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Summary
Background Human mobility and climate conditions are recognised key drivers of dengue transmission, but their
combined and individual role in the local spatiotemporal clustering of dengue cases is not well understood. This
study investigated the effects of human mobility and weather conditions on dengue risk in an urban area in
Yogyakarta, Indonesia.

Methods We established a Bayesian spatiotemporal model for neighbourhood outbreak prediction and evaluated the
performances of two different approaches for constructing an adjacency matrix: one based on geographical proximity
and the other based on human mobility patterns. We used population, weather conditions, and past dengue cases as
predictors using a flexible distributed lag approach. The human mobility data were estimated based on proxies from
social media. Unseen data from February 2017 to January 2020 were used to estimate the one-month ahead
prediction accuracy of the model.

Findings When human mobility proxies were included in the spatial covariance structure, the model fit improved in
terms of the log score (from 1.748 to 1.561) and the mean absolute error (from 0.676 to 0.522) based on the validation
data. Additionally, showed only few observations outside the credible interval of predictions (1.48%) and weather
conditions were not found to contribute additionally to the clustering of cases at this scale.

Interpretation The study shows that it is possible to make highly accurate predictions of the within-city cluster
dynamics of dengue using mobility proxies from social media combined with disease surveillance data. These
insights are important for proactive and timely outbreak management of dengue.
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Introduction
The burden of dengue has been growing steadily, with
the highest burden in the Caribbean, South Asia, and
Southeast Asia. Indonesia, the most populated country
in Southeast Asia, experiences the highest age-
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standardised dengue incidence (4117.1 [2427.4–6378.5]
per 100,000 population) and disability-adjusted life year
rates (258.24 [117.91–318.35] per 100,000 population).1

In Indonesia, Yogyakarta has been one of the 10 most-
affected regions by dengue every year over the last
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Research in context

Evidence before this study
Few studies have looked at the combination of human
mobility and climate data for local and within-city clustering
of dengue outbreaks. In October 2021, we searched articles
indexed on PubMed using the terms “mobility,” “climate,”
and “dengue,” and obtained 33 search results. Only one of
these studies examined clustering at an intra-city level.
However, the authors of this study did not validate the model
using external data. In addition, the mobility aspect of the
study was estimated solely based on the travelling history of
admitted dengue patients in one hospital collected by trained
students and hence, might not represent the mobility of the
general population in the study area. The mobility
information was also subject to recall bias, and its collection
was time-consuming, costly, and labour-intensive. Recent
studies have shown that Twitter can be utilised as a data
source for health research. Large-scale aggregated social
media data can facilitate the assessment of local mobility
patterns and risk of infectious disease in real-time with high
accuracy and at low cost. However, in terms of health-related
research, most studies have so far relied primarily on content
analysis or text mining, while only a few analysed geolocation
data provided by social media platforms to provide a richer
characterisation of population movement at an urban level.

Added value of this study
We showed the potential of using social media data as a
proxy for human mobility patterns and demonstrated how
such data could be integrated into spatiotemporal Bayesian
models. We presented a model to jointly study the role of
human mobility and dengue cases and provided new insights
into their combined effects and ability to predict outbreak
clusters in space and time at the intra-city level.

Implications of all the available evidence
The method presented in this study involves using a spatial
random effects model with an adjacency matrix based on
human mobility patterns, along with village-level population
and past dengue cases as predictors. The model is then run to
generate monthly predictions for an unseen testing dataset,
imitating a dengue early warning system in real-life settings.
Each prediction represents the number of dengue cases
expected in a given village one month ahead. Such early
warnings can potentially inform the development of response
plans and facilitate more timely management of outbreaks,
especially considering the increasing human mobility among
regions and within cities.
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three decades. Findings of a dengue seroprevalence
survey in Yogyakarta indicated that most children are
infected by at least one dengue serotype and frequently
by more than one serotype before the age of 10 years.2

An existing early warning system for dengue in
Yogyakarta has been shown to detect epidemic months
based on disease surveillance data in combination with
meteorological data.3 Nevertheless, this early warning
system has its operational limitations because of its
availability only at the district level. Another study in
Yogyakarta showed that dengue incidence data and
mobility proxies from social media could predict the
intra-urban spread of dengue.4 However, in this study,
the proposed mobility-weighted incidence index quan-
tifies the level of exposure to virus importation based on
incidence data and mobility data proxied from social
media. Collecting data from social media continually
could be a burden and not feasible for many district
health offices with low resources in real-life practice
(considering the efforts needed to collect, store and
maintain such big data sources).5

