
Citation: Sokolova, O.S.; Pichkur,

E.B.; Maslova, E.S.; Kurochkina, L.P.;

Semenyuk, P.I.; Konarev, P.V.;

Samygina, V.R.;

Stanishneva-Konovalova, T.B. Local

Flexibility of a New Single-Ring

Chaperonin Encoded by

Bacteriophage AR9 Bacillus subtilis.

Biomedicines 2022, 10, 2347.

https://doi.org/10.3390/

biomedicines10102347

Academic Editors: Anne Skaja

Robinson and Christopher J. Roberts

Received: 12 August 2022

Accepted: 19 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Local Flexibility of a New Single-Ring Chaperonin Encoded by
Bacteriophage AR9 Bacillus subtilis
Olga S. Sokolova 1, Evgeny B. Pichkur 2, Ekaterina S. Maslova 3, Lidia P. Kurochkina 4 , Pavel I. Semenyuk 4 ,
Petr V. Konarev 2,5 , Valeriya R. Samygina 2,5 and Tatiana B. Stanishneva-Konovalova 3,*

1 Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
2 Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
3 Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
4 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University,

119234 Moscow, Russia
5 Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics”, RAS,

119333 Moscow, Russia
* Correspondence: stanishneva-konovalova@mail.bio.msu.ru

Abstract: Chaperonins, a family of molecular chaperones, assist protein folding in all domains of
life. They are classified into two groups: bacterial variants and those present in endosymbiotic
organelles of eukaryotes belong to group I, while group II includes chaperonins from the cytosol
of archaea and eukaryotes. Recently, chaperonins of a prospective new group were discovered in
giant bacteriophages; however, structures have been determined for only two of them. Here, using
cryo-EM, we resolved a structure of a new chaperonin encoded by gene 228 of phage AR9 B. subtilis.
This structure has similarities and differences with members of both groups, as well as with other
known phage chaperonins, which further proves their diversity.

Keywords: molecular chaperones; chaperonins; Cryo-EM; bacteriophages

1. Introduction

Chaperonins are protein complexes that promote the proper folding of newly synthe-
sized proteins and prevent the aggregation of denatured proteins in an ATP-dependent
manner. Until recently, two major groups of chaperonins were distinguished. Group I
chaperonins, found in the cytoplasm of bacteria and in endosymbiotic organelles of eukary-
otes, are homo-oligomeric complexes and require co-chaperonins to function [1]. Group
II chaperonins, found in the cytoplasm of archaea and eukaryotes, are hetero-oligomers
and function without a co-chaperonin [2,3]. Representatives of both groups have, as a rule,
a double-ring structure with a cavity for protein folding in each ring. Recently, chaper-
onins of the prospective new group were discovered in giant bacteriophages [4–8]. Some
bacteriophages are known to use a host cell chaperonin to fold their own capsid proteins,
with phage λ using the entire GroEL-GroES complex, while T4 and RB49 encode their own
GroES orthologs, gp31 and CocO, respectively [9–11]. This led investigators to the idea that
perhaps viruses may also have their own protein folding apparatus. The first gene encod-
ing a GroEL ortholog was found in the genome of a giant bacteriophage EL Pseudomonas
aeruginosa. The protein is encoded by gene 146 and its product has only 25% homology to
the amino acid sequence of GroEL, which is quite low compared to 80% identity within
group I chaperonins [4]. Gene 146 was successfully cloned and expressed in E. coli cells.
Purified recombinant protein was found to consist of 14 identical gp146 subunits arranged
in two heptameric rings, i.e., its architecture is similar to the GroEL tetradecamer. All
known chaperonins, including phage chaperonins, are conservative proteins, subunits of
which are composed of three domains: equatorial, intermediate and apical. EL chaperonin
possesses a functional activity towards endolysin (a protein used by phages to disrupt the
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peptidoglycan of the bacterial cell wall and exit from the cell). As shown in vitro, it is able
to prevent the thermal aggregation of endolysin both in the presence and absence of ATP.
Unlike GroEL, EL chaperonin does not require a co-chaperonin to function [12].

