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Abstract: Gastrodia elata Blume (G. elata) is a prominent traditional herb and its dry tuber is officially
listed in the Chinese Pharmacopoeia. To ensure the quality of dried G. elata, the establishment of
a nondestructive and convenient method to monitor the drying process is necessary. In this study,
a nondestructive low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging
(MRI) method was introduced to monitor the drying process of G. elata. Three water states (bound,
immobilized, and free) in G. elata samples were investigated through multiexponential fitting and
inversion of the NMR data. The variation and distribution of the three water states during drying
were monitored by LF-NMR, and the spatial distribution of water and internal structural changes
were analyzed by MRI. Linear analysis of the moisture content, L* (lightness), b* (yellowness),
and NMR parameters showed good correlations among them. Furthermore, partial least squares
regression (PLSR) model analysis, which takes into account all NMR parameters, also showed good
correlations among these parameters. All results showed that LF-NMR was feasible and convenient
for monitoring moisture content. Therefore, LF-NMR and MRI could be used to monitor the moisture
content nondestructively in the drying process of Chinese traditional herbs.
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1. Introduction

Drying is an indispensable step in Chinese herbal medicine processing and is important for
ensuring the quality [1]. Drying causes water evaporation to achieve the required moisture content and
inhibits the biochemical reactions and proliferation of microorganisms [2]. Therefore, the drying degree
(or moisture content) directly affects herb quality. Traditional methods for measuring the moisture
content of Chinese herbal medicines include the weight method, differential scanning calorimetry,
and near-infrared spectroscopy [3,4]. However, most of these methods are tedious, time-consuming,
and interrupt the drying process. To reduce the drying time and obtain Chinese herbal medicines
of good quality, it is necessary to develop a rapid and nondestructive method for analyzing water
variations during the drying process.

Low-field nuclear magnetic resonance (LF-NMR) is a powerful tool for analyzing water
variation in food owing to its nondestructive characteristics, rapid analysis speed, and low cost [5,6].
By measuring the proton relaxation times, the state, distribution, activity, and mobility of water can
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be determined using LF-NMR [7–10]. Magnetic resonance imaging (MRI), the other type of NMR
technology, has been used to detect the internal distribution of water and structural changes during
processing [11]. In recent years, combining NMR with MRI has been widely used to analyze food
processing. Geng et al. [12] and Zhang et al. [13] have used both NMR and MRI to study dried sea
cucumber rehydration and monitor the natto fermentation process, respectively. LF-NMR and MRI are
also sensitive methods for monitoring water variation during drying processes. Cheng et al. [14] and
Xu et al. [15] studied the water variation in shrimp and broccoli during drying, successfully applying
these measurements to ensure food quality. However, there is no suitable method for analyzing the
drying process of Chinese herbal medicines. Therefore, the development of a rapid and nondestructive
analytical method for the Chinese herbal medicine industry would be extremely significant.

Gastrodia elata Blume (G. elata) is a prominent traditional herb used in many Asian countries [16].
The dry tuber of G. elata is officially listed in the Chinese Pharmacopoeia and has a beneficial effect on
headaches, paralysis, rheumatism, and other nervous disorders [17–19]. To process G. elata, it must first
be steamed and then dried to obtain high-quality pieces [20]. Therefore, monitoring the drying process
of G. elata is important to obtain high-quality products. In this study, a nondestructive NMR and MRI
method was introduced to monitor the drying process of G. elata by investigating water variation and
internal structural changes. The relationships between moisture content, NMR parameters, and color
parameters were investigated through linear analysis. Partial least squares regression (PLSR) analysis,
taking into account all NMR parameters, was also applied. This NMR and MRI method could also
potentially be applied to other Chinese herbal medicines.

2. Results and discussion

2.1. Effects of Steaming on Water States and Distribution

Steaming G. elata is beneficial for drying [21]. Figure 1 shows the transverse relaxation time (T2)
curves of fresh G. elata and G. elata after steaming. T2 reflects the chemical environment of protons
and degree of water freedom in the sample [22]. The G. elata relaxation time curves showed three
peaks, namely, T21 (0.1–10 ms), T22 (10–200 ms), and T23 (200–1000 ms) from left to right. These peaks
represent the three molecular environments in which water molecules existed, where T21 corresponds
to water binding closely to the macromolecular particles, T22 corresponds to water binding in the
cytoplasm, and T23 corresponds to free water in the vacuole and intercellular space with strong
mobility [23]. The corresponding signal amplitudes were A21, A22, and A23, respectively, representing
the relative moisture contents of the three states.
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after steaming.

Table 1 shows changes in the relaxation time and peak area of G. elata before and after steaming.
After steaming, A21, A22, and A23 had all changed significantly, and the free water content had increased
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from 70.88% to 95.45%. Meanwhile, the bound water content had decreased from 11.11% to 1.62%
and the content of immobilized water had decreased from 18.01% to 2.93%. These results indicated
that the structure of G. elata was damaged by steaming, with water diffusing to the outside owing to
differences between the internal and external pressures, while the free water content clearly increased.

Table 1. Changes in relaxation time and peak area of G. elata before and after steaming.

A21 (%) A22 (%) A2 3 (%) T21 (ms) T22 (ms) T23 (ms)

Before steaming 11.11 ± 0.3a 18.01 ± 0.5a 70.88 ± 0.4a 5.18 ± 0.5a 96.81 ± 0.4a 584.94 ± 0.4a

After steaming 1.62 ± 0.2b 2.93 ± 0.6b 95.45 ± 0.5b 5.39 ± 0.3a 89.59 ± 0.5b 274.18 ± 0.6b

a Values are means ± standard deviation (n = 3). b Different letters in the same column indicate a significant
difference (p < 0.05).