In disease modelling, human mobility can be used as
a measurement of community vulnerability to under-
stand disease spread as humans play a role in importing
viruses to local mosquitoes.6,7 On the contrary, dengue
vectors usually have a limited range of movement.8 The
main obstacle to studying human mobility has been the
limited availability of large-scale spatial and temporal
datasets. Twitter has recently emerged as a valuable real-
time data source for public health research. It is an
interactive social media platform and provides publicly
available high-resolution positioning data when users
choose to geotag their tweets with their current location.
Therefore, geotagged tweets provide sufficient data to
derive estimates of human mobility patterns.9 Moreover,
Twitter data has been shown to be more reliable at
estimating commuter flows over short distances, but it
is less reliable at estimating small amounts of long-
range commuting.10

In our study, we investigated what model would best
explain the spatio-temporal dynamics of the intracity
outbreak clustering of dengue. We compared two
different types of spatial covariance structures and
included predictors of weather and past outbreak data.
In the first model, we estimated the covariance based on
the geographical adjacency matrix of the villages within
a city. In the second model, we used an adjacency matrix
based on the mobility data to estimate the covariance.
Subsequently, we explored possible nonlinear and
delayed associations between dengue risk and dengue
cases in the past. We then validated the selected model
using an unseen dataset to mimic an actual situation of
an early warning system in use. We hypothesised that
social connections shape disease transmission because
movement patterns are important for introducing the
virus, and that novel data sources from social media
www.thelancet.com Vol 15 August, 2023
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have the ability to capture the general movement pat-
terns and connection among areas at a granular spatial
scale.

Methods
Study area
The study was conducted between February 2013 and
January 2020 in Yogyakarta municipality, Indonesia,
which is a densely populated urban area, spread over
32.5 km2, with a population density of 13,180 and
12,806 persons per km2, respectively. The Yogyakarta
municipality has 45 urban villages (Fig. S2 in the Ap-
pendix), and the village level was used as the
geographical unit of observation in the present study
(Fig. 1).

Disease surveillance and population data
Dengue is a notifiable disease with passive reporting of
dengue hemorrhagic fever (DHF) or dengue shock
syndrome (DSS) cases from public and private hospitals
to the national surveillance system.11 Given the national
surveillance system only detects cases of dengue
accompanied by hospitalisations, this dengue case
report does not describe all the manifestations of
dengue and the actual burden of dengue infection. In
addition, most dengue burden in Indonesia was due to
non-severe cases, and these patients do not seek treat-
ment, leading to substantial underreporting of cases.12

The diagnosis of dengue was established through clin-
ical criteria and laboratory criteria, but a study in
Yogyakarta showed that only about 45% of reported
dengue cases were accompanied by laboratory confir-
mation.13 We obtained monthly reported dengue cases
for each of the 45 urban villages of Yogyakarta between
Fig. 1: Heat-map of reported dengue incidence rate (per 100,000 popula
February 2013 and January 2020.
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February 2013 and January 2020 from the Yogyakarta
Municipality Health Office (Fig. S3 in the Appendix). In
addition, we complemented dengue surveillance data
with monthly population data for the same period from
the Department of Population and Civil Registration
Yogyakarta Municipality (Fig. S4 in the Appendix).

Adjacency matrix
The adjacency matrices in this study represent the
spatial dependency among the urban villages in the
study area. The adjacency matrices are symmetric
matrices H and Hij ∕= 0 if and only if i and j areas are
affiliated. We investigated two different types of adja-
cency matrices, as described below.

The first attempt was to use a standard adjacency
matrix based on the geographical location of urban vil-
lages (Fig. 2a). This type of adjacency matrix is based on
the position of an urban village to the other urban vil-
lages on the administrative map (Fig. S2 in the Ap-
pendix). Here we only considered the first-order
neighbours, namely Hij = 1 when urban villages shared
borders and Hij = 0 when urban villages did not share
any borders.