A study of another putative chaperonin of bacteriophage OBP Pseudomonas fluorescens
(gp246) revealed that, according to the phylogenetic tree, it is also an ATP-dependent
GroEL-like protein that functions without a co-chaperonin, but has a number of unique
features [13], including the fact that it only forms a single-ring barrel. Three-dimensional
reconstruction obtained by cryo-electron microscopy and single particle analysis demon-
strated that its structure consists of seven subunits. The equatorial domains of OBP
chaperonin possess a clear C7 symmetry and closely resemble the overall structure of the
one ring of GroEL [14]. At the level of intermediate domains, which connect equatorial
and apical domains, the C7 symmetry diminishes, resulting in the appearance of an asym-
metrical pattern: three subunit pairs (A–B) and one unpaired subunit (C), at the level of
apical domains [15]. Subunit A resembles the T-state (low affinity to nucleotides) of GroEL,
while subunit B is close to the Rs1 (ATP-bound) state of GroEL. The C subunit was poorly
resolved, indicating its highly dynamic nature and continuous transition between A and
B states. A similar asymmetric subunit arrangement was later observed for the apical
domains of the double-ring EL chaperonin [16]. In addition, it was demonstrated that in
the presence of ATP and at physiological salt concentrations, EL chaperonin dissociates
into two separate rings [16]. According to the proposed hypothetical mechanism, next, ATP
hydrolysis occurs, which allows the folded protein to be released. After the dissociation of
ADP, chaperonin again re-establishes a double-ring conformation [16].

The third GroEL-like chaperonin was recently predicted based on the genome of phage
AR9 B. subtilis [17]. The putative recombinant chaperonin (gp228) has been obtained and
purified, and its low-resolution structure revealed that it is a single-ring heptamer. Like
EL and OBP chaperonins, the new AR9 chaperonin does not require a co-chaperonin to
function and provides a refolding of the denatured substrate protein, endolysin, in an ATP-
dependent manner. It is important to understand how single-ring chaperonins without
co-chaperonins could prevent the aggregation of substrates as well as fold them.

Here, we used the cryo-EM approach and molecular modeling to solve the high-
resolution structure of AR9 chaperonin in the apo-state. The structure of the new viral
chaperonin has been compared to the structures of other viral chaperonins and further
proves the diversity of this important class of proteins.

2. Materials and Methods
2.1. Protein Purification

The gp228 was expressed in E. coli cells, as described elsewhere [17]. The recombinant
bacteria were grown in LB medium at 37 ◦C to an optical density of 0.6 at 600 nm, induced
with 1 mM of isopropyl-β-D-thiogalactopyranoside (IPTG), and additionally incubated
at 25 ◦C for 3.5 h. Cell pellet was re-suspended in 50 mM Tris-HCl buffer (pH 7.5) and
sonicated for 2–3 min, followed by centrifugation. Nucleic acids were pelleted from
supernatant with 3% (wt/vol) streptomycin sulfate at 4 ◦C for 1 h and centrifuged. The
most part of the cellular proteins were precipitated from the supernatant with 40% (wt/vol)
ammonium sulfate and removed by centrifugation. Recombinant gp228 was precipitated
from the supernatant by increasing the concentration of ammonium sulfate to 50%, and
fractionated on a Q-Sepharose column (Cytiva Sweden AB, Uppsala, Sweden) by a linear
gradient from 100 to 500 mM NaCl in 50 mM Tris-HCl buffer (pH 7.5). The eluate fractions
containing pure gp228 were pooled and concentrated using an Amicon 100 ultrafiltration
device (molecular weight cutoff (MWCO) 100,000 Da, Millipore, Burlington, MA, USA),
and transferred into 50 mM Tris-HCl buffer (pH 7.5), 10 mM MgCl2, 100 mM KCl [17].

2.2. Cryo-EM Data Acquisition

Purified protein (3 µL) was applied to glow-discharged Quantifoil R1.2/1.3 grids
(Quantifoil, Großlöbichau, Germany) and plunge-frozen in a Vitrobot Mark IV (Thermo
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Fisher Scientific, Waltham, MA, USA) at 4.5 ◦C. Images were taken on a Titan Krios cryo-
electron microscope (Thermo Fisher Scientific, USA) equipped with a Falcon II direct
electron detector (Thermo Fisher Scientific, USA) with an accelerating voltage of 300 kV.
A total of 3184 stacks of 20 images each were acquired. The size of the images was
4096 × 4096 pixels at a resolution of 1.107 Å/pix. The electron dose absorbed by each
image in the stack was 4 electrons per Å2.

