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Metabolic plasticity and ferroptosis are essential for colorectal cancer (CRC) progression. The effects 
and prognostic value of metabolic plasticity- and ferroptosis-related genes (MPFRGs) in CRC remain 
unclear. We established a prognostic model for CRC patients by identifying important genes in 
metabolic plasticity and ferroptosis. Data of CRC patients were retrieved from The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus; MPFRG data were obtained from GeneCards and FerrDb. 
We performed functional (to explore differences between the two metabolic subtypes) and single-
sample gene set (to assess the immune environment) enrichment analyses. Immunophenotype, 
tumor immunological dysfunction, and exclusion scores were assessed to determine patient immune 
responses. A least absolute shrinkage and selection operator-Cox regression model comprising 10 
significant differentially expressed genes of metabolic plasticity and ferroptosis (MPFDEGs) was 
constructed using TCGA training cohort and validated using the GSE17536 and GSE39582 datasets. We 
established a nomogram comprising metabolic plasticity- and ferroptosis-based signatures, revealing 
the clinical application and potential molecular mechanisms underlying the role of MPFRGs in CRC. Our 
model (developed based on 10 MPFDEGs) is efficient for calculating the overall survival of CRC patients. 
Our findings provide new strategies for the clinical management and individualized treatment of these 
patients.
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Colorectal cancer (CRC) is the most common malignancy of the digestive system1. The prognosis of this tumor 
is poor, and its pathogenesis remains unclear. Treatment can be tailored to individual patients to reliably identify 
the risk of progression among those with CRC. The effectiveness of CRC-specific prognostic models, constructed 
based on multiple gene expression, has been demonstrated in previous studies2–4. Each step in cancer progression 
requires tumor cells to reprogram their metabolic state. When survival microenvironments are threatened, 
tumor cells genetically regulate and alter their metabolic pathways to adapt to harsh environments. This process 
is called metabolic plasticity5. Metabolic plasticity is a hallmark of cancer6. The metabolic plasticity of tumor 
cells is mediated by oncogenes and tumor suppressors, which are involved in signaling pathways and are crucial 
influencing molecules that activate aerobic glycolysis or lipid metabolism7. Oncogene activation can impact 
several metabolic plasticity-related genes (MRGs), such as c-MYC, which activates many aerobic glycolytic 
enzyme genes, promoting oxidative phosphorylation. Another oncogene, AKT, directly promotes oxidative 
phosphorylation and glycolytic uncoupling reactions by upregulating the genes encoding aerobic glycolytic 
enzymes8,9. Metabolic plasticity includes lipid metabolism, which is vital in tumor invasion and metastasis10,11. 
As the tumor immune microenvironment markedly influences tumor development and treatment outcomes, 
metabolic plasticity is closely associated with it12. Metabolic plasticity influences T-cell differentiation and 
function and macrophage polarization and function in the tumor microenvironment13. The emergence of new 
drug resistance mechanisms in tumors may be related to abnormal lipid metabolism remodeling14. Recent 
studies have explored the relationship between metabolic plasticity and patient survival4,8,9,15. Furthermore, 
multi-model risk assessments based on MRGs have been used for gastric cancer16, CRC17, and osteosarcoma18. 
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Therefore, MRGs can be used as diagnostic markers and therapeutic targets. However, whether metabolic 
plasticity functions as a diagnostic, therapeutic, or prognostic tool for CRC remains unknown.

Ferroptosis, a newly discovered mode of cellular autophagy, is caused by lipid peroxide overload on cellular 
membranes19. It is closely associated with tumor initiation and development and various cellular processes, 
such as redox homeostasis maintenance, iron treatment, sugar and lipid metabolisms, and mitochondrial 
activity20. In addition, multiple tumor suppressors, such as p53 and BRCA1-associated protein 1 (BAP1), are 
affected by ferroptosis, confirming that ferroptosis inherently hinders cancer progression21. In treatment-
resistant tumor cells, metabolic plasticity and ferroptosis occur frequently. Thus, the induction and inhibition 
of ferroptosis and the regulatory pathways of cell metabolism are significant in treating patients with drug-
resistant cancers22. Metabolic plasticity and ferroptosis are associated with therapeutic immunity13,23. Blocking 
immune checkpoints has recently been reported as an effective anticancer treatment approach24. Studies on CRC 
based on metabolic plasticity and ferroptosis have significant clinical applications and therapeutic prospects. 
However, the effects and prognostic value of metabolic plasticity- and ferroptosis-related genes (MPFRGs) 
in CRC remain unexplored. In this study, we aimed to investigate the relationship among CRC, metabolic 
plasticity, and ferroptosis to better understand the underlying mechanisms of and improve the effectiveness 
of individual treatments for CRC. Although studies have discussed the prognosis of patients with colon and 
rectal adenocarcinoma (COADREAD) using gene expression and clinical features, a comprehensive risk-scoring 
model is lacking for MPFRGs. In this study, least absolute shrinkage and selection operator (LASSO) regression 
model and multivariate Cox regression analysis were used to screen related genes, and the performance of the 
model was evaluated using a calibration curve and receiver operating characteristic curve, aiming to build a risk-
scoring model based on MPFRGs to predict the prognosis of COADREAD patients and evaluate their response 
to immunotherapy through risk scoring.

