
for 48 h. Protein was extracted from lysed cells. When we
detected NF-κB, we extracted the nuclear protein from
MOVAS. While assaying other factors, the total protein
was extracted. .e SDS-PAGE gel was prepared with a gel
preparation kit (Servicebio, CHN). .e samples of each
group were separated by SDS gel electrophoresis and then
transferred to nitrocellulose membranes, added the pri-
mary antibodies overnight after blocking and incubation,
and incubated with secondary antibody for 1 h the next
day. Protein signals were visualized by ChemiDoc System
(BioRad). ImageJ 1.53 software was used to calculate the
gray value..emain antibodies used in this study are anti-
PI3K (Proteintech, CHN, 1 : 3000), anti-Akt (Proteintech,
1 : 1000), anti-phospho-Akt (Proteintech, 1 : 2000), anti-
IκB-α (Cell Signaling Technology, USA, 1 : 1000), anti-NF-
κB (Proteintech, 1 : 2000), anti-Bax (CST, 1 : 1000), anti-
Bcl-2 (Proteintech, 1 : 1000), anti-GAPDH (Proteintech,
1 : 5000), anti-H3 (Proteintech, 1 : 1000), anti-iNOS (CST,
1 : 1000), anti-TNF-α (CST, 1 : 1000), anti-Rabbit IgG
(Servicebio, 1 : 3000), and anti-Mouse IgG (Servicebio, 1 :
3000) [23, 24].
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2.8. Immunofluorescence Staining. MOVAS were inoculated
in a 12-well plate. After 12 h of culture, cells were treated in
the same way as the previous experiment. Both the physi-
ological group and the pathological group were treated with
starvation for 12 h. ET-1 inducted MOVAS of the patho-
logical group for 24 h. And then, the corresponding drugs
stimulated each group for 48 h. After fixing, rupturing, and
blocking, we added the primary antibody (anti-NF-κB,
Proteintech, 1 : 500) in a plate overnight at 4°C, then in-
cubated with fluorescent secondary antibody (anti-Rabbit
IgG, Servicebio, 1 : 400) for 1 h at room temperature and
dark. Incubated with DAPI (Servicebio) at room tempera-
ture for 10min, mount the slide with antifluorescence
quenching solution. .e fluorescence photos were photo-
graphed under fluorescent microscopy (NIKON, JPN), and
then, ImageJ 1.53 software was used to count the fluores-
cence brightness [25].

2.9. Statistical Analysis. Each of the above experiments was
carried out three times or more independently repeated
experiments. Data are reported as the mean± standard
deviation (SD). .e data of different magnitude was nor-
malized and subjected to one-way analysis of variance
(ANOVA) and used SPSS 25.0 statistical software (IBM,
USA). P-value <0.05 was considered significant.

3. Results

3.1. Safety and Toxicity of GXP. .e safety and toxicity of
GXP were measured by CCK8. Cell viability at different
concentrations and intervention times showed that 1% and
10% medicated serum of GXP and 10% medicated serum of
atorvastatin calcium showed no obvious toxicity within 48
hours (Figure 2).

3.2. Effect of GXP on the Survival Rate of MOVAS. In this
experiment, CCK8 assay was used to measure the cell
survival rate of each group (Figure 3(a)). In the physiological
group, there was no significant difference in cell survival rate
between each group. It indicated that GXP had no significant
effect on cell survival rate under the physiological state of
MOVAS. .e survival rate of the cells was significantly
increased after stimulation with ET-1 (cell viability,
137.6± 17.14%, n� 3 (P< 0.01 as control)). It showed that
ET-1 led to abnormal proliferation of MOVAS. After the
treatment of the high dose of GXP, the survival rate of cells
decreased significantly (cell viability, 105.1± 10.91%, n� 3
(P< 0.01 as model)). .ere was no significant difference
between the high-dose GXP group and the atorvastatin
calcium group. .e results showed that high-dose GXP
could inhibit the abnormal proliferation of MOVAS, and its
effect was no less than atorvastatin calcium.