2.3. Image Processing

Data processing was carried out using the RELION-3.0.8 program [18]. Using the
MotionCor2 program [19], the anisotropic drift of the sample caused by the action of an
electron beam was corrected. The first and last image in each stack were excluded from
further processing, as they contain artifacts caused by the operation of electron microscope
shutters. A total of 3184 two-dimensional images were obtained, for which the signal inten-
sity distribution was taken into account depending on the electron dose absorbed by the
sample [20]. CTF parameters were evaluated using the Gctf program [21]. The set of images
was processed in the SPHIRE-crYOLO program [22]. A total of 1,106,416 coordinates were
selected and subjected to 2D classification, after which 689,058 coordinates were selected
for further processing. The second stage of projection selection was carried out using three-
dimensional (3D) classification into 5 different classes. The most populated class containing
145,972 particles was refined with and without C7-symmetry imposed. The estimated
resolution was 4.49 Å for the symmetry-free model and 3.99 Å for the C7-symmetrical
structure.

To further improve the resolution, the motion of individual protein particles in the
sample was corrected for the original dataset using the available reconstruction as a refer-
ence. Together with CTF-refinement, this allowed us to reach a 3.77 Å resolution for the
C7-symmetrical model.

To study the conformational mobility of individual subunits, we used the symme-
try expansion procedure implemented in RELION. Two masks were created: around
the entire heptamer and around a single subunit. Subtraction of a mask for a single
subunit from the heptamer mask allowed to ensure a mask for 6 subunits. Using the “re-
lion_particle_symmetry_expand” command, we obtained 7 times more images of aligned
subunits. Various projection images from the modified map with only 6 subunits were
generated according to the particle orientation images and subtracted from the correspond-
ing 2D images with extended symmetry. As a result, images containing the signal of only
one subunit were obtained. These images were subjected to 3D classification in RELION.
The atomic model of a single subunit was fit into these classes using the UCSF ChimeraX
program and the specialized ISOLDE tool [23].

2.4. Molecular Modeling

On the basis of the map, an atomistic model of the AR9 chaperonin heptamer was
reconstructed. Homology modeling of the monomer using a GroEL structure as a template
was performed in the Swiss-model [24], then, the structure of the monomer was flexibly
fitted into the density map using Phenix [25].

2.5. Small-Angle X-ray Scattering

Small-angle X-ray scattering (SAXS) measurements were performed at the P12 beam-
line of the European Molecular Biology Laboratory (EMBL) at the PETRA III storage ring,
DESY Hamburg [26]. The gp228 sample at the concentration range of 0.5 to 7.0 mg/mL
was tested. The solutions were loaded using a robotic sample changer [27] into a flow-
through capillary of 1.7 mm diameter. The data were recorded using a Pilatus 6M detector
(DECTRIS, Baden-Daettwil, Switzerland) with 20 × 0.05 s exposure time at the sample, to a
detector distance of 3.10 m and a wavelength of 0.124 nm covering the momentum transfer
range from 0.02 < s < 7.0 nm−1. The temperature was kept at 20 ◦C. The data collection
and reduction were performed using the BECQUEREL [28] and SASFLOW pipeline [29],



Biomedicines 2022, 10, 2347 4 of 13

including the comparison of frames for radiation damage, averaging, and buffer subtrac-
tion. The averaged frames were normalized to the transmitted beam using a beamstop
with an integrated photodiode [30]. No measurable radiation damage was detected by the
comparison of successive time frames.

The radius of gyration (Rg), maximum size of the particle (Dmax) and the pair dis-
tribution function p(r) were evaluated using the program GNOM [31]. The excluded
volume of hydrated protein molecule (Vp) was estimated within the Porod approximation
for homogeneous particles. A low-resolution ab initio bead model of the gp228 protein
was constructed using the program DAMMIN [32], where the simulated annealing (SA)
minimization algorithm was used to build a compact interconnected configuration of beads
with the best fit to the experimental data.