Results
Impact of MPFRGs on CRC in the cancer genome atlas (TCGA)-CRC that includes a 
COADREAD dataset
First, CRC-related genes were obtained from TCGA database, MPFDEGs were screened through differential 
expression analysis, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses 
were performed. The prognostic model of CRC was constructed and divided into two subgroups. Subsequently, 
the correlation between this model and immune infiltration and clinical features was determined; the specific 
flowchart of this process is shown in Fig. S1. Further, mRNA expression analyses in normal and cancer samples 
from TCGA-COADREAD indicated that over 70% of the MPFRGs exhibited significant differences (p < 0.05) 
between the two categories (Fig. 1a). Analyses involving volcano plots and heatmaps revealed a considerable 
disparity in the MPFRGs between the COADREAD and normal cohorts, indicating low glutathione S-transferase 
M1 (GSTM1) expression and high interleukin 1B (IL1B) expression in the COADREAD group (Fig. 1b, c). Single-
nucleotide mutation analysis showed that MPFRGs were mutated in 317 samples, with a mutation frequency of 
70.76%, with 62% being the maximum mutation rate in the TP53 gene (Fig. 1d). We downloaded the data of 
“Masked Copy Number Segment” from TCGA database using TCGAbiolinks package and collected the copy 
number variation data of 611 patients with COADREAD. Then, we used the ggplot2 package in R to visually 
analyze these data. During the analysis, we counted the gain and loss of gene copy number in each sample and 
drew the corresponding frequency distribution map. The results show that there are changes in copy number in 
most samples, mainly focusing on the loss of copy number (Fig. 1e). Finally, we analyzed the positions of the 11 
MPFRGs on human chromosomes and drew chromosomal localization maps (Fig. 1f).

Construction of molecular subtypes of MPFRGs in TCGA-COADREAD dataset
A correlation heatmap showed a positive correlation among most MPFRGs (Fig. 2a). IL6 exhibited a significantly 
positive correlation with IL1 (Fig. 2b), whereas PTEN showed a significantly negative correlation with G6PD 
(Fig.  2c). We used a consensus clustering technique to group the specimens of all patients with TCGA-
COADREAD according to the expression patterns of the 11 MPFRGs (Fig. 2d, e). Accordingly, we clustered 
all samples into two categories and performed a prognostic analysis. Survival was significantly different in both 
subtypes (log-rank p = 0.022; Fig.  2f), demonstrating the accuracy of the clustering results. The differential 
expression box diagram of MPFRGs showed that, excluding PPARA and G6PD, other MPFRGs showed 
significant differences in expression among different groups (Fig.  2g, h). HIF1A, IL6, and IL1B were highly 
expressed in the C2 class with a good prognosis; however, they showed low expression in the C1 class with a 
poor prognosis.

Gene set variation analysis (GSVA) of the MPFRG model in TCGA-COADREAD dataset
GSVA was used to analyze the expression profiles of the two subtypes for hallmark gene set enrichment (Fig. 3a, 
Supplementary Table S1). The ggplot function in R was used to plot the proportion of disease locations in the 
different MPFRG molecular subtypes. C2, with a better prognosis, accounted for more tumors in the colon than 
in the rectum (C2: 29.4% in the colon and 25.0% in the rectum; Fig. 3b). Subsequently, using the ggplot function 
in R, a boxplot of differences in the body mass index (BMI) among MPFRG molecular subtypes was plotted. 
Patients in C1 with a negative prognosis showed significantly elevated BMI compared with those in C2 with a 
positive prognosis (p = 0.015; Fig. 3c). A Sankey diagram was created using the R ggalluvial package to illustrate 
the correlation among staging, MPFRG molecular subtypes, and N staging (Fig. 3d). The results showed that 
most patients at the C2 stage with good prognosis were in stages I, II, and III and the N0 stage with good 
prognosis; most of the N1 and N2 stage patients with poor prognosis were included in the C1 stage.
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Functional enrichment analysis of MPFDEG subtypes in TCGA-COADREAD
In patients with CRC, we identified 850 significant MPFDEGs (Supplementary Table S2). Unsupervised clustering 
was performed on all patient samples using a consistent clustering algorithm. These two clusters produced the 
best clustering effect (Fig. 4a). Subsequently, we performed a prognostic evaluation of the two sample types. 
We observed a significant variation in survival rates between the two categories (log-rank p = 0.019; Fig. 4b), 
validating the accuracy of the clustering results. Based on GO and KEGG functional enrichment analyses, 850 
MPFDEGs were identified. The results showed that the primary biological processes were “leukocyte migration”, 
“leukocyte cell-cell adhesion”, “cell chemotaxis”, “myeloid leukocyte migration”, “leukocyte chemotaxis”, and 
“regulation of cell-cell adhesion” (Fig. 4c); the major cellular component included “membrane microdomain”, 
“endocytic vessel”, “collagen trimer”, “endoplasmic reticulum lumen”, tertiary granule”, and “membrane raft” 
(Fig.  4d); enrichment of molecular function terms was observed in “cytokine binding”, “glycosaminoglycan 

Fig. 1. Impact of metabolic plasticity- and ferroptosis-related genes (MPFRGs) on colorectal cancer (CRC) 
in The Cancer Genome Atlas (TCGA)-colon and rectal adenocarcinoma (COADREAD) dataset (a) mRNA 
levels in normal and cancer samples are compared using TCGA-COADREAD data. (b,c) The heat map and 
volcano plots of MPFRGs; (c) Single-nucleotide mutations of MPFRGs. (d–f) Genetic mutation landscape in 
the normal and CRC groups. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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binding”, “growth factor binding”, “cytokine receptor binding”, “cytokine activity”, and “collagen binding” 
(Fig. 4e; Table 1). The pathway enrichment analysis of MPFDEGs showed enrichment in KEGG pathways, such 
as viral protein interaction with cytosine and cytosine receptors, phagosome, Staphylococcus aureus infection, 
leishmaniasis, osteoclast differentiation, and chemokine (Fig. 4f; Table 2), PI3K-Akt (Fig. 4g), and tumor necrosis 
factor (TNF) signaling pathways (Fig. 4h). Correlation analysis showed the age and sex proportion of individuals 
with different MPFDEG subtypes (Fig. 4i, j). Among individuals aged ≤ 67 years, the proportion of G1 with 
better survival was higher than that of G2 with worse survival. Among individuals aged ≤ 67 years, a greater 
percentage of G1 indicated a more favorable prognosis than that in those aged > 67 years; the proportion of G1 
with a better outlook was higher in women than in men. A Sankey diagram was drawn using the R ggalluvial 
function to illustrate the correlation among N staging, MPFDEG molecular subtypes, and stages (Fig.  4k). 
Most G1 patients with good prognosis were at the N0 stage, whereas most stages III and IV patients with poor 
prognosis were included in the G2 group with poor prognosis.

