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Background
Recent advances in technology enable one to study heterogeneous mixtures of cell pop-
ulations at the single cell level. Single cell RNA sequencing (scRNA-seq) [1] provides 
whole genome transcription profiling and single cell ATAC-seq (scATAC-seq) [2] identi-
fies accessible chromatin regions at the single cell level. Integrative analysis of scRNA-
seq with scATAC-seq could identify the subpopulations more accurately and provides 
more detail about the gene regulation [3–7]. Traditionally, expression profiling and 
accessibility profiling are done separately on different sub-samples from the heterogene-
ous population. To jointly analyze these two types of data, all of these methods require 
a linking function between cis-regulatory elements (REs) and target genes (TGs). The 
linking functions were either based on genomic distance or external data. For example, 
SOMatic [5] links the RE to the nearest gene; the RE-TG connection in MAESTRO [6] is 
defined as an exponentially decreasing function of their distances; many other methods 
including Seurat [8] use the gene activity score defined in Cicero [9]; and our previously 
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developed methods Coupled NMF [3] and DC3 [4] learn the RE-TG connection from 
external bulk data from diverse cellular contexts and bulk 3D chromatin contact data, 
respectively. Even though many methods have been proposed, our ability to infer cis-
regulation is fundamentally limited by the fact that these two types of genomics features 
are not measured on the same cell. Fortunately, recent technological development allows 
joint profiling of gene expression and chromatin accessibility on the same cell [10–14]. 
We believe more and more such types of data will be generated as the Chromium plat-
form (10X Genomics) provides kits and protocols to make it more convenient to use 
(sc-multiome) [15].

In the past few years, many fancy and powerful methods have been developed for 
clustering, 2-dimension embedding, and trajectory/pseudotime analysis of single cell 
genomics data such as matrix-based algorithms [3, 4, 16], graph-based algorithms [8, 
17, 18], probability-based methods [9, 19, 20], and neural network-based methods [5, 7, 
21–24]. Several methods are also designed for comparative analysis across multiple con-
ditions [25–28] and time course experiments after stimuli [29, 30]. Most of those meth-
ods take as input a lower-dimensional representation of cells which is typically obtained 
in an initial dimension reduction step. For example, many scRNA-seq analysis meth-
ods use principal component analysis (PCA) for dimension reduction [31], and some 
scATAC-seq analyses use latent semantic analysis (LSA) [32] for dimension reduction. 
In this paper, we address the question of how to perform dimension reduction on single 
cell multiome data where simultaneous expression and accessibility data is measured on 
each cell. The simplest approach is to apply standard dimension reduction methods on 
two data types to produce the corresponding reduced-dimension feature vectors, and 
then concatenate the two feature vectors to obtain the final feature vector for each cell. 
However, this simple approach does not leverage the key advantage of sc-multiome data, 
namely that the activity of RE and TG are measured in the same cell, so that it provides 
the cis-regulatory information in each cell. Preserving the cis-regulatory information 
should be an important requirement of the dimension reduction step, but this important 
issue is not taken into consideration in previous methods [16, 18, 33, 34].

The main contribution of this paper is to fill this gap by the introduction of a matrix 
factorization-based approach designed to preserve regulatory information at the single 
cell level. Specifically, besides the within-modality information, we also use the cross-
modalities information in the dimension reduction by introducing a new concept of 
cis-regulatory potential (CRP) for each pair of regulatory elements and target genes. 
Here, the CRP is defined as the sum of the accessibility of regulatory element (RE) and 
expression of target gene (TG) multiplied by the weight dependent on their genomics 
distance. The advantage of including the concept of CRP is that it helps to capture the 
cis-regulatory information neither included in gene expression alone nor included in the 
chromatin accessibility alone. In addition, the CRP has much fewer drop-outs so it helps 
to denoise. Based on the CRP concept, we designed a non-negative matrix factorization 
(NMF)-based optimization model to project the cells into a lower dimension space. Sev-
eral NMF-based methods [3, 4, 35, 36] have been developed for dimension reduction 
and clustering of single cell genomics data and have shown great advantages in data inte-
gration. In addition to the gene expression matrix and chromatin accessibility matrix, we 
also include the cis-regulatory potential matrix as one input of the optimization model 
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to use a lower dimension to represent a cell. After this dimension reduction, down-
stream analyses such as clustering and 2-dimensional embedding of cells can be per-
formed based on the reduced-dimension features. In addition to dimension reduction, 
the second contribution in this paper is the inference of the subpopulation-specific cis-
regulatory networks. Based on the concept of CRP, we achieve much higher inference 
accuracy of RE-TG interaction than the Pearson correlation coefficient (PCC)-based 
method. A further contribution of this work is that the developed methods are imple-
mented into a comprehensive toolkit scREG for the analysis of single cell multiome gene 
expression and chromatin accessibility data. Our R package scREG enables end-to-end 
analysis of single cell multiome data, including the functionality of dimension reduction, 
cell clustering, 2-dimension embedding, regulatory network inference, and interactive 
visualization. Finally, we use the subpopulation-specific regulatory networks to interpret 
the disease-associated loci of inflammatory bowel disease (IBD) to demonstrate the use-
fulness of the scREG inferred regulatory networks.