The second type of adjacency matrix was based on
mobility patterns between villages estimated from geo-
tagged social media data (Fig. 2b). Here we mined data
from Twitter’s Application Programming Interface and
selected Tweets posted in Yogyakarta municipality for
this analysis, extracting an anonymous identification
string, timestamp, and longitude and latitude of the
user’s location from the tweets. We obtained 325,725
tweets from 53,195 unique users during the observation
period between August 8, 2016, and January 22, 2017
(24 weeks). The geotagged tweets were then overlaid on
tion) for the 45 urban villages in Yogyakarta municipality between

3
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Fig. 2: Adjacency matrix based on (a) the administrative map, (b) geotagged social media data: rows and columns identify urban villages,
squares identify neighbours.
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the administrative map of the study area (Fig. S2 in the
Appendix). We exchanged the geocode with the urban
village identification number (ID area). Subsequently,
we created the affiliation matrix by specifying Aun = 1 if
a user u posted tweets in an urban village n; otherwise,
Aun = 0. For the mobility adjacency matrix, we used the
inverse of the standardized A’A.

We specified a spatiotemporal Bayesian hierarchical
model in which the response consisted of monthly
counts of reported dengue cases for all 45 urban villages
in Yogyakarta. A Poisson distribution was assumed for
dengue case counts. We investigated two different
constructions for the baseline models to estimate the
most predictive spatiotemporal random effect’s
structure.

First, we investigated the Besag-York-Mollie (BYM)
model for the spatial covariance based on Fig. 2a adja-
cency structure. This model comprises an independent
random effect to account for area-specific noise and a
conditional autoregressive model, where the spatial ef-
fect of a particular region depends equally on all
neighbouring areas.14 The independent component
helps account for unknown or unobserved confounding
factors, such as population immunity and local vector
control interventions. Meanwhile, the structured
component assumes that spatial dependency exists if
villages share a border, acting as a surrogate for spatial
autocorrelation that arises between nearby areas due to
shared environmental or socio-economic characteristics,
such as land cover and land use.15,16

Second, we investigated a model for the spatial covari-
ance based on the human mobility pattern-informed
adjacency matrix. This rationale was based on the hy-
pothesis that social connections shape disease trans-
mission because of recurring movement patterns among
the same places, such as markets, offices, schools, or
homes of relatives and friends.8 The mobility patterns were
computed by estimating the rate of events when a Twitter
user was observed in one study village and then in another
within 24 weeks of the observation period. Based on this
information, we generated a matrix measuring the tran-
sient cumulative number of mobility events between each
pair of urban villages.4

We then explored nonlinear and delayed associations
between dengue risk and dengue cases in the past as
predictor variables using distributed lag nonlinear
models (DLNMs).16,17 The non-linear distributed lag
models estimate latencies between the predictors and
the disease incidence using originally typically spline
functions both for the lag and the effect dimensions17

and have recently been integrated into the Integrated
Nested Laplace Approximation (INLA) framework.16 To
assess the delayed effects of the predictor variables, we
analysed data in one-month increments, starting from a
one-month lag up to seven months. This allowed for at
least one month to respond to an incipient outbreak. In
addition, we also investigated the influence of structured
effects across the study months to account for time
trends over the study period.

Model parameters were estimated in a Bayesian fra-
mework using INLA.16,18,19 Subsequently, we calculated
goodness of fit measures to select the best-fitting model
using the mean leave-one-out cross-validated log score.20

The cross-validated log score measures the model’s
www.thelancet.com Vol 15 August, 2023
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predictive distribution power when excluding one data
point at a time and smaller values of log score indicate
better fitting models. It, therefore, aligned with the final
objective of this study to find the model as the basis of an
early warning system.

We then established predictions for the unseen
testing dataset for the selected best-performance model
from February 2017 to January 2020. For this purpose,
we ran the model 36 times to get monthly predictions
for the 36 months of the unseen testing dataset. We
compared the predicted values with observations
collected for the same period. For the sake of
completeness, we also calculated the difference in mean
absolute error (MAE) between the baseline model and
the more complex models to assess model performance
in terms of model fit and predictive accuracy calculated
on an out-of-bag observation period. Smaller values of
MAE also indicate better-fitting models.