Fig. 2. Construction of molecular subtypes of metabolic plasticity- and ferroptosis-related genes (MPFRGs) in 
the cancer genome atlas (TCGA)-colon and rectal adenocarcinoma (COADREAD) dataset. (a) The correlation 
between MPFRGs: Positively correlated genes (b) and negatively associated genes (c). (d) A consensus 
cumulative distribution function (CDF) plot and consensus index for k = 2 to 8. (e) Consensus matrix 
heatmap of two subtypes (k = 2). (f,g) Survival analysis of two subtypes of samples (f); box plots of differential 
expression of MPFRGs among different groups (g). (h) Consensus matrix heatmap includes age, group, and 
TNM. *p < 0.05, **p < 0.01, ****p < 0.0001, ns: non-statistically significant.
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Construction of the MPFDEG model and gene set enrichment analysis (GSEA) using TCGA-
COADREAD dataset
A risk assessment model was developed using the expression levels of 850 MPFDEGs. First, singlE−factor Cox 
regression was used to screen 850 MPFDEGs from TCGA-COADREAD dataset, retaining 34 genes at < 0.1 for 
subsequent analyses (Fig. 5a, Supplementary Table S3). The optimal lambda value was determined and validated 
through a ten-fold cross-validation, prompting further analyses of 19 genes (Fig. 5b). In the stepwise regression 
analysis, the best combination of 19 genes was identified through multivariate Cox regression analysis, with a 
model constructed using 10 genes (Fig. 5c).

To confirm the efficacy of the developed model, TCGA-COADREAD training set patients were separated 
into high- and low-risk groups using a risk score cutoff value of 1.974474. Survival analysis in the TCGA dataset 
showed that the individuals classified as low-risk had notably longer survival periods than those classified as 
high-risk (p < 0.0001; Fig. 5d). Subsequently, the cutoffs of the risk score (GSE17536: -0.7467838; GSE39582: 
-0.3060653) were used to divide the validation sets of GSE17536 and GSE39582 patients into high- and low-risk 
clusters. The low- and high-risk clusters exhibited significant differences in GSE17536 according to survival 
analysis (Fig. 5e). In the GSE39582 dataset, the low-risk group exhibited notably higher survival rates than did 
the high-risk group (Fig. 5f). GSEA was used to analyze the TCGA data to examine the biological processes 
associated with gene expression in the high- and low-risk cohorts. The findings indicated that allograft rejection 
(Fig. 5g), protein secretion (Fig. 5h), inflammatory response (Fig. 5i), interferon-gamma response (Fig. 5j), and 
pathways, such as G2M checkpoint (Fig. 5k) and androgen response (Fig. 5l), were markedly enriched in the 
low-risk cohort (Table 3).

Immune cell infiltration in patients from TCGA-COADREAD dataset
We evaluated MPFDEG model risk scores for the immune cell infiltration levels in the COADREAD dataset. In 
TCGA-COADREAD dataset, the infiltration score of immune cells was visualized using the heatmap function in 
R using the single-sample gene set enrichment analysis (ssGSEA) algorithm to quantify and label each infiltrating 
immune cell type (Fig. 6a, Supplementary Table S4). Neutrophils and type 17 T helper cells were more abundant 
in the high-risk group than in the low-risk group. By contrast, central memory CD4 T cells, macrophages, 
and activated dendritic cells were more abundant in the low-risk group than in the high-risk group (Fig. 6a). 

Fig. 3. Gene set variation analysis (GSVA) of the metabolic plasticity- and ferroptosis-related genes (MPFRG) 
model in The Cancer Genome Atlas (TCGA)-colon and rectal adenocarcinoma (COADREAD) dataset (a) 
Hallmark gene set enrichment analysis. (b) The proportion of disease location in different molecular subtypes. 
(c) The boxplot shows the body mass index (BMI) of the MPFRG molecular subtypes. (d) The Sankey diagram 
includes the cluster, stage, and TNM_N. *p < 0.05.
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Subsequently, the correlation of the immune cells was plotted using the R function corrplot, revealing that most 
immune cells exhibited a strong correlation with each other. A negative relationship was observed between 
CD56dim natural killer cells and effector memory CD4 T cells (cor=-0.276, p < 0.0001; Fig. 6b). Immune B cells 
were negatively correlated with the risk score (cor=-0.299, p < 0.0001). Ten correlation heat maps between 