Results
scREG: a computational method for single cell regulatory analysis from multiome data

We propose a computational method for integrative analysis of single cell multiome 
gene expression and chromatin accessibility data. Figure  1 shows the schematic over-
view of the scREG analysis workflow. Our software scREG takes as input the read count 
matrices of gene expression and chromatin accessibility measured on the same cells 
which are the same format as the standard output of 10X genomics CellRanger software. 
The output of scREG is a lower-dimensional representation of cells, clustering label, 2-D 
embedding, and subpopulation-specific cis-regulatory networks. The R package also has 
an interactive visualization function to plot the peaks, genes, and cis-interaction in a 
subpopulation-specific manner for a given genomics range. scREG processes the input 
data in three main steps: joint dimension reduction, cell clustering, and regulatory net-
work inference.

First, we develop a non-negative matrix factorization (NMF)-based optimization 
model to reduce the dimension of multiome data with m1 genes and m2 peaks to a com-
mon K dimension matrix (default value of K is 100). The gene expression data E matrix 
and chromatin accessibility data O matrix could be treated as two different modalities 
and thus those need to be integrated. To capture the cross-modalities information, we 
define a cell level index cis-regulatory potential (noted as R matrix, rows represent peak-
gene pairs and columns represent cells) to measure the regulatory strength of a peak 
to a TG in a cell. We project the three different data matrices E, O, and R to a common 
reduced dimension space by an NMF-based optimization model (see the Joint dimen-
sion reduction” section). Specifically, we factorize the three data matrices into products 
of modality-specific factor profiles (W1, W2, and W3 for E, O, and R respectively) and a 
common low dimension representation of the cells (the H matrix).

Second, we cluster the cells based on the reduced dimension matrix. Specifically, we 
calculate the similarity between cells based on the reduced dimension H matrix and 
construct a k-nearest neighbor graph. To detect rare populations, we transfer this graph 
to a weighted graph where the weight between two nodes is defined as the Jaccard simi-
larity of their neighbors in the k-nearest neighbor graph. The Louvain algorithm [37] 
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was applied on this weighted graph to identify the cell populations (see the “Clustering 
of cells” sections).

Third, we define a cis-regulatory score (CRS) for each peak-gene pair in each cluster 
by an average of the cis-regulatory potential over cells from the same cluster (see the 
“Reconstruction of the cis-regulatory networks” section). We select the top 10,000 peak-
gene pairs in each subpopulation to construct the cis-regulatory network and identify 

Fig. 1  Schematic overview of the scREG. The scREG takes matrices of gene expression and chromatin 
accessibility (E and O respectively) measured on the same cells as inputs and process the multiome data 
by three steps: dimension reduction, cell clustering, and regulatory network inference. First, a cell level 
index cis- regulatory potential matrix R is defined, indicating the regulatory strength of a peak to a target 
gene. Rows of R matrix represent preselected peak-gene pairs and columns represent cells. Here, the index 
i represent the ith peak, j represents a gene, and c represents a cell. Then, three matrices (E, O, and R) are 
factorized into products of domain specific profiles (W1, W2, and W3 for E, O, and R respectively) and a 
common low dimension representation of the cells (the H matrix) by NMF-based optimization model. Based 
on the reduced dimension matrix, we do cell clustering by Louvain algorithm and visualize the cells into 
2D space by Umap. For each peak-gene pair, a cis- regulatory score (CRS) was defined by average of the 
cis- regulatory potential over cells from the same cluster. Subpopulation specific cis- regulatory networks 
were identified based on the CRS scores.
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regulatory elements (REs) as peaks regulating at least one gene in a given subpopulation. 
To obtain more accurate regulatory information, we merge cells from the same subpop-
ulation and perform peak calling on each subpopulation. We replace the REs with clus-
ter-specific peaks, which are shorter and more accurate than the original REs, to obtain 
the final subpopulation-specific cis-regulatory networks.

scREG performs cross‑modalities dimension reduction by data integration

To assess whether the scREG method can reduce dimensions efficiently, we apply 
our method to peripheral blood mononuclear cells (PBMC) multiome data from 10X 
genomics (see the “PBMC 10 K data” section). We use the joint NMF-based optimiza-
tion model in scREG to reduce the dimension of data into 100 dimensions. To validate 
the results, we used the cell-type labels that were annotated by the 10X Genomics R&D 
team as surrogates for ground truths [34] and calculated silhouette index (SI) for each 
cell based on the reduced dimension matrix. A higher SI value indicates that the cell 
is more similar to cells sharing its label than those not sharing its label. First, we com-
pare our method with dimension reduction methods based on a single dataset PCA on 
scRNA-seq, and LSA on scATAC-seq. As the dataset contains 14 cell types, we choose 
the top 14 dimensions of PCA and LSA. To make the results comparable, we perform 
PCA on our reduced dimension matrix, which is 100 dimensions, to reduce it to the 
same dimension as the other two methods. Figure 2A shows that scREG achieves higher 
SI than PCA RNA, and LSA ATAC on 83.39%, and 83.37% of the cells, respectively.