Role of the funding source
The funders had no role in study design, analysis, de-
cision to submit, or preparation of the manuscript.
Results
At the district level, the total count of dengue cases in
the 48 months of the training set period, from February
2013 to January 2017, was 4005, with a monthly average
of 83 cases (a maximum of 203 in June 2016, and a
minimum of 12 in December 2013). Peak dengue
incidence tended to occur in the first half of the year,
with the timing of seasonal peaks varying somewhat
from year to year.

The models, including spatiotemporal random ef-
fects using the adjacency matrix based on the
geographical location of urban villages (BYM model),
showed poorer performance when compared with the
models using the adjacency matrix based on the hu-
man mobility patterns proxied from the geolocation of
Twitter users (MOB model). Expanding the MOB
Model Description

BYM Adjacency matrix based on geographical location of urban vi

MOB Adjacency matrix based on the human mobility patterns pro

BYM + pop Adjacency matrix based on geographical location of urban vi
The model also included population size.

MOB + pop Adjacency matrix based on the human mobility patterns pro

BYM + pop
+ DLNM dengue
1–7

Adjacency matrix based on geographical location of urban vi
including lags for 1–7 months. The model also included popu

MOB + pop
+ DLNM dengue
1–7

Adjacency matrix based on the human mobility patterns proxi
models for dengue cases in the past, including lags for 1–7 m

Table 1: Model training performance for the different models tested (data f
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model by including population data and the number
of dengue cases in the past as predictor variables
resulted in a further reduction in the log score. On the
contrary, considering the population and surveillance
data did not improve the performance of the BYM
Model. We found that the best-fitting model according
to the log score was the model with spatial random
effects using the adjacency matrix based on the hu-
man mobility patterns and including predictors for
village-level population and dengue cases in the past
using lags 1–7 months in the distributed lag model
(Table 1).

The estimated relationships in the best-fitted model
(MOB + pop + DLNM dengue 1–7) were used for the
forecast unseen data from February 2017 to January
2020 to mimic an actual situation of an early warning
system in use. We ran the model 36 times to predict the
number of dengue cases one month ahead at the village
level each month. We observed that the best-fitted model
provided predicted values with a lower MAE (Table 2).
In addition, very few observations lay outside the cred-
ible interval of predictions, i.e., 24 of 1620 (1.48%) point
observations (Fig. 3).
Discussion
Dengue transmission depends on a complex interplay of
human and environmental dynamics that change in
time and space. It is well known that these dynamics are
highly influenced by multiple factors, including land
use21 and weather,22 which create environments condu-
cive for vector mosquitoes. Here, we presented a
spatiotemporal dengue prediction approach, where we
identify drivers of the small-scale local patterns of
dengue dynamics in a city to provide outbreak pre-
dictions at the intra-urban village level. Using models
with a spatial dependence based on geographical loca-
tion alone was much less useful compared to incorpo-
rating mobility patterns within the spatial dependence
structure. Moreover, we found that the spatiotemporal
log
score

llages. 1.735

xied from the geolocated location of Twitter users. 1.577

llages. 1.789

xied from the geolocated location of Twitter users. The model also included population size. 1.565

llages in combination with distributed lag non-linear models for dengue cases in the past,
lation size.

1.748

ed from the geolocated location of Twitter users in combination with distributed lag non-linear
onths. The model also included population size.

1.561

rom February 2013 to January 2017).
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Model Description MAE

BYM + pop + DLNM dengue 1–7 Adjacency matrix based on geographical location of urban villages in combination with distributed lag non-linear models for dengue cases
in the past, including lags for 1–7 months. The model also included population size.

0.676

MOB + pop
+ DLNM dengue 1–7

Adjacency matrix based on the human mobility patterns proxied from the geolocated location of Twitter users in combination with
distributed lag non-linear models for dengue cases in the past, including lags for 1–7 months. The model also included population size.

0.522

Table 2: Model predictive performance based on unseen data from February 2017 to January 2020 averaged over 45 urban villages.
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predictions were improved when information on hu-
man mobility and dengue cases in the past was included
simultaneously.