3.3. Effect of GXP on theMobility ofMOVAS. .emobility of
MOVAS was evaluated by wound healing assay (Figure 3(b)).
According to the formula, 24 h mobility� (0 h scratch area −

24 h scratch area)/0 h scratch area, and the mobility of each

group was calculated. At the 24th hour, the migration rate of
the model group was higher than the control group (relative
migration rate, 42.78± 6.201%, n� 3 (P< 0.05)). But, there
was no significant difference among the other groups
(Figure 2(a)). At the 48th hour, there was still no difference
among each group in the physiological group. In the path-
ological group, the mobility of the high-dose GXP group
(relative migration rate, 62.94± 1.799%, n� 3 (P< 0.05 as
model)) and atorvastatin calcium group (relative migration
rate, 63.39± 1.809%, n� 3 (P< 0.05 as model)) was lower
than that of the model group. .ere was no significant dif-
ference between the high-dose GXP group and the atorvas-
tatin calcium group (Figure 2(b)). .ese results proved that
high-dose GXP inhibited the excessive migration of MOVAS,
and its effect was no less than that of atorvastatin calcium. At
the same time, it was verified that the proliferation and
migration of smoothmuscle cells could be induced after being
stimulated by ET-1 for 24 hours [19] while drugs needed 48
hours to stimulate the cells before they had an obvious effect.
.at provided the basis for the later experiment.

3.4. Effect ofGXPon theExpression of Inflammatory Factors in
MOVAS. ELISA assay was used to test the expression of IL-
6, IL-1β, and TNF-α. .e results showed that the levels of IL-
6 and IL-1β in the physiological group were similar. In the
pathological group, IL-6 (relative cytokine levels,
498.8± 8.128, n� 3 (P< 0.01)) and IL-1β (relative cytokine
levels, 8.353± 0.3811, n� 3 (P< 0.01)) in the model group
were much higher than those in the control group. High-
dose GXP group and atorvastatin calcium group decreased
the expression of IL-6 (relative cytokine levels, 422.8± 29.32,
428.2± 34.74, n� 3 (P< 0.05 as model)) and IL-1β (relative
cytokine levels, 4.443± 0.2870, 4.130± 0.4727, n� 3 (P< 0.05
as model)) (Figure 4). TNF-α was measured more than three
times, but no results have been detected yet. In this study, for
the moment, TNF-α was not considered its effect on the
proliferation and migration of MOVAS.
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Figure 2: .e time concentration gradient of medicated serum
intervention MOVAS determined by the CCK8 method. GXP
represents medicated serum of GXP, and atorvastatin calcium
represents medicated serum of atorvastatin calcium.
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3.5. Effect of GXP on PI3K/Akt/NF-lB Pathway on the
Expression of Related Proteins. We detected the level of
PI3K/Akt/NF-κB pathway-related proteins by Western blot
analysis (Figure 5). Besides, we also observed the nuclear
translocation of NF-κB by immunofluorescence staining.
We found that there was no significant difference in protein
expression in the physiological group (Figure 5(b)). ET-1
activated PI3K/Akt/NF-κB pathway and gave rise to the
changes in related proteins. In the pathological group, GXP
reduced the expression of PI3K (0.7602± 0.2543, n� 3
(P< 0.01 as model)), inhibited the phosphorylation of Akt
(1.095± 0.2712, n� 3 (P< 0.05 as model)), increased the level
of IκB-α expression (1.287± 0.1881, n� 3 (P< 0.05 as
model)), upregulated Bax/Bcl-2 ratio (0.8657± 0.1050, n� 3

(P< 0.05 as model)), and decreased the expression of iNOS
(1.064±0.2859, n� 3 (P< 0.05 as model)) (Figure 5(c)).

3.6. Effect of GXP on the Entry of NF-κ to the Nucleus.
After stimulated by ET-1, the expression of NF-κB
(1.416± 0.1223, n� 3 (P< 0.05)) and fluorescence intensity
(fluorescence intensity ratio, 1.378± 0.0369 n� 3 (P< 0.01)) in
the nucleus increased. It showed that the level of NF-κB in the
nucleus increased. After intervented by GXP (0.9309± 0.2151,
n� 3 (P< 0.05)) (fluorescence intensity ratio, 1.070± 0.0893
n� 3 (P< 0.01)) or atorvastatin calcium, the fluorescence in-
tensity in nucleus decreased. .is proved that GXP inhibited
the activation of NF-κB by ET-1 (Figure 6).
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4. Discussion