The increment in SI is cell type-dependent. Figure  2C and Additional file  1: Fig. S1 
show the distribution of SI of different methods on different cell types. For CD56 bright 
NK cells, naive B cells, naïve CD4 T cells, and plasmacytoid DC, the SIs are increased in 
scREG compared to all the other methods (Fig. 2B). The scREG achieved the best per-
formance on 9 out of 14 cell types. Additional file 1: Fig. S1 shows the comparison of the 
average SI on all the cell types by different dimension reduction methods, except for the 
effector CD8 cell, on which all methods generally have poor performance. Our method 
scREG performs better on most of the cell types, with SI range from 0.2371 to 0.9758, 
and achieves the highest average SI score across cell types (0.5614).

One alternative way to perform dimension reduction is to perform dimension reduc-
tion separately on each type of data first and concatenate them together. We construct a 
new lower dimension representation by concatenating 7 dimensions of PCA on scRNA-
seq and 7 dimensions of LSA on scATAC-seq and compare this with scREG. These 
newly constructed 14 features perform lightly better than the two methods that per-
form dimension reduction separately but are inferior to scREG on 83.14% of the cells 
(Fig. 2A).

To evaluate the importance of the cis-regulatory potential, we compare our method 
with three other methods that do not use cis-regulatory information. First, we build a 
baseline model of scREG by removing the cis-regulatory potential term (the 3rd term in 
eq. (1) of Methods) from the optimization model and then perform the same optimiza-
tion and dimension reduction as before. The other two methods for comparison are scAI 
[16] and MOFA+ [33]. We use these three baseline methods to reduce the dimension 
to 100 and perform PCA to further reduce it to 14 dimensions. The result shows that 
including the cis-regulatory term improves performance: scREG increases SI on 72.08%, 
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81.18%, and 62.39% of cells compared to scAI, MOFA+, and scREG baseline, respec-
tively (Fig. 2B). Figure 2B, C and Additional file 1: Fig. S1 show that the baseline methods 
without cis-regulatory potential are inferior to the scREG but perform better than the 
other methods that take a single dataset as inputs. This result suggests that we achieve 
more accurate low dimension representation by integrating both gene expression and 
chromatin accessibility data, and the accuracy would be further improved if we include 
the cis-regulatory potentials into the formulation of the NMF-based optimization model.

scREG identifies the cell populations with high accuracy

To evaluate the performance of the cell clustering aspect of our method, we compare 
the scREG with Cell Ranger ARC V1.0, Seurat V4.0, scAI, MOFA+, and the baseline 
scREG method. Cell Ranger ARC analyzes the gene expression and chromatin acces-
sibility separately and outputs two clustering labels, while scREG scAI, MOFA+, and 

Fig. 2  Benchmarking scREG with other dimension reduction Methods. A, B Scatter plots visualize the 
silhouette index (SI) of following methods versus scREG: PCA for RNA data, LSA for ATAC data, concatenation 
of top PCs of RNA and top factors of ATAC, scAI, MOFA+, and intNMF, which differ from scREG by lacking the 
cis-regulatory potential term. Each dot represents the SI of one cell. Each scatter plot compare scREG with 
another dimension reduction method. Y axis represent the SI from scREG and X-axes represent that from 
alternative methods. SI represents the similarity of each cell with the cells in same cell type compared to 
those from other cell types. The percentage of cells with higher SI in scREG is labeled top of the figures. Color 
of dots represent true label of cells as shown in Fig. 3B. C Comparison of SI values from 7 different methods in 
some cell types. cells achieve higher SI values when using scREG
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Seurat perform a joint analysis of the two types of data and output one clustering label. 
Figure 3A and Additional file 1: Fig. S2A show the UMAP and inferred clustering labels 
from each of the five methods. Figure 3B and Additional file 1: Fig. S2B show the cor-
responding UMAPs colored by the surrogate ground truth labels. From the clustering 
and Umap visualization, we see the scREG gives a consistent label with the surrogate 
ground truth while alternative methods have obvious misclassification. The naive CD4 
T cells and the naive CD8 T cells are not separated in Cell Ranger RNA-seq cluster-
ing but separated in Cell Ranger ATAC-seq clustering and the joint clustering methods 
scREG and Seurat. The non-classical monocytes and the myeloid DC are not separated 
in both RNA-seq and ATAC-seq clustering but separated in the three joint clustering 