The theoretical scattering intensities from the refined cryo-EM models with C1 and C7
symmetries were calculated using the CRYSOL program [33] and compared to the experi-
mental data. The flexibility of apical domains in the cryo-EM model with C7 symmetry
was assessed using the program EOM [34].

3. Results
3.1. Apo-Form of AR9 Chaperonin Has a Flexible 3D Structure

For AR9 chaperonin consisting of seven gp228 subunits, we obtained two cryo-EM
maps: with no symmetry imposed (resolution 4.49 Å) and with C7 symmetry (resolution
3.99 Å) (Figure 1).
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Figure 1. Cryo-EM density maps of AR9 chaperonin with no symmetry applied (left) and with
C7 symmetry (right).

The symmetry-free map demonstrated a loss of scattering density in the region of
three adjacent apical domains. As in the case of the OBP chaperonin, the region poorly
resolved in the 3D reconstruction may indicate its high conformational dynamics [15].
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However, despite these conformational dynamics, and unlike the OBP chaperonin, in
the C7-symmetrical structure, all subunits are distinguishable, so we used it for further
refinement. Correction of particle motion in the sample and additional refinement of the
CTF parameters for each particle made it possible to refine the C7-symmetric structure to a
resolution of 3.77 Å (Figure 2). The local resolution in the region of the equatorial domains
reaches 3.2 Å, while in the apical domains, the resolution drops to 5.8 Å. There are also
some differences in the resolution score for three of the seven apical domains, which is
consistent with the observed density loss of the three apical domains in the map without
symmetry.
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3.2. Full-Atom Model of the Apo-Form of the AR9 Chaperonin Demonstrates More Stability than
That of the OBP Chaperonin

Based on the obtained reconstruction of the AR9 chaperonin, a full-atom model of the
heptamer was constructed. For this purpose, homologous modeling of a monomer was
performed using the structure of the bacterial GroEL as a template; the resulting structure
was corrected and fitted into the density map of the apo-form using the PHENIX package
and flexible fitting. This allowed us to demonstrate the unusual position of the K and L
helices. However, unlike the other heptameric phage chaperonin OBP, the R197-E386 ion
pair key for GroEL functioning [35] is retained in the chaperonin AR9 structure (R202-E402
in AR9 chaperonin) (Figure 3). In addition, the formation of additional (compared to GroEL
and other phage chaperonins) interactions between the equatorial domains of neighboring
subunits near the N and O helices is possible, which can further stabilize the chaperonin.
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(right). Arrows show important inter-subunit salt bridges; the helices K, L, N, O and the key Arg202-
Glu402 pair are labeled.

3.3. Conformational Variability among the Subunits

To further study the conformational mobility of subunits, one subunit was isolated by
masking and used as a reference for three-dimensional classification. Previously, the set of
particles was expanded using the “symmetry expansion” function in the RELION program.
After three-dimensional classification, 15 classes were obtained, of which 13 displayed an
expected three-domain architecture of a single subunit. Some of the classes presented a
very similar subunit conformation. The particles from such classes were grouped together
and used for further refinement of a particular conformation. As a result, four subunit
conformations were identified at resolutions 4.50 Å, 5.56 Å, 5.45 Å and 6.44 Å (Figure 4A).

The first conformation corresponds to a subunit in the average C7-symmetrical model.
Relative to the average position, the greatest changes in other conformations occur in the
apical domains. Subunits of the second conformation have an elevated apical domain;
GroEL subunits adopt a similar conformation when bound to GroES. The third type
included subunits whose apical domain was lowered to the center of mass of the chaperonin
ring. The fourth type was formed by subunits with the apical domain rotated around the
axis of the subunit to the right. Next, for each conformation, the atomic model fitting was
performed (Figure 4B). The mobility of the equatorial domain is limited by inter-subunit
contacts, while the apical domains play a major role in the mobility of the apo-form of
chaperonin.