Many vascular diseases such as coronary heart disease,
stroke, and intermittent claudication are all results of AS.
Despite major advances in prevention measures, many in-
dividuals die of acute complications of AS [26]. .erefore, it
is very significant to make further efforts to study the
preventive measures of AS. VSMCs are an important part of
blood vessels and are closely associated with AS. Endoge-
nous levels of oxidative DNA damage in VSMCs promote
atherosclerotic plaque formation [27]. VSMCs accelerate the
formation of atherosclerotic plaques in the state of pre-
mature aging, which is induced by replicative failure and
stress [28]. In addition, the dysregulation of the autophagy
level of smooth muscle cells deteriorates AS [29]. Endoge-
nous DNA oxidative damage, premature aging, and

autophagy all affect the proliferation and migration of
smooth muscle cells and aggravate AS. Nevertheless, VSMCs
regulate vascular tension and blood pressure without ob-
vious proliferative changes under physiological conditions
[1].

In the past decades, more than 1,000 clinical studies on
GXP have been conducted. .ey have proven the efficacy of
GXP in improving the clinical symptoms and main bio-
chemical standards of patients with coronary heart disease
and the therapeutic effect in alleviating AS [30, 31]. Previous
studies have shown that GXP plays an antiatherosclerotic
role through multiple pathways. GXP reduces the level of
NF-κB, regulates the apoptosis of endothelial cells, inhibits
the M1 polarization of macrophages induced by LPS, pro-
motes M2 polarization, increases the level of serum NO, and
decreases the content of plasma ET in golden hamsters with
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coronary AS [15, 16, 32]. Based on previous studies, we
authenticate the antiatherosclerotic effect of GXP. Although
some mechanisms have been studied, attention needs to be
paid to the relationship between smooth muscle cells and AS
in studies related to GXP. As a result, we chose VSMCs as the
research object, used in combination with previous research
results, and used ET-1 as the inducer.

In this study, we observed that the survival rate and
migration rate of MOVAS in the model group treated with
ET-1 were higher than those in the blank group, and
PI3K/Akt/NF-κB pathway was activated, which was
consistent with the literature [33, 34]. GXP inhibited the
proliferation and migration of MOVAS, which was re-
markably induced by ET-1, and did not affect the phys-
iological state of MOVAS. Meanwhile, GXP inhibited
PI3K/Akt/NF-κB pathway, which was activated by ET-1
(Figure 7). In the pathological group, GXP reduced the
expression of PI3K and inhibited Akt phosphorylation;
subsequently, GXP increased the expression of IκB-α;
inhibited NF-κB from entering the nucleus; decreased the
expression of IL-6, IL-1β, and iNOS; and raised the Bax/
Bcl-2 ratio.

PI3K/Akt pathway is involved in cell growth, prolif-
eration, and migration. PI3K/Akt pathway activation can
lead to cell proliferation, migration, and even tumor de-
velopment [35]. It is the signaling pathway of NF-κB, a
family of transcription factors, promotes the inflammatory
response, and regulates cell proliferation and apoptosis.
Moreover, the NF-κB signaling pathway interacts with
PI3K/Akt signaling pathway [36]. .e activation of PI3K
gives rise to Akt phosphorylation; further, pAkt activates
the transformation and decomposition of IκB-α, which
breaks down the bond with NF-κB, resulting in a lower
expression of IκB-α, activation of NF-κB, and increased
transfer of NF-κB to the nucleus [37]. In addition, acti-
vation of PI3K/Akt signaling pathway inhibits Bax and
raises the levels of proteins Bcl-2 and iNOS. Bax is the main
apoptotic protein, whereas Bcl-2 is an antiapoptotic protein
[38]. Inducible nitric oxide synthase (iNOS) is one of the
three subtypes of NOS. High concentration of endogenous
NO produced by excessive iNOS promotes cell growth and
metastasis, and low concentration of iNOS inhibits cell
proliferation [39].