Fig. 3  Evaluation of the performance of cell clustering. A Scatter plot visualize the Umap embedding 
colored by clustering label from different methods including Cell Ranger on gene expression, Cell Ranger 
on chromatin accessibility, Seurat V4, intNMF, and scREG. B Same Umap as shown in A but colored by the 
surrogate ground truth. We see Cell Ranger RNA-seq did not distinguish naive CD4 T cells from the naive 
CD8 T cells, and CD56 (dim) NK cells from the effector CD8 T cells. ATAC-seq failed to separate non-classical 
monocytes and the myeloid DC, while scREG separates them clearly. In Seurat, the boundary between 
memory B cells and naïve B cells is shifted so a large proportion of memory B cells are labeled as naïve B 
cells. Clustering performance also assessed by calculating normalized mutual information (NMI) and adjusted 
Rand index (ARI) based on the surrogate ground truth. C–E scREG clusterings on 10X multiome data from 
human cerebellum, mouse E18 brain, and lymph node from B cell lymphoma. The clustering results are 
consistent with the known cell types and marker genes’ expression. F The comparison of scREG with Seurat 
by four different clustering evaluation metrics on three datasets. The distance among cells are calculated 
as Euclidean distance on the top 20 principal components of gene expression and chromatin accessibility, 
respectively. X axis represents the metric calculated based on Seurat clustering label, and Y axis represent that 
from scREG clustering. Colors represent different data sets and shape represents different data type (triangle 
for scRNA-seq and diamond for scATAC-seq). A lower Davies-Bouldin index indicate better clustering, but the 
other three metrics are the higher the better. The scREG perform better for all case than the Seurat
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methods. Memory B cells and naïve B cells are separated clearly in ATAC-seq clustering, 
but the boundary is not clear in RNA-seq clustering. In Seurat, the boundary between 
memory B cells and naïve B cells is shifted so a large proportion of memory B cells are 
labeled as naïve B cells. In scAI clustering, there is a subpopulation that is a mixture of 
naive CD4 T cells, naive CD8 T cells, and memory CD4 T cells. Memory B cells and 
naïve B cells are not separated in MOFA+ clustering. These two cell types are separated 
clearly in scREG_baseline and scREG. To evaluate the clustering results systematically, 
we calculate the normalized mutual information (NMI) and adjusted Rand index (ARI) 
based on the surrogate ground truth. It is seen that scREG achieves the highest NMI and 
ARI compared to other methods. It is worth to notice that all the clustering methods are 
compared under their default resolution parameter setting, which is 0.8 for Seurat and 
1 for all other methods. As clustering accuracy is highly affected by the resolution pro-
vided to Louvain clustering, we also compared the clustering performance of these five 
methods under different resolutions ranging from 0.2 to 2.0 (Additional file 1: Fig. S3). 
The scREG performs very robust under different resolution parameters and achieve the 
highest performance among all the method we compared.

We also use scREG and alternative methods on 10X multiome data from the human 
cerebellum, mouse E18 brain, and lymph node from B cell lymphoma (Fig. 3C–E). The 
clusters from scREG are consistent with the known marker genes’ expression (Addi-
tional file 1: Fig. S4-S6). As ground truth labels are not available for these data, we use an 
adjusted internal clustering evaluation to compare the clustering of scREG with Seurat. 
It is not fair to compare scREG clustering with Seurat clustering by calculating internal 
clustering evaluation metrics. The reason is that, when ground truth is not available, the 
internal clustering evaluation metrics calculated on different distance matrices are not 
comparable. This is an underappreciated statistical issue, so we generate two artificial 
examples to illustrate this (please see Additional file 2 for more detail). From example 
1, we see the silhouette index is increased but the real clustering accuracy is decreased. 
This is because internal clustering evaluation metrics are designed for the comparison 
of different clustering methods (or different parameters) based on the same cell-cell 
distance matrix. Since internal clustering evaluation has to be performed on the same 
distance matrix, we have to choose a common embedding space to compare two cluster-
ings. Here, we use the top 20 principal components (PCs) of scRNA-seq and scATAC-
seq to calculate the cell-cell distance. For a given clustering, we can say it is a good 
clustering if cells with the same labels are close to each other in both modalities; we say it 
is a bad clustering if cells with the same labels are not close to each other in any modali-
ties. Example 2 in the Additional file 2 has illustrated this. It is possible that method A is 
better than method B on one modality but worse in the other modality. In this case, we 
cannot evaluate these two methods. For each clustering method, we compute four dif-
ferent clustering evaluation metrics based on top 20 PCs of scRNA-seq and scATAC-seq 
on the three datasets (Additional file 1: Fig. S7-S9). Figure 3F shows the comparison of 
scREG with Seurat. It shows scREG performs better than Seurat for most cases.

We also tested our method on the bone marrow mononuclear cells data from the 
NeurIPS competition [38]. which include 22,463 cells with known cell labels. Addi-
tional file 1: Fig. S10 shows the clustering and 2D embedding results and comparison 
with Seurat. The clustering of scREG is more consistent with the ground truth label and 
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achieves 0.7649 in NMI and 0.6549 in ARI, which are higher than Seurat (NMI = 0.7409, 
ARI = 0.5419). Overall, scREG identifies cell populations with high accuracy on different 
datasets.