Figure 5A shows the alignment of four conformations and the main differences be-
tween them. Similar movements of the apical domain are present in the cycle of the bacterial
chaperonin, GroEL, upon its binding to GroES. However, the second type subunit (with the
most elevated position of the apical domain) does not repeat any of the putatively similar
conformational states of known bacteriophage chaperonins or of the bacterial chaperonin,
GroEL (Figure 5B).
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3.4. Apo-AR9 Cryo-EM Structure Agrees with Solution Scattering Data

Information about apo-form of AR9 chaperonin in solution has been obtained from
SAXS experiments. The processed scattering data and the computed distance distribution
function are displayed in Figure 6a. The excluded volume Vp of the particle (850 ± 50) nm3

suggests its predominantly heptameric state, which is in agreement with an empirical
finding for globular proteins that the hydrated volume in nm3 should numerically be about
twice larger than the molecular mass in kDa [36] (the theoretical molecular mass of the
monomer is 61.4 kDa). The experimental Rg and Dmax (6.0 ± 0.2 nm and 16.5 ± 0.5 nm,
respectively) point to a rather compact structure. The distance distribution function p(r) for
Apo-AR9 (Figure 6a, inset) is also consistent with the compact shape of the protein. The
rather asymmetric view of p(r) function with the shift of its peak towards larger distances
is typical for particles with a cavity in the central part of the structure.
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The macromolecular shape of the Apo-AR9 chaperonin has been reconstructed by ab
initio modeling using only the experimental X-ray scattering data.

An ab initio low resolution model displayed in Figure 6b has been generated by
DAMMIN (see Methods for details). A typical low-resolution shape of Apo-AR9 recon-
structed ab initio (Figure 6b) nicely fits the experimental data with the discrepancy χ2 = 1.05
(Figure 6a, curve 2, solid blue line).

The scattering intensities calculated from the refined cryo-EM models with C1 and C7
symmetries are displayed in Figure 6a, curves (3) and (4) shown with red dashed and green
dashed-dotted lines, respectively. While the cryo-EM model without symmetry provides a
poor fit to the data with χ2 = 20.04, the symmetric model fits the data reasonably well with
χ2 = 1.35. The small deviations from the data at s values around 1.0 nm−1 can be explained
by a moderate flexibility of the apical domains. Indeed, the ensemble optimization method
(EOM) [34] allowed us to slightly improve the fit quality (χ2 = 1.29) using the randomized
pool of symmetric models, where the equatorial and intermediate domains were fixed as in
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the cryo-EM model, and the apical domains (residues 189-387) were rotated while keeping
the contacts between the domains. EOM found two conformer populations, a compact one
with Rg around 5.9 nm (accounting for 60% of the total population) and a more extended
one with Rg close to 6.1 nm (with 40% of the total population). At the same time, the
symmetric cryo-EM model overlaps well with the ab initio shape (Figure 6b). Thus, we
confirm that our symmetric cryo-EM structure is consistent with the solution scattering
data.
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scientific groups [15,17,38]. It is a homooligomer composed of seven gp228 subunits, 
which makes it similar to a single ring of the group I chaperonins. Single-ring chaperonins 
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Figure 6. SAXS study of Apo-AR9. (a) Small-angle X-ray scattering patterns from Apo-AR9 chaper-
onin. Curve (1)—experimental data are displayed as dots with error bars, curve (2)—the fit from ab
initio model obtained by DAMMIN [32] is shown as a blue solid line, curves (3) and (4)—theoretical
scattering curves calculated by CRYSOL [33] from cryo-EM models with C1 and C7 symmetry are
shown as red dashed and green dashed-dotted lines, respectively. The plots display the logarithm
of the scattering intensity as a function of the momentum transfer. The inset displays the distance
distribution function estimated by GNOM [31]. (b) Ab initio bead model of Apo-AR9 chaperonin
obtained by DAMMIN (gray semitransparent spheres) overlapped with the heptameric cryo-EM
model in the cartoon representation (green color). The right view was obtained by a 90◦ clockwise
rotation around the vertical axis. The figure was generated using the VMD program [37].

4. Discussion

The AR9 chaperonin is the third viral chaperonin discovered and described by our
scientific groups [15,17,38]. It is a homooligomer composed of seven gp228 subunits, which
makes it similar to a single ring of the group I chaperonins. Single-ring chaperonins
are less common in nature; however, single-ring forms of the mutant type I chaperonin
GroEL [39–41] and mitochondrial chaperonin [42] are known to have functional activity.
Moreover, it has been recently established that in the ATPase cycle of the bacterial GroEL-
GroES system, there is a temporary separation of the chaperonin rings [43], and in the
mitochondrial chaperonin reaction cycle, mHsp60-mHsp10, both single- and double-ring
forms function simultaneously [44].