Fig. 4. Molecular subtype construction and functional enrichment analysis of differentially expressed genes 
of metabolic plasticity and ferroptosis (MPFDEGs) in The Cancer Genome Atlas (TCGA)-colon and rectal 
adenocarcinoma (COADREAD) dataset (a) Determination of the optimal cluster number; k = 2 is regarded as 
the best clustering number. (b) Using consensus clustering to generate classifications for survival analysis. (c–f) 
Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. (g,h) PI3K-
Akt signaling pathway (g) and tumor necrosis factor (TNF) signaling pathway (h) are reported to be enriched. 
(i,j) The proportion of the two subtypes concerning age group (i) and sex (j). (k) The Sankey diagram includes 
group, stage, and TNM_N.
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ID Description padj

hsa05323 Rheumatoid arthritis 6.04E−32

hsa04060 Cytokine–cytokine receptor interaction 7.43E−24

hsa04640 Hematopoietic cell lineage 7.43E−24

hsa04061 Viral protein interaction with cytokine and cytokine receptor 9.09E−24

hsa04145 Phagosome 3.52E−19

hsa05150 Staphylococcus aureus infection 1.95E−18

hsa05140 Leishmaniasis 5.44E−18

hsa04380 Osteoclast differentiation 2.42E−17

hsa04062 Chemokine signaling pathway 3.09E−17

hsa05144 Malaria 3.71E−14

Table 2. KEGG enrichment analysis results of differential molecular subtypes of MPFRGs using TCGA-
COADREAD dataset. TCGA The Cancer Genome Atlas, COADREAD colorectal adenocarcinoma, KEGG 
Kyoto Encyclopedia of Genes and Genomes, MPFRGs metabolic plasticity and ferroptosis-related genes.

 

ONTOLOGY ID Description padj

BP GO:0050900 Leukocyte migration 7.40E−61

BP GO:0007159 Leukocyte cell–cell adhesion 1.88E−48

BP GO:0060326 Cell chemotaxis 2.09E−47

BP GO:0097529 Myeloid leukocyte migration 5.38E−46

BP GO:0045785 Positive regulation of cell adhesion 2.11E−45

BP GO:0030595 Leukocyte chemotaxis 2.11E−45

BP GO:1903037 Regulation of leukocyte cell-cell adhesion 3.22E−39

BP GO:0022407 Regulation of cell-cell adhesion 4.19E−39

BP GO:0022409 Positive regulation of cell-cell adhesion 8.36E−39

BP GO:1903039 Positive regulation of leukocyte cell-cell adhesion 1.11E−38

CC GO:0062023 Collagen-containing extracellular matrix 9.47E−40

CC GO:0009897 External side of plasma membrane 3.76E−39

CC GO:0030667 Secretory granule membrane 5.56E−25

CC GO:0030139 Endocytic vesicle 1.61E−20

CC GO:0005581 Collagen trimer 3.29E−19

CC GO:0005788 Endoplasmic reticulum lumen 1.18E−15

CC GO:0070820 Tertiary granule 2.01E−15

CC GO:0045121 Membrane raft 2.74E−14

CC GO:0098857 Membrane microdomain 2.77E−14

CC GO:0070821 Tertiary granule membrane 5.48E−14

MF GO:0140375 Immune receptor activity 8.92E−27

MF GO:0005201 Extracellular matrix structural constituent 1.39E−23

MF GO:0019955 Cytokine binding 9.63E−21

MF GO:0005539 Glycosaminoglycan binding 5.59E−19

MF GO:0019838 Growth factor binding 1.17E−18

MF GO:0005126 Cytokine receptor binding 8.65E−18

MF GO:0005125 Cytokine activity 1.19E−17

MF GO:0005518 Collagen binding 4.08E−17

MF GO:0005178 Integrin binding 3.63E−16

MF GO:0008009 Chemokine activity 1.79E−15

Table 1. GO enrichment analysis results of differential molecular subtypes of MPFRGs using TCGA-
COADREAD dataset. TCGA The Cancer Genome Atlas, COADREAD colorectal adenocarcinoma, GO Gene 
Ontology, BP biological process, MF molecular function, CC cellular component, MPFRGs metabolic plasticity 
and ferroptosis-related genes.
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Fig. 5. Construction of differentially expressed genes of metabolic plasticity and ferroptosis (MPFDEG)-
based model and gene set enrichment analysis (GSEA) in The Cancer Genome Atlas (TCGA)-colon and 
rectal adenocarcinoma (COADREAD) dataset. (a) Univariate Cox regression analysis of MPFDEGs. (b) 
Partial likelihood deviance for least absolute shrinkage and selection operator (LASSO) coefficient profiling. 
(c) Multivariate Cox regression analysis of MPFDEGs. (d–f) Survival probability curves of low- and high-
risk groups in TCGA database and the GSE17536 and GSE39582 datasets. (g–l) Various biological processes 
(Allograft Rejection, Protein Secretion, Inflammatory Response, Interferon-Gamma Response, G2M 
Checkpoint, and Androgen Response) associated with gene expression in TCGA data.
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Fig. 6. Infiltration of immune cells in patients in The Cancer Genome Atlas (TCGA)-colon and rectal 
adenocarcinoma (COADREAD) dataset. (a) Immune cell infiltration scores in the high-risk and low-
risk groups. (b) Overview and comparison of the infiltration scores of immune cells. (c) Heat map of the 
correlation between 10 differentially expressed genes of metabolic plasticity and ferroptosis (MPFDEGs) and 
immune cells. (d) Box plot depicting the differences in immune cell infiltration between the high- and low-risk 
groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s non-statistically significant.