scREG constructs subpopulation specific cis‑regulatory networks

To assess the cis-regulatory network inference of our method, we evaluate the predic-
tions in several cell populations where experimental cis-regulation is available. First, we 
download variant-gene links defined by the expression quantitative trait loci (eQTL) of 
CD14 positive monocyte cells [39] and use them to validate the RE-TG prediction of 
classical monocyte clusters. For each peak-gene pair in the cis-regulatory potential R 
matrix, we have a predicted cis-regulatory score in each cluster. Taking the eQTL data as 
ground truth, we plot the receiver operating characteristic (ROC) curve and precision-
recall (PR) curve by sliding the cis-regulatory score (Fig. 4A, B). As a baseline method for 
comparison, we calculate the Pearson correlation coefficient (PCC) between the expres-
sion of a gene and the accessibility of peak within 1 Mb of the gene’s transcriptional start 
site. Our method achieves 0.81 area under the ROC (AUROC) curve and 0.46 area under 
the PR (AUPR) curve, while the AUROC and AUPR of the baseline method are 0.56 and 

Fig. 4  Validate the RE-TG prediction. A, B Receiver operating characteristic (ROC) curve and precision-recall 
(PR) curve by taking the eQTL data of CD14 positive monocyte cells as ground truth to validate the prediction 
of scREG. Curves were plotted by sliding the predicted cis- regulatory score of 100,000 peak-gene pairs. As 
an alternative method, the Pearson correlation coefficient (PCC) between the expression of a gene and the 
accessibility of peaks within 1 Mb of the gene’s transcriptional start site was calculated. We can see scREG 
prediction achieves 0.81 area under the ROC (AUROC) curve and 0.46 area under the PR (AUPR) curve, which 
are much higher than that from PCC (0.56 and 0.25 respectively). C Comparison of the precision of scREG 
with random selections. Ratio of consistency (precision) was the percentage of RE-TG pairs validated by eQTL 
for those REs that linked to at least one gene in eQTL. Red line represents the ratio of consistency of scREG, 
the blue distribution represents that from 1000 random selection of peak-gene pairs in 1 Mb distance, and 
the orange distribution represents that from 1000 random selection of peak-gene pairs but restricting the 
distribution of distance between peak to genes is the same as the scREG predictions. D Validation of RE-TG 
prediction by HiC data on Naïve CD4 T cell. All metrics are calculated same as in C but replacing the eQTL by 
HiC
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0.25, respectively. Our method identified 9067 REs in classical monocyte subpopula-
tions, and 1998 of them overlapped with eQTL variants. For those REs that overlapped 
with eQTL variants, 53.25% of our predictions are connecting them to the same genes as 
eQTL (Fig. 4C). If we randomly select genes from a 1 Mb distance, this percentage would 
be 3.26% (16.33-fold), and it would be increased to 18.31% (2.91-fold) if we force the 
selected peak-gene to have the same distance distribution with our predictions.

Next, we use promoter capture HiC data to validate our predictions. We downloaded 
the promoter capture HiC data of 7 primary blood cell types [40] and compare them 
with the cis-regulatory networks for the corresponding cell types that we inferred 
from the PBMC data. Figure 4D and Additional file 1: Fig. S11 shows the precision of 
our method is 2-fold higher than the randomly selected peak-genes pairs which have 
the same distance distribution as our predictions. Additional file 1: Fig. S12 shows our 
method achieves much higher AUROC and AUPR than PCC. The strong performance in 
the peak-gene link suggests that scREG is effective in inferring regulatory relations.

The cis-regulatory networks are highly cell-type-specific. Additional file  1: Fig. S13 
shows the Jaccard similarity of clusters in terms of cis-regulation. The average Jaccard 
similarity between clusters is 0.4760. Hierarchical clustering analysis shows similar cell 
types have a similar cis-regulatory network. For example, the average similarity between 
four T cell clusters is 0.7783, and group to one cluster; the similarity of two B cell sub-
populations is 0.79; the similarity of two NK cell subpopulations is 0.79; similarity of two 
monocytes subpopulation is 0.64.

scREG shed light on the interpretation of disease‑associated loci

The cis-regulatory network inferred from single cell multiome data may provide new 
insights for the interpretation of disease-associated loci. To demonstrate this, we down-
load 376 fine mapped variants with a posterior inclusion probability greater than 0.1 for 
inflammatory bowel disease (IBD) [41, 42]. These fine-mapped GWAS variants showed 
high enrichment (odds ratio in the range of 9.56 to 27.45) in REs from subpopulations of 
PBMC data (Fig. 5A, see the “Enrichment of GWAS variants” section) [43]. As a baseline 
for comparison, we use all peaks from each subpopulation to do the same analysis. As a 
result, the enrichment odd ratios from all peaks are 1.14-3.02 fold (on average 1.82-fold) 
lower than the peaks from our networks. These results show that the context specific 
regulatory network from scREG could improve the interpretation of the disease-associ-
ated loci.