In this study, we also observed that ET-1 can upregulate
the expression of inflammation-related factors IL-6 and IL-
1β. .erefore, we consider that ET-1 not only promotes the
proliferation andmigration ofMOVAS but also has a certain
effect on inflammation. When the pathological group with
increased inflammation was treated with GXP, IL-6 and IL-
1β were downregulated. GXP inhibited the inflammatory
response of MOVAS under pathological conditions. Given
that inflammation of MOVAS is also associated with ath-
erosclerosis, this may also be one of the ways that GXP exerts
its antiatherosclerotic effects.

GXP is a composition of five herbs, including
P. sibiricum, A. sinensis, P. notoginseng (Burkill) F. H.
Chen, T. kirilowii Maxim. Peel, and N. chinensis. Studies
have shown that all five herbal medicines are related to the
PI3K/Akt pathway and NF-κB pathway. Dioscin, which was

purified from P. sibiricum, can inhibit the PI3K/Akt pathway
[40]. In contrast, a polysaccharide from P. sibiricum has been
known for its enhancing effects on the PI3K/Akt signaling
pathway [41]. In addition, studies have shown that a Pol-
ygonatum polysaccharide can activate the NF-κB pathway
[42]. Further, vascular Endothelial Growth Factor Receptor
2 (VEGFR2) activated PI3K/Akt signaling pathway can be
greatly inhibited by the acetone extract of A. sinensis rich in
phthalides [43]. Further, Angelica sinensis polysaccharide is
a major bioactive component of A. sinensis. Phosphorylation
levels of PI3K and Akt can be increased by A. sinensis
polysaccharide by downregulating miR-22 in cells [44].
Besides, A. sinensis reduces the expression of NF-κB [45]. In
addition to different kinds of drug extracts, different types of
P. notoginseng saponins also showed different effects on the
PI3K/Akt pathway. A major component of P. notoginseng
(Burkill) F. H. Chen, notoginsenoside R1, may repress miR-
21’s target PTEN by upregulating miR-21 and prevent the
blockage of PI3K/Akt pathway [46]. In contrast, Noto-
ginsenoside Ft1 inhibits PI3K/Akt pathway [47]. Further-
more, notoginsenoside R1 hinders NF-κB pathways by
modulating Toll-like receptors 4 (TLR4) [48]. In studies
concerning T. kirilowii Maxim. Peel and N. chinensis, it is
also mentioned that these herbs have certain effects on PI3K/
Akt and NF-κB pathways [49–51].

Different components in herbal medicine have different
effects on PI3K/Akt and NF-κB pathways, including in-
hibition, activation, and bidirectional regulation. GXP,
which is made up of five herbs, showed inhibitory effects on
PI3K/Akt/NF-κB pathway, which was overactivated by ET-
1 in MOVAS. .is may be because of the mutual coun-
teraction of drug components or the consistency after
mutual influence. Considering the different subjects or
inducers studied in various studies, it is not easy to draw a
final conclusion. .is may be the subtlety of the recipe. To
clarify the relationship between these components, we
considered that GXP should be divided into single drug
components for further evaluation. In addition to the effect
of GXP on the pathological state, we also observed that
GXP had no intervention in the physiological group in
MOVAS. Combined with previous research, we proved that
smooth muscle cells have no obvious proliferation and
migration in the physiological state; therefore, it is un-
necessary to inhibit them [1]. .is not only showed the
drug safety of GXP but also showed that it targeted the
pathological state in MOVAS. GXP and atorvastatin have
the same effect in terms of inhibiting the proliferation and
migration of MOVAS, which provides a new scheme for
clinical combined prevention and treatment of athero-
sclerosis in the future.

.ere is another interesting discovery. In this study,
we also observed that there was no significant change in
TNF-α between groups after six independent experiments.
We tested TNF-α in the cells again by Western blotting.
.ere was still no band expression. .us, for the time
being, we will consider its relationship with cell charac-
teristics of MOVAS. In follow-up experiments, we may
make further observations and expect more interesting
findings.
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5. Conclusion

In this study, we confirm that GXP inhibits the proliferation
and migration of MOVAS and the activation of PI3K/Akt/
NF-κB pathway evoked by ET-1. Meanwhile, these two
factors have been known to accelerate the process of ath-
erosclerosis. .erefore, we infer that GXP inhibits the pro-
liferation and migration of VSMCs by inhibiting the
activation of PI3K/Akt/NF-κB pathway and finally plays an
antiatherosclerotic role.
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