The main function of any chaperonin is to provide its inner cavity to the substrate.
It is ensured by group I and II chaperonins through ATP-dependent transitions between
open and closed conformations. In contrast, phage chaperonins are always in the open
conformation. Yet they are functional and can suppress the thermal aggregation of phage
endolysins and to fold denatured proteins regenerating their enzymatic activity in an
ATP-dependent manner [17,38]. In addition, two types of phage chaperonins, the double-
ring EL and the single-ring OBP, were demonstrated to stimulate α-synuclein amyloid



Biomedicines 2022, 10, 2347 10 of 13

transformation in an ATP-dependent manner and, on the contrary, completely prevent
α-synuclein fibrillization in the absence of ATP [45].

The best resolution in our 3D model of AR9 chaperonin was achieved in the equatorial
domains (3.2 Å), since their mobility is limited. The α-helices, which predominantly form
the equatorial domains of the chaperonin ring similar to those of GroEL, are clearly visible.
Increasing the mobility of the intermediate and apical domains due to conformational
rearrangements and to increasing degrees of freedom, results in a lower resolution (4.5–5 Å).
The classification of masked subunits allowed us to identify four subunit conformations
in the apo-form of the AR9 chaperonin, indicating the conformational flexibility of this
single-ring variant. This is reminiscent of the results obtained for GroEL, where a single
mutation disrupted the intra-ring symmetry, resulting in the conversion of the allosteric
switch of GroEL from concerted to sequential [46].

Comparison of the obtained reconstruction with previously published reconstructions
of OBP [15] and EL chaperonins [16] demonstrated a difference in the subunit arrangement.
While the subunits of OBP and EL chaperonins are arranged in three pairs with one
unpaired subunit, such a pattern is not observed for the chaperonin under study. The similar
structure of the equatorial chaperonin domains confirms the data on their conservation.

To confirm our cryo-EM model, we employed SAXS as a widely used method for
integrative structural studies of large macromolecular complexes, including different chap-
eronins [47–50]. This structural approach provides direct information on the size, folding
state, and flexibility of biomolecules at quasi-native conditions at room temperature [51].

Complementary synchrotron SAXS data from gp228 are in good agreement with
the cryo-EM reconstruction. SAXS modeling reveals C7 symmetry of the protein in the
native state. This finding confirms that Apo-AR9 has distinct features from OBP chaperonin
belonging to the same group of phage chaperonins. Further research will help to understand
how the diverse structural features of members of this new group affect their functional
cycle.
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43. Yan, X.; Shi, Q.; Bracher, A.; Miličić, G.; Singh, A.K.; Hartl, F.U.; Hayer-Hartl, M. GroEL Ring Separation and Exchange in the
Chaperonin Reaction. Cell 2018, 172, 605–617.e11. [CrossRef] [PubMed]

44. Gomez-Llorente, Y.; Jebara, F.; Patra, M.; Malik, R.; Nisemblat, S.; Chomsky-Hecht, O.; Parnas, A.; Azem, A.; Hirsch, J.A.;
Ubarretxena-Belandia, I. Structural Basis for Active Single and Double Ring Complexes in Human Mitochondrial Hsp60-Hsp10
Chaperonin. Nat. Commun. 2020, 11, 1916. [CrossRef] [PubMed]

45. Leisi, E.V.; Barinova, K.V.; Kudryavtseva, S.S.; Moiseenko, A.V.; Muronetz, V.I.; Kurochkina, L.P. Effect of Bacteriophage-Encoded
Chaperonins on Amyloid Transformation of α-Synuclein. Biochem. Biophys. Res. Commun. 2022, 622, 136–142. [CrossRef]

46. Danziger, O.; Rivenzon-Segal, D.; Wolf, S.G.; Horovitz, A. Conversion of the Allosteric Transition of GroEL from Concerted to
Sequential by the Single Mutation Asp-155→Ala. Proc. Natl. Acad. Sci. USA 2003, 100, 13797–13802. [CrossRef]