The cis-regulatory networks produced by scREG connect 34 fine-mapping variants to 
32 genes in 12 cellular contexts. These 32 genes include three transcription factors IRF4, 
IRF8, and CEBPB. Variants rs913678, rs4811031, and rs6063502 are linked to CEBPB 
in non-classical monocytes; variant rs6935510 in chr6 is linked to IRF4, and variant 
rs11640143 in chr16 is linked to IRF8 in plasmacytoid dendritic cells. Our scREG pack-
age has an interactive visualization function that takes the genomics region as input 
and plots the genes, peaks, and interactions in the given range. It includes the genes, 
the raw peaks from all cells (before clustering), peaks of each cluster from MACS2, and 
the predicted peak-gene association in each cluster. Figure 5B shows the track of around 
the variant rs11640143 and IRF8. The variant rs11640143 is in an accessible region in 
myeloid DC, memory B cell, naïve B cell, and plasmacytoid DC cells (highlighted blue in 
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Fig. 5B). The regulatory element that contains this variant is predicted to regulate IRF8 
only in the scREG generated a cis-regulatory network of plasmacytoid DC cells. It also 
shows that the cluster level peaks are narrower than the raw peaks and multiple cluster-
level peaks are merged into one raw peak (highlighted yellow in Fig. 5B). The interactive 
visualization function will help users understand the regulatory relations in a cell type-
specific manner.

To further investigate the roles of these transcription factors in IBD, we modify our 
previous PECA2 method to infer their trans-regulatory target genes (see the “Inference 
of trans-regulatory targets” section) in each subpopulation. We download the differen-
tial expression genes list from IBD patients versus healthy controls study [44] for further 

Fig. 5  scREG interprets disease associated loci. A Comparison of the enrichment of fine-mapped GWAS 
variants of IBD disease in the scREG predicted regulatory elements (red) against that in all peaks (blue) 
called by MACS2 in each subpopulations. B Interactive visualization function of scREG package. scREG will 
plot genes, the raw peaks from all cells, peaks of each cluster, and the predicted peak-gene association in 
each cluster. Figure shows the track around the variant rs11640143 and gene IRF8. The highlighted blue 
bar represents the location of REs that contain the variant rs11640143, and the yellow bar represents one 
example of different cluster-level-peaks are merged into one in the raw peak calling before clustering. 
C, D Comparison of the three TFs (IRF4, IRF8, and CEBPB) target genes with the upregulated genes and 
downregulated genes in IBD patients. The p-value and odd ratio are calculated based on Fisher’s exact test
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analysis. First, we find the TF IRF4 is upregulated in IBD patients compared to healthy 
controls (two samples two-tail t-test, p-value = 7.59E−31). Next, we compare differential 
expressed genes with the target genes of the three TFs (Fig. 5C, D). Target genes of IRF4 
and IRF8 in plasmacytoid dendritic cells are 2.88 and 2.80 fold enriched (odds ratio) in 
the upregulated genes in IBD (Fisher’s exact test, p-value 7.97E−32, and 7.76E−31). Tar-
get genes’ of CEBPB in non-classical monocytes are 3.17-fold enriched in the IBD upreg-
ulated genes (Fisher’s exact test, p-value 1.51E−31). Interestingly, downregulated genes 
in IBD are depleted in the IRF4, IRF8, and CEBPB’s target genes (Odds ratios are 0.45, 
0.44, and 0.55, p-values are 5.61E−06, 2.03E−06, and 0.0037). Overall, scREG is a useful 
tool for the interpretation of disease-associated loci.

Discussion
Our method scREG uses a different strategy from Seurat V4 [18] to integrate the two 
types of data. In Seurat, the analysis consists of three main steps: (1) perform dimension 
reduction of each type of data separately, (2) calculate the distance matrix for each type 
of data based on the corresponding reduced dimension representation, and (3) merge 
the expression-based distance and the accessibility-based distance matrix into a single 
distance matrix via a weighted-nearest neighbor computation. In scREG, the dimen-
sion reduction is obtained through a joint optimization based on both types of data. One 
advantage of such analysis is that the integration of information from both types of data 
for dimension reduction allows us to make use of the multi-omics nature of the data to 
capture the real signal in an earlier stage of the analysis. The second advantage is that it 
provides a good input for those powerful existing methods [17, 45] to perform compre-
hensive analyses such as trajectory/pseudotime analysis. Last, we discuss the limitation 
of our analysis. To evaluate scREG method, we use the manually annotated cell labels. 
There is no guarantee that this label is 100% correct so that it may affect the results.

Conclusions
In this paper, we proposed a computational method and developed an R package for 
the comprehensive analysis of single cell multiome gene expression and chromatin 
accessibility data. To analyze this type of bi-modality data, we propose a joint dimen-
sion reduction method. The reduced dimension representation is used for subpopula-
tion identification and 2D embedding. Test results on four different datasets suggest that 
scREG is a useful and robust tool for cell population identification. The cis-regulatory 
potential defined in this paper provides direct information on subpopulation-specific 
regulatory networks. Validation of these networks was obtained by comparison with 
eQTL and 3D chromosome contact data. Finally, we applied our method to interpret the 
disease-associated loci of IBD and identified three key regulators.