 

ID NES padj

HALLMARK_ALLOGRAFT_REJECTION − 1.914666497 4.60E−09

HALLMARK_PROTEIN_SECRETION − 1.868347081 8.28E−07

HALLMARK_INFLAMMATORY_RESPONSE − 1.609816713 1.66E−05

HALLMARK_INTERFERON_GAMMA_RESPONSE − 1.590186238 1.66E−05

HALLMARK_G2M_CHECKPOINT − 1.533218802 0.000209592

HALLMARK_ANDROGEN_RESPONSE − 1.66351912 0.000322062

HALLMARK_KRAS_SIGNALING_UP − 1.499031338 0.000508299

HALLMARK_MITOTIC_SPINDLE − 1.494384742 0.000620597

HALLMARK_E2F_TARGETS − 1.4673566 0.000620597

HALLMARK_IL6_JAK_STAT3_SIGNALING − 1.626938781 0.001152558

Table 3. Results of GSEA enrichment analysis for high and low risk of risk scores based on TCGA-
COADREAD dataset. TCGA The Cancer Genome Atlas, COADREAD colorectal adenocarcinoma, GSEA gene 
set enrichment analysis.
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MPFDEGs and immune cells were plotted using the ggplot function. The results revealed that genes such as 
C11ORF96 were highly expressed in most immune cells, such as type 17 T helper cells (cor = 0.113, p = 0.015); 
genes such as ATP10D were marginally expressed in most immune cells, such as CD56dim natural killer cells 
(cor=-0.139, p = 0.003; Fig. 6c). Next, we examined whether immune cell infiltration differed between the high- 
and low-risk cohorts by drawing a difference box plot using the ggplot function. Over 25% of the immune cells 
showed notable differences between the low- and high-risk individuals (p < 0.05). Additionally, the low-risk 
group had significantly higher infiltration levels of immune cells than did the high-risk group (p < 0.05; Fig. 6d).

Analysis of TCGA-COADREAD dataset to predict immunotherapy efficacy
We divided the IMvigor210 patients based on their risk score (-0.6124537) into high- and low-risk clusters. 
Survival was higher among the low-risk group than among the high-risk group (p = 0.036; Fig. 7a). The tumor 
immune dysfunction and exclusion (TIDE) algorithm results showed that the TIDE scores of the high-risk 
group were notably higher than those of the low-risk group (Fig. 7b, Supplementary Table S5).

For a more in-depth examination of the predictive impact of the risk assessment model on immunotherapy, 
we downloaded the immunophenotype scores (IPSs; Supplementary Table S6) related to CRC from The Cancer 
Imaging Archive (TCIA) database. We plotted a box plot displaying the variances in scores between the high- 
and low-risk clusters of TCGA-COADREAD and the IPSs using the ggplot function of R. The results showed 
that the high-risk individuals had significantly higher IPSs than did the low-risk individuals (p = 0.046; Fig. 7c). 
Most immune checkpoint genes exhibited notably different expression levels in differential boxplots (Fig. 7d–i).

Fig. 7. Prediction of immunotherapy efficacy based on risk scores in The Cancer Genome Atlas (TCGA)-colon 
and rectal adenocarcinoma (COADREAD) dataset. Differences in survival probability (a), tumor immune 
dysfunction and exclusion (b), and immunophenotype score (IPS)-CTLA4-PD1 (c), between the low-risk and 
high-risk patients. (d–i) Differences in immune checkpoint genes between the high-risk and low-risk patients. 
*p < 0.05, **p < 0.01, ***p < 0.001.
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Analysis of TCGA-COADREAD dataset for clinical prediction
Univariate Cox regression outcomes revealed that the risk score (p < 0.001), M-stage (p < 0.001), stage (p < 0.001), 
age group (p = 0.004), and N-stage (p = 0.014) were associated with the overall survival (OS) of patients 
with COADREAD (Fig.  8a; Table  4). The multivariate Cox regression outcomes revealed that the risk score 
(p < 0.001), M-stage (p < 0.001), and age group (p = 0.014) were markedly associated with the OS of patients with 
COADREAD (Fig. 8b; Table 5). Our column chart was used to predict the lifespan of patients with COADREAD 
based on the M-stage, risk score, and age group (Fig. 8c). Calibration curves were constructed for the column 

Hazard ratio (HR) Lower 95% CI Upper 95% CI p value

RiskScore 2.72 2.12 3.48 2.61E−15

TNM_M 4.14 2.32 7.37 1.44E−06

Stage 1.39 0.398 4.85 1.16E−05

Age 2.32 1.32 4.07 0.00355

TNM_N 1.95 1.15 3.33 0.0136

Gender 1.37 0.815 2.3 0.235

TNM_T 1.45 0.617 3.41 0.393

Table 4. Univariate Cox regression results of metabolic plasticity and ferroptosis gene-related score on clinical 
prognosis. TNM_M tumor node metastasis_metastasis, TNM_N tumor node metastasis_ node, TNM_T tumor 
node metastasis_ tumor, CI confidence interval.

 

Fig. 8. Development of a clinical prediction model using The Cancer Genome Atlas (TCGA)-colon and rectal 
adenocarcinoma (COADREAD) risk scores. (a,b) Univariate Cox regression analysis consists of risk score, 
TNM_M, stage, age, TNM_N, gender, TNM_T; and multivariate Cox regression analysis consists of risk score, 
TNM_MM1, and age. (c) The nomogram shows the overall survival status of patients with COADREAD. (d) 
1-, 3-, and 5-year survival rates of the patients predicted using established nomograms.
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charts. A comparison of the estimated OS values of patients at 1, 3, and 5 years with the actual observed values 
revealed good consistency between the two groups (Fig. 8d).

Discussion
Clinical evidence has confirmed the unfavorable CRC outcomes. Establishing a clinical prediction model to 
accurately predict the survival of patients with CRC can help better stratify and predict the risk and develop 
personalized treatment strategies25. Iron-mediated cell death links metabolism, diseases, immune cells, and 
targeted therapies26. Cancer cells exhibit metabolic plasticity, as established earlier27. Metabolic plasticity 
confers a survival advantage to cancer cells for using nutrients, rapidly producing ATP, synthesizing biomass, 
and balancing reactive oxygen species28. Metabolic plasticity and ferroptosis are common metabolic pathways in 
tumor cells and are extensively studied in other diseases29–31.