Our findings align with a previous study that showed
human mobility to be a more vital indicator of local
outbreak clusters than land use.8 Mobility patterns
indirectly take into account exposure patterns because
populations on the move are not only at risk of exposure
but also a source of exposure.23 This information im-
proves our understanding of the risk and the spread of
diseases. However, an earlier study by Indriani and
colleagues investigating dengue incidence at the village
level in the same study area as ours found no evidence
of spatial autocorrelation.2 This finding could be caused
by the fact that the study was mainly focused on chil-
dren as the observed population. Children could prob-
ably spend most of their time at or near their homes. In
addition, in this earlier study by Indriani and colleagues,
dengue data were aggregated annually.2
Fig. 3: The comparison of posterior predictive median and 95% credible int
gray shading represents 95% credible intervals. The dots represent the observ
indicates otherwise.
Furthermore, our study provided additional evidence
that the relationships among urban villages using an
adjacency matrix based on the administrative map solely
would not be sufficient to represent the ties of its rela-
tionship. The ties are not simply shaped by neighbour-
hood structures only but also by their functionality. For
instance, residents’ mobility patterns among home-
market-office-school-relatives-home can potentially
form stronger ties among villages that are not directly
adjacent. Residents may commute more often to the
villages that are further away than those closer or
directly adjacent to fulfil their needs. Thus, regular,
place-to-place human movements are vital in the spread
of vector-borne pathogens at fine spatial scales.8

Establishing proper adjacency relationships between
a set of spatial units under investigation is essential
when conducting spatial or spatiotemporal analysis. In
many cases, researchers have chosen some of the most
typical neighbourhood structures, such as the first-order
erval to observed cases. The black line represents median values, and the
ed values: red means the values lie between credible intervals, and blue

www.thelancet.com Vol 15 August, 2023
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contiguity matrix based on shared borders, that are
suitable for many situations.24 In this study, we devel-
oped a spatiotemporal model using an adjacency matrix
based on human mobility patterns proxied from geo-
tagged Twitter data. As a novel data source, geotagged
Twitter data can provide important information on
mobility patterns and estimate the level of exposure to
virus importation in any given neighborhood.4 This
approach can identify areas of heightened mobility that
are potentially at risk for onward transmission.

The assumption that user movements between
consecutive tweets were representative of the overall
population mobility could be the limitation of this study.
In fact, Twitter users may represent a selected group of
individuals. It is, however, important to note that the use
of Twitter and other social media platforms is wide-
spread in Indonesia.25 Nevertheless, prior studies have
validated Twitter as a viable data source to study human
mobility.9,10 Using mobile phone data with geo-tags
would have been a better alternative, although the
downside is that such data are harder to acquire and use
prospectively over time. Moreover, human mobility
patterns extracted from geotagged tweets have been re-
ported to have similar overall features with mobile
phone records.9

Finally, to be noted that the Wolbachia trial2 has been
implemented in several parts of the study area. The
entire Wolbachia trial site was an area of 26 square ki-
lometers2 or approximately 80% of the Yogyakarta mu-
nicipality area. The Wolbachia intervention was started
gradually from March through December 2017,2 or in-
side our validation period, February 2017 to January
2020, using an unseen dataset. We believe that our
currently developed spatiotemporal model is adjusting
for the Wolbachia intervention in the modelled time
trend functions. In fact, this is supported by the pre-
dictive ability of the models. Although, as we can
observe visually in Fig. S3 in the appendix, the number
of dengue cases tends to decrease in many villages from
around 2018 onwards,26,27 which is quite different
compared to the observation during the training period
when developing the model.

Surveillance systems are widely used to support
public health efforts, but they are rarely designed sys-
tematically to achieve clear objectives efficiently since
spatial prediction remains a limitation, with no tools
currently able to map high transmission areas at a high
spatial resolution.28 Data availability at a fine scale can
potentially improve the performance of a spatiotemporal
model, and policy intervention requires data at the right
level of resolution.29 The method introduced here max-
imizes the use of surveillance information collected
while minimizing the effort required. In addition, novel
data streams, such as web search data or social media
updates, hold promise for enhancing the capabilities of
public health surveillance since they can provide robust,
long-term surveillance solutions.30 While this study
www.thelancet.com Vol 15 August, 2023
focused on dengue, we see a significant potential to
expand the method to other similar urban areas. We
built a system that efficiently tracks the spatiotemporal
patterns of dengue at the fine-scale urban-village level.
Given constrained public health budgets, the methods
we present are critical to the future reliability and sus-
tainability of infectious disease surveillance systems.
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