47. Meyer, A.S.; Gillespie, J.R.; Walther, D.; Millet, I.S.; Doniach, S.; Frydman, J. Closing the Folding Chamber of the Eukaryotic
Chaperonin Requires the Transition State of ATP Hydrolysis. Cell 2003, 113, 369–381. [CrossRef]

48. Kanzaki, T.; Ushioku, S.; Nakagawa, A.; Oka, T.; Takahashi, K.; Nakamura, T.; Kuwajima, K.; Yamagishi, A.; Yohda, M. Adaptation
of a Hyperthermophilic Group II Chaperonin to Relatively Moderate Temperatures. Protein Eng. Des. Sel. 2010, 23, 393–402.
[CrossRef]

49. Ishida, R.; Okamoto, T.; Motojima, F.; Kubota, H.; Takahashi, H.; Tanabe, M.; Oka, T.; Kitamura, A.; Kinjo, M.; Yoshida, M.; et al.
Physicochemical Properties of the Mammalian Molecular Chaperone HSP60. Int. J. Mol. Sci. 2018, 19, 489. [CrossRef]

http://doi.org/10.1107/S0907444909052925
http://doi.org/10.1107/S160057671500254X
http://doi.org/10.1107/S1399004714026959
http://doi.org/10.1107/S1600577518005398
http://doi.org/10.1016/j.nima.2012.06.008
http://doi.org/10.1107/S160057751402829X
http://doi.org/10.1107/S0021889892001663
http://doi.org/10.1016/S0006-3495(99)77443-6
http://doi.org/10.1107/S0021889895007047
http://doi.org/10.1107/S205225251500202X
http://www.ncbi.nlm.nih.gov/pubmed/25866658
http://doi.org/10.1073/pnas.1311996110
http://doi.org/10.1107/S0021889812007662
http://doi.org/10.1016/0263-7855(96)00018-5
http://doi.org/10.1134/S0006297922010011
http://doi.org/10.1016/S0022-2836(03)00830-1
http://doi.org/10.1074/jbc.M111.255935
http://doi.org/10.1016/j.bbrc.2015.08.034
http://www.ncbi.nlm.nih.gov/pubmed/26271593
http://doi.org/10.1016/S1097-2765(00)80117-3
http://doi.org/10.1016/j.cell.2017.12.010
http://www.ncbi.nlm.nih.gov/pubmed/29336887
http://doi.org/10.1038/s41467-020-15698-8
http://www.ncbi.nlm.nih.gov/pubmed/32317635
http://doi.org/10.1016/j.bbrc.2022.07.015
http://doi.org/10.1073/pnas.2333925100
http://doi.org/10.1016/S0092-8674(03)00307-6
http://doi.org/10.1093/protein/gzq010
http://doi.org/10.3390/ijms19020489


Biomedicines 2022, 10, 2347 13 of 13

50. Spinello, A.; Ortore, M.G.; Spinozzi, F.; Ricci, C.; Barone, G.; Gammazza, A.M.; Piccionello, A.P. Quaternary Structures of GroEL
and Naïve-Hsp60 Chaperonins in Solution: A Combined SAXS-MD Study. RSC Adv. 2015, 5, 49871–49879. [CrossRef]

51. Kachala, M.; Valentini, E.; Svergun, D.I. Application of SAXS for the Structural Characterization of IDPs. Adv. Exp. Med. Biol.
2015, 870, 261–289. [PubMed]

http://doi.org/10.1039/C5RA05144D
http://www.ncbi.nlm.nih.gov/pubmed/26387105

	Introduction 
	Materials and Methods 
	Protein Purification 
	Cryo-EM Data Acquisition 
	Image Processing 
	Molecular Modeling 
	Small-Angle X-ray Scattering 

	Results 
	Apo-Form of AR9 Chaperonin Has a Flexible 3D Structure 
	Full-Atom Model of the Apo-Form of the AR9 Chaperonin Demonstrates More Stability than That of the OBP Chaperonin 
	Conformational Variability among the Subunits 
	Apo-AR9 Cryo-EM Structure Agrees with Solution Scattering Data 

	Discussion 
	References