Through these correlation analysis results, we preliminarily understand the interaction between MPFRGs 
in CRC. Most MPFRGs showed a positive correlation, indicating that these genes might act synergistically in 
similar biological pathways to regulate the development of CRC. IL-6 and IL-1, as inflammatory factors, may 
jointly promote cancer progression in the microenvironment of CRC, suggesting that we need to further study 
the specific mechanism of these inflammatory factors in cancer. The significant negative correlation between 
PTEN and G6PD suggests that they may inhibit each other in the processes involving metabolism and growth 
regulation. PTEN is an important tumor suppressor gene, and G6PD plays a key role in cell metabolism, which 
provides us with new potential therapeutic targets. Through these observations, we can better understand the role 
of MPFRGs in CRC and provide valuable directions for future research. GO analysis showed that the abnormal 
expression of key genes in MPFDEGs primarily involves immune receptor activity and cytokine receptor binding, 
considering molecular functions. KEGG analysis showed that MPFDEGs primarily involve the PI3K/Akt and 
cytokine–cytokine receptor interaction signaling pathways, with key genes such as ATP10D, ERFE, and ATP10D 
confirmed to be closely related to lipomics and metabolomics32. Alexander et al.33 found that ATP10D can reduce 
obesity and enhance the responsiveness to insulin in mice fed a high-fat diet and that ATP10D transgenic mice 
exhibit lipid- and metabolism-related changes in the liver and plasma. Some researchers have found that new 
genetic variations discovered in ATP10D are present in individuals with extreme phenotypes, such as heightened 
or reduced susceptibility to tobacco-induced non-small cell lung cancer; however, studies on ATP10D related to 
metabolic plasticity and ferroptosis in CRC are lacking. Additionally, ERFE is involved in tumor progression and 
invasion through its association with TP53 mutations34, co-participation in the P13K/AKT and mTOR signaling 
pathways35 with IL-11, and by possibly activating the NOTCH-related signaling pathway36.

The genes related to tumor differentiation, metastatic risk, and patient survival in MPFDEGs may serve as 
potential candidates for developing new therapeutic targets for CRC, such as angiopoietin-like 4 (ANGPTL4), 
UBE2E2, ERFE, VNN2, CCL22, and C11orf96. ANGPTL4 is related to lipid metabolism and regulates the 
distribution of lipoproteins and fatty acids in peripheral tissues by inhibiting the activity of lipoprotein lipase 
in various environments37. Similarly, ANGPTL4 is related to cardiovascular and lipid metabolic diseases, such 
as atherosclerosis and type 2 diabetes, and tumorigenesis, tumor angiogenesis, and tumor cell migration38,39. 
The levels of ROS, MMP-1, and MMP-9 are substantially reduced upon ANGPTL4 deletion, inhibiting the 
transactivation of NADPH oxidase 4 (NOX4) by c-Jun, causing an enhancement in the migration ability of CRC 
cells mediated by oleic acid and further affecting the survival rates of patients with CRC40. This observation 
supports the results of our study. UBE2E2, a member of the ubiquitin-coupled enzyme (UBE2) family, is 
upregulated in ovarian malignant tumors and negatively correlated with patient prognosis. Ovarian cancer 
cells are stimulated to proliferate, migrate, and undergo epithelial–mesenchymal transition by activating UBE2, 
possibly through the UBE2E2-Nrf2-p62-Snail signaling axis41. ERFE, also known as CTRP15, is a member 
of the C1q tumor necrosis factor-related protein family. In a pan-cancer study, Xu et al.42 found that ERFE 
overexpression indicated poor prognosis of breast cancer, colon cancer, pancreatic cancer, and renal clear cell 
carcinoma, consistent with the results of this study. This aspect requires further functional analysis and may have 
potential clinical value, as ERFE could be developed as a therapeutic target for CRC. However, reports on the 
role of ERFE in ferroptosis and metabolic plasticity in tumors are unavailable. The glycosylphosphatidylinositol-
anchored cell surface protein vanin-2 (VNN2) may be an independent predictor of recurrence in most patients 
with acute lymphoblastic leukemia, and its expression may increase cell chemotherapy resistance43. Chen et al. 
found that the CCL22 chemokines produced by tumor-associated macrophages are positively correlated with 
tumor invasion and low survival rates in patients with esophageal squamous cell carcinoma44. The possible 
mechanism is that CCL22 is expressed through the chemokine receptor diacylglycerol kinase α. By connecting 
the FAK signaling pathway and activating the FAK/AKT pathway, CCL22-stimulated FAK overactivation 
accelerates the progression and invasion of malignant tumor cells. Moreover, some researchers have found that 
CCL22 may act as an independent prognostic factor for patients with CRC45. Other studies report that patients 
with lung and breast cancers may be treated by inhibiting C11orf96 expression46,47.