Methods
Joint dimension reduction

Here, we introduce a dimension reduction method of single cell multiome data. The 
inputs are scATAC-seq data log2(1 + x) transformed count matrix O (p1 regions by n cells 
matrix) and scRNA-seq data log2(1 + x) transformed count matrix E (p2 genes by n cells 
matrix). The cis-regulatory information could be learned from the co-expression pattern 
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of RE accessibility and gene expression. This regulatory information is not included in 
either scRNA-seq or scATAC-seq, so it should be used for dimension reduction. First, 
we define a cell-level cis-regulatory potential Rijc for the ith RE and the jth TG in the cth 
cell as the sum of gene expression and RE accessibility weighted by a distance function 
Rijc =

(

Oic + Ejc
)

e−dij/d0 , where Oic represents the accessibility of the ith RE in the cth cell, 
Ejc represents the expression of jth TG in the cth cell, dij represents the distance of ith RE 
to the jth TG, and the base parameter d0 reflects the scale over which the weight decreases 
with distance (default value is 200 kb). To decrease the number of RE-TG pairs in the R 
matrix, we only consider RE-TG pairs with strong associations. Specifically, for a given 
RE-TG pair, we divide the cells into two groups based on the accessibility of the RE (zero v.s. 
non-zero) and perform a two-sample t-test. We select the top 10,000 RE-TG pairs based on 
the absolute value of the t statistics. After we obtain the R matrix, we do a term frequency-
inverse document frequency transformation for the binarized O matrix [46]. We first calcu-
late a log-scaled “term frequency” by dividing the accessibility of each cell by log(1 + total 
number of peaks accessible in the cell). We then multiplied the log-scaled “term frequency” 
by log scale “inverse document frequency”, which is a peak-level index and calculated as 
log(1 + total number of cell/total number of cells in which the peak is accessible);

We do joint dimension reduction by an NMF-based optimization model. A dimension 
reduction of scATAC-seq can be obtained from a nonnegative matrix factorization O=W1H as 
follows: the ith column of W1 gives the ith base vector, while the jth column of H gives the low 
dimensional representation of the jth cell. Similarly, the dimension reduction of the scRNA-seq 
and cis-regulatory potential can be obtained from the factorizations E = W2H and R = W3H. 
These factorizations are obtained by solving the following optimization problem:

There are three tuning parameters: λ1, λ2, and dimension of the H matrix K. We design an 
algorithm for this optimization problem.
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The model is not too sensitive to the parameter K, so we can treat it as a fixed parame-
ter, and the default value is 100. To choose the two tuning parameters λ1and λ2, we intro-
duce two interpretable parameters α and β.

where W10, W20, W30 are the solution of standard NMF after normalizing the square sum 
of H matrix to 1; Parameter α and β are non-negative and reflect the ratio of regula-
tory potential and expression compared to chromatin accessibility; The default value of 
parameter α and β is 1, which means we treat gene expression, chromatin accessibility, 
and the regulatory potential are equally important.

To test the effectiveness of the cis-regulatory potential term, we build a baseline 
model. We use the same strategy as described above to choose the tuning parameter λ1. 
This model has the same objective function as intNMF [35]. Thus, we call this baseline 
method as intNMF. Please note that we use the same preprocessing and parameter selec-
tion strategy with scREG rather the strategies suggested in the intNMF paper.

Clustering of cells

First, we calculate a cosine similarity between each pair of cells based on the reduced 
dimension matrix H. It is hard to detect the rare populations based on this similarity 
matrix because (1) rare populations have a small proportion in the total cost and (2) 
the noise would spuriously link unrelated parts of the graph. To increase the weight of 
the rare population and to denoise the similarity matrix, we refine the similarity of cells 
based on their shared nearest neighbors. Specifically, we extract the nearest C neighbors 
for each cell and calculate the Jaccard index for each pair of cells based on their nearest 
C neighbors. The Jaccard index uses the local density at each cell to remove spurious 
edges and strengthen well-supported pairs [47]. Here, the default value of C is the square 
root of the number of cells. We cluster the cells based on the Louvain algorithm [37]. 
To test the usefulness of the cis-regulatory term, we use the same clustering method as 
scREG on the H matrix from intNMF method to cluster the cell.

Construction of the cis‑regulatory networks

The W3 matrix reflects the regulatory activity of RE-TG pairs on each of the K dimensions. 
Note that the number of dimension K is different from the number of clusters. To extract the 
cis-regulatory score (CRS) of each cluster, we multiply W3 by cluster means of the H matrix.
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where h represents the cluster mean profile of the H matrix. The CRSijk represent the 
cis-regulatory score of ith TF and jth TG on kth cluster. Since the CRS is computed on 
predefined RE-TG pairs which have correlation across cells, a higher CRS in a subpop-
ulation indicates a potential cis-regulation. For each cluster, we output the top 10,000 
RE-TG pairs as the cis-regulatory network. The REs used in this network are peaks called 
from all merged cells. To increase the sensitivity, we merge the cells from the same clus-
ter and call peaks by MACS 2[48]. We overlap the MACS2 peaks with the RE-TG pairs 
from scREG to obtain more accurate cis-regulatory networks.

Joint embedding of scRNA‑seq and scATAC‑seq

Our method does linear transformations for scATAC-seq and scRNA-seq to get the H 
matrix, which is in a common K dimension space. Based on the normalized (column 
square sum to one) H matrix, we use cosine distance and reduce them from K dimen-
sions to two dimensions by tSNE and UMAP.