Hazard ratio (HR) Lower 95% CI Upper 95% CI p value

RiskScore 2.52 1.91 3.34 < 0.001

TNM_MM1 3.09 1.65 5.79 < 0.001

Age > 67 2.34 1.19 4.59 0.014

Table 5. Multivariate Cox regression results of metabolic plasticity and ferroptosis gene-related score on 
clinical prognosis. TNM_MM1 tumor node metastasis_metastasis M1, CI confidence interval.
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The immune system of patients with CRC is generally suppressed; among the MPFDEGs, ERFE, CCL22, 
CD200, and HLA-DQA2 may be the potential immune regulation-related genes. The aberrant expression of 
these genes may affect tumor immune escape and the efficacy of immunotherapy. Srole et al.48 have found that 
ERFE overexpression can cause enrichment reactions in Th2 immune cells. Chapoval et al.49 showed that tumor 
regulatory T cells (Tregs) overexpressing ERFE were not significantly enriched. In this case, EFRE overexpression 
caused no increased infiltration of type 2 T helper cells. The chemokine CCL22, primarily produced by immune 
dendritic cells, binds to the CCR4 receptor to recruit factors in tumor cells to regulate Treg migration, affecting 
T-cell immune processes49. HLA-DQA2, a class II human leukocyte antigen (HLA), is crucial in antigen 
presentation and immune response initiation. As the invasive ability of early lung adenocarcinoma increases, 
its antigen presentation ability is also enhanced, and the HLA-DQA2 genes involved in antigen presentation are 
upregulated50. HLA-DQA2 expression is significantly increased in breast cancer51; however, its correlation with 
tumor prognosis remains unknown. In this case, HLA-DQA2 was reported for the first time as an MPFDEG that 
is an independent predictor of prognosis. The cell surface glycoprotein CD200 (OX-2; OX-91) is an emerging 
checkpoint ligand; however, it is understudied52. CD200R promotes myeloid cell expansion and limits antitumor 
immunity (e.g., in brain and ovary tumors)52,53.

According to the immune escape mechanism of tumors, clinically significant cancers choose fewer 
immunogenic cancer cells (immune selection) to avoid antitumor immune responses, hindering cancer cell 
recognition by CD8+ T cells. In this study, the expression of immune checkpoint CTLA-4 and PD-1 inhibitors 
was notably higher in the high-risk cohort than in the low-risk cohort (p < 0.05). As CD4 memory resting T cells 
differentiate, they can help CD8+ T cells reject tumors, inhibit harmful immune responses to antigens, inhibit 
CD8+ T-cell activation, and kill natural killer cells. Thus, the risk score is consistent with immune checkpoint 
expression assessed in tumor-infiltrating immune cells, indicating that the model has good clinical efficacy.

This study has some limitations. The results are unvalidated in wet experiments, and corresponding clinical 
correlation studies are lacking, complicating the analysis of the findings in conjunction with clinical information. 
Moreover, this study included numerous datasets, which may have caused unavoidable inter-batch differences 
or insufficient sample sizes during the analysis. Given the above shortcomings, we will collect many clinical 
specimens to test the accuracy and robustness of this model. Cell and animal experiments were performed to 
study the effect of the overexpression or knockout of related genes on the occurrence and development of CRC.

However, this study also has some strengths. Our findings revealed the clinical application and potential 
molecular mechanisms of MPFDEGs in CRC. A model based on 10 MPFDEGs (ATP10D, ERFE, CCL22, HLA-
DQA2, ANGPTL4, CD200, C11orf96, UBE2E2, VNN2, and AIF1L) was established that can be used to predict 
the OS of patients with COADREAD; these genes could serve as potential therapeutic targets. The performance 
of the developed risk model was validated using multiple validation methods, which confirmed its robustness 
and accuracy. Additionally, the effects of MPFDEG expression on the tumor immune microenvironment were 
established.

Methods
Data
Expression profiles and corresponding clinical information, including data on copy number variations, were 
obtained from TCGA (https://portal.gdc.cancer.gov/; Table 6). Data were obtained from the Gene Expression 
Omnibus database to verify the prognostic potential of genetic risk scores. Datasets GSE17536 and GSE39582, 
related to CRC (COADREAD), were retrieved for Homo sapiens, and the data platform was GPL570. No datasets 
are available for CRC immunotherapy; therefore, we referred to a study on colon cancer54 and verified with the 
immunotherapy cohort data for bladder cancer. MRGs (Supplementary Table S7) and ferroptosis-related genes 
(Supplementary Table S8) were determined using the GeneCards (https://www.genecards.org/) database and 
FerrDb (http://www.zhounan.org/ferrdb/current/), respectively. Eleven MPFRGs were obtained after merging 
and duplicating (Supplementary Table S9). Moreover, chromosome maps help to identify key genes with frequent 
copy number changes in cancer and visualize their specific locations on chromosomes. Simultaneously, these 
positional data can provide reference for us to further study the function and mechanism of these genes in CRC.

Construction of molecular subtypes based on MPFRGs
Microarray gene expression datasets were clustered using consistency clustering. TCGA expression profile data 
were clustered using MPFRGs in the Consensus Cluster Plus package (Version 4.2.2, https://www.r-project.org/) 
of R to better distinguish CRC subtypes.

GSVA
GSVA enrichment analysis was performed on the gene expression profile dataset of patients in TCGA-
COADREAD dataset to explore the differences in biological processes among the different clusters. In TCGA-
COADREAD dataset, the gene set “h. all. v7.5.1. symbols” is derived from MSigDB for GSVA of the MPFRG 
molecular subtypes.

Differential gene analysis related to metabolic plasticity and ferroptosis
Using the limma R package (v3.34.9), differential analysis of the grouping was conducted to determine the 
differences between molecular subtypes. We set -log10 (padj value) < 0.0001 and |logFC|>   0.5 as the thresholds 
to screen for MPFDEGs. Among them, genes with |logFC| > 0.5 and -log10 (padj value) < 0.0001 were considered 
as upregulated MPFDEGs, whereas those with |logFC|<-0.5 and -log10 (p value) < 0.0001 were considered as 
downregulated MPFDEGs.
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Functional enrichment analysis
ClusterProfiler was used to perform GO annotation and KEGG pathway enrichment analyses of MPFDEGs in 
TCGA-COADREAD dataset; the critical value of FDR < 0.05 was considered statistically significant. Data with 
padj and q values < 0.05 were considered entry screening criteria, and the Benjamini–Hochberg method was used 
to correct the p-values.