Model parameters

We have several parameters for scREG package, and all of them have default values. For 
all analysis in this manuscript, we use the default parameters. The number of RE-TG 
pairs used for the construction of the R matrix has a default value of 10000. The dimen-
sion of the H matrix has default value of 100. The hyper parameters α and β have default 
value of 1. Parameter C, the number of nearest neighbors used in the clustering analysis, 
has default value of square root of number of cells. For scAI method, we use following 
parameters “K = 100, nrun = 1, do.fast = T.” Here, we use 100 dimensions to make it con-
sistent with the other methods. For MOFA+ analysis, we followed the tutorial of MOFA 
website https://​raw.​githa​ck.​com/​bioFAM/​MOFA2_​tutor​ials/​master/​R_​tutor​ials/​10x_​
scRNA_​scATAC.​html. Only difference is that we set K = 100 to make it consistent with 
other methods. For Seurat, we follow the tutorial of Seurat website https://​satij​alab.​org/​
seurat/​artic​les/​weigh​ted_​neare​st_​neigh​bor_​analy​sis.​html.

Evaluation metrics

To evaluate the dimension reduction, we use silhouette index [49] for 14-dimension 
matrix for PBMC data. For PCA and LSA, we directly reduce the dimension to 14. For 
scAI, MOFA, and scREG, we reduce dimension to 100 and further reduce it to 14 by 
PCA. For clustering evaluation, we use NMI [50] and ARI [51] to compare the cluster-
ing label and ground truth. For internal clustering evaluation, we use Callnski-Harabasz 
index [52], Davies-Bouldln index [53], Silhouette index, and Modularity Q [54]. The 
inputs are clustering label and cell-cell distance matrix (calculated on the 2D embedding 
or top 20 PCs) on gene expression or chromatin accessibility.

PBMC 10 K data

We download the PBMC 10 K data from the 10X genomics website https://​suppo​rt.​10xge​
nomics.​com/​single-​cell-​multi​ome-​atac-​gex/​datas​ets. Note that it contains 11,909 cells, and 

https://raw.githack.com/bioFAM/MOFA2_tutorials/master/R_tutorials/10x_scRNA_scATAC.html
https://raw.githack.com/bioFAM/MOFA2_tutorials/master/R_tutorials/10x_scRNA_scATAC.html
https://satijalab.org/seurat/articles/weighted_nearest_neighbor_analysis.html
https://satijalab.org/seurat/articles/weighted_nearest_neighbor_analysis.html
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
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the granulocytes were removed by cell sorting of this dataset. We use the filtered cells by 
features matrix from the output of 10X genomics software Cell Ranger ARC as input and 
perform the downstream analysis. First, we perform Seurat 4.0 weighted nearest neighbor 
(WNN) analysis [18], and it removes 1497 cells. We also remove the cells that don’t have 
surrogate ground truth [34], and it results in 9543 cells.

Enrichment of GWAS variants

To perform the enrichment analysis, we divide variants into four groups (2×2) based on 
two categories: significant or not significant, and located in regulatory element or not. Total 
variants used here consist of significant variants and background variants. The 10 mil-
lion background variants are downloaded from the stratified linkage disequilibrium score 
regression (S-LDSC) website [43], which is defined as variants in the 1000 Genomes Pro-
ject with minor allele count > 5 in 379 European samples. We calculate the odds ratios of 
enrichment based on the 2×2 table.

Inference of trans‑regulatory targets

Our previous method PECA takes paired expression and chromatin accessibility data 
across diverse cellular contexts as input, models how trans- and cis-regulatory elements 
work together to affect gene expression in a context-specific manner, and output the 
transcriptional regulatory network with TF-RE-TG as the building block [55]. PECA2 
aims to infer the regulatory network in a new cellular context different from those used 
in training the model by selecting active REs, specifically expressed TFs and expressed 
TGs in this context [36]. The trans-regulation score (TRS) between given ith TF and jth 
TG is defined as follows.

where Bik is motif binding strength of ith TF on kth RE, which is defined as the sum of 
binding strength (motif position weight matrix-based log-odds probabilities, see 
HOMER software for detail) of all of the binding sites on this RE; 

∼

REk represent the nor-
malized accessibility ( REk ×

REk
median(REk )

 ) of kth RE. The first term REk represents the 
actual accessibility of the RE, and the second term represents relative accessibility com-
pared to the median accessibility level of this RE on external data. If one RE is accessible 
in the given cellular context, and the accessibility is also much higher than the accessibil-
ity level on other contexts, then this RE is specifically accessible in given cellular context; 
Ikj represents the interaction strength between kth RE and jth TG, which is the CRS 
score between kth RE and jth TG in this paper. 

∼

TGj and 
∼

TFi represents the normalized 
expression level of jth TG ( TGj ×

TGj

median(TGj)
 ) and ith TF respectively. Rij is the expres-

sion correlation of ith TF and jth TG across diverse cellular contexts. Higher regulation 
score TRSij implies jth TG is more likely to be regulated by ith TF.
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