MPFDEG-based risk model construction
We screened for genes associated with prognosis through univariate or multivariate Cox and LASSO regression 
analyses and constructed a prognostic model. The cutoff function in the R survey was used to calculate the 
optimal cutoff to group patients by risk score; the cutoffs were entered into TCGA-COADREAD portal to 
separate the high- and low-risk patients. Using the R survival package, Kaplan–Meier (KM) analysis and a 
logarithmic rank test were conducted on the TCGA OS rate. Based on the cutoffs, GSE17536 and GSE39582 risk 
scores were calculated, and the data were grouped into risk clusters.

 

Risk Score = (0.48× mRNAExpression (ERFE)) + (0.5× mRNAExpression (ANGPTL4))

+ (0.29× mRNAExpression (C11or96)) + (0.46× mRNAExpression (UBE2E2))

+ (0.39× mRNAExpression (AIF1L)) + (−0.5× mRNAExpression (CCL22))

+ (−0.48× mRNAExpression (ATP10D)) + (−0.2× mRNAExpression (HLA−DQA2))

+ (−0.43× mRNAExpression (CD200)) + (−0.39× mRNAExpression (V NN2))

GSEA
TCGA-COADREAD gene expression profiles were used to conduct GSEA to compare the biological processes 
between low- and high-risk groups. Our analysis of TCGA-COADREAD dataset relied on the MSigDB gene set 
“h. all. v7.5.1. symbols”.

Alive Dead Total

(401) (59) (460)

Age

 Mean 64.7 68.4 65.2

 Median 66 71 67

 ≤ 67 217 (54%) 17 (29%) 234 (51%)

 > 67 184 (46%) 42 (71%) 226 (49%)

Gender

 Female 182 (45%) 25 (42%) 207 (45%)

 Male 219 (55%) 34 (58%) 253 (55%)

T

 T1 14 (3.5%) 2 (3.4%) 16 (3.5%)

 T2 72 (18%) 4 (6.8%) 76 (16.5%)

 T3 275 (68.6%) 40 (67.8%) 315 (68.5%)

 T4 39 (9.7%) 12 (20.3%) 51 (11.1%)

 TX 1 (0.2%) 1 (1.7%) 2 (0.4%)

N

 N0 234 (58.4%) 23 (39%) 257 (55.9%)

 N1 99 (24.7%) 18 (30.5%) 117 (25.4%)

 N2 66 (16.4%) 17 (28.8%) 83 (18%)

 NX 2 (0.5%) 1 (1.7%) 3 (0.7%)

M

 M0 298 (74.3%) 31 (52.5%) 329 (72%)

 M1 45 (11.2%) 20 (33.9%) 65 (14%)

 MX 58 (14.5%) 8 (13.6%) 66 (14%)

Stage

 I 73 (18.2%) 3 (5%) 76 (16.5%)

 II 146 (36.4%) 17 (28.8%) 163 (35.4%)

 III 120 (30%) 15 (25.4%) 135 (29.3%)

 IV 46 (11.4%) 20 (34%) 66 (14.4%)

Site

 Colon 290 (72%) 50 (85%) 340 (74%)

 Rectum 111 (28%) 9 (15%) 120 (26%)

Table 6. TCGA dataset information. TCGA The Cancer Genome Atlas.
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Analysis of immune infiltration
We downloaded immune-related genes, including 28 cell types and 782 genes, such as macrophages, Tregs, and 
other immune cell subtypes, from a study by Charoentong et al.55. The GSVA package and ssGSEA method were 
used to analyze TCGA-COADREAD expression profile. Immune cell correlation maps were drawn using the 
corrplot R package.

Immunotherapy analysis
The IPS data for CRC were obtained from TCIA database and analyzed using the R ggplot2 package. Using 
the TIDE algorithm, the high- and low-risk treatment responses of patients were compared. The TIDE scores 
and immunotherapy responses of each cancer sample were calculated using standardized TCGA-COADREAD 
expression profile data as the input.

Modeling clinical prediction based on MPFDEGs
Clinicopathological features can be combined with risk scores to provide a prognostic assessment tailored to 
each patient. Using TCGA-COADREAD expression profile data for univariate and multivariate Cox regression 
analyses, we examined the ability of risk scores combined with clinicopathological features of patients with CRC 
to predict OS. Following the selection of a risk-scoring model based on clinical pathology features that were 
notably correlated with OS rates (p < 0.05), a clinical prediction column chart was constructed using the rms 
package in R.

Statistical analysis
Data were analyzed using R (version 4.2.2). Two sets of continuous variables conforming to the normal 
distribution were compared using the Student’s t-test. The Mann − Whitney U test (Wilcoxon rank-sum test) 
was used to process the data of non-normally distributed variables. The KM survival curve represented the 
survival difference. The survival time difference was evaluated using a logarithmic rank test. A p value < 0.05 was 
considered statistically significant, with all p-values being two-tailed.

Data availability
All data are publicly accessible, open access, and can be accessed upon reasonable request. Data relevant to this 
study are included in the article or uploaded as supplemental information. The CRC series used in this study is 
available in TCGA (https://portal.gdc.cancer.gov/), which are public repositories for functional genomics  d a t a . 
G e n e expression data from the GEO repository (https://www.ncbi.nlm.nih.gov/geo/) include the following  d a t 
a s e t s : GSE17536, GSE39582.
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