Figure 2 shows cross-sectional MRI images of G. elata before and after steaming, where different
colors represent different water contents [24]. From the color strip, red represents the highest moisture
content and blue represents the lowest moisture content [25]. The water distribution inside G. elata
was uneven before steaming, with the moisture content increasing gradually from inside to outside.
The tissue structure was damaged after steaming, which accelerated the space movement of internal
moisture, and the moisture distribution became uniform. These results demonstrated that steaming
accelerated the drying rate.
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2.2. Transverse Relaxation Time Analysis of G. elata after Steaming at Different Drying Temperatures

Figure 3 shows the transverse relaxation time curves of G. elata after steaming at different drying
temperatures. The drying process changes the water content and states, and can also alter the water
binding forces with macromolecules [26]. The peak area gradually decreased and the position of each
peak gradually moved to the left. Meanwhile, the degree of water binding with non-water components
became increasingly close, and the relaxation time gradually decreased.

Changes in the relaxation time and peak area of G. elata (after steaming) dried at 40, 60, and 80 ◦C
are shown in Tables 2–4, which explain the changes in water states on the microscale. During the
drying process, T21 values showed little change in the ranges 0.53–5.03 ms at 40 ◦C, 0.69–4.69 ms at
60 ◦C, and 0.93–4.20 ms at 80 ◦C. This indicated that bound water was tightly combined with the
macromolecular substances and not easily removed during drying. The T22 and T23 values showed
a significant decreasing trend with drying, which might be due to destruction of the cell membrane
during drying. Macromolecules, such as polysaccharides, in G. elata flow into the intercellular
space and increase the solution concentration, which increases opportunities for the combination
of macromolecules with water that has poor mobility [27].
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Table 2. Changes in relaxation time and peak area of G. elata dried at 40 ◦C after steaming.

Drying Time (min) T21 (ms) 1,2 T22 (ms) 1,2 T23 (ms) 1,2 A21/g 1,2 A22/g 1,2 A23/g 1,2 ATotal/g 1,2

2 5.03 ± 0.15a 83.66 ± 4.66a 248.94 ± 3.65a 48.01 ± 1.91f 86.75 ± 3.22e 2210.86 ± 4.25a 2345.62 ± 6.23a

4 4.47 ± 0.19b 75.14 ± 5.31b 234.98 ± 4.60b 55.03 ± 3.56f 99.04 ± 2.45d 2015.86 ± 14.60b 2169.93 ± 4.26b

6 3.99 ± 0.21c 62.12 ± 4.57c 215.61 ± 3.73c 70.58 ± 4.04e 110.32 ± 4.08c 1878.33 ± 9.48c 2059.23 ± 3.58c

8 3.27 ± 0.20d 53.42 ± 2.61d 200.47 ± 4.26d 86.37 ± 4.41d 125.50 ± 3.97b 1650.33 ± 13.51d 1862.20 ± 3.22d

10 2.82 ± 0.14e 44.71 ± 3.07e 186.46 ± 2.99e 100.57 ± 4.08c 142.13 ± 2.78a 1433.37 ± 9.11e 1676.08 ± 8.21e

12 2.26 ± 0.26f 36.79 ± 2.86f 172.90 ± 6.29f 118.61 ± 6.25b 124.58 ± 4.20b 1116.68 ± 10.21f 1359.87 ± 6.58f

14 1.63 ± 0.17g 30.83 ± 1.33fg 155.35 ± 5.23g 135.29 ± 4.12a 95.40 ± 4.06d 882.68 ± 6.94g 1113.37 ± 7.66g

16 1.21 ± 0.22h 25.23 ± 1.64gh 136.09 ± 3.15h 108.95 ± 4.15c 104.71 ± 4.69f 544.84 ± 9.52h 758.50 ± 6.23h

18 0.96 ± 0.08hi 21.03 ± 1.55hi 121.28 ± 1.56i 73.95 ± 4.56e 56.61 ± 3.17g 212.35 ± 7.67i 342.91 ± 5.02i

20 0.76 ± 0.06ij 18.05 ± 1.36i - 51.66 ± 2.63f 32.85 ± 1.86h - 84.51 ± 2.18j

22 0.53 ± 0.08j - - 33.81 ± 3.33g - - 33.81 ± 1.47k

1 Values are means ± standard deviation (n = 3). 2 Different letters in the same column indicate a significant difference (p < 0.05).

Table 3. Changes in relaxation time and peak area of G. elata dried at 60 ◦C after steaming.

Drying Time (min) T21 (ms) 1,2 T22 (ms) 1,2 T23 (ms) 1,2 A21/g 1,2 A22/g 1,2 A23/g 1,2 ATotal/g 1,2

2 4.69 ± 0.35a 79.83 ± 5.47a 243.61 ± 4.48a 50.35 ± 4.09f 89.75 ± 4.03d 2129.84 ± 4.88a 2269.94 ± 12.43a

4 4.13 ± 0.60ab 70.13 ± 6.28b 226.65 ± 3.32b 58.03 ± 3.91f 102.37 ± 2.34c 1734.84 ± 8.75b 1895.25 ± 7.83b

6 3.69 ± 0.48b 59.77 ± 3.09c 208.94 ± 2.63c 75.253.40e 115.4 ± 4.17b 1417.91 ± 11.16c 1608.55 ± 6.25c

8 2.91 ± 0.16c 50.00 ± 4.05d 195.80 ± 6.31d 93.37 ± 4.21d 133.6 ± 5.11a 1088.21 ± 4.19d 1315.18 ± 7.56d

10 2.48 ± 0.34cd 41.83 ± 2.92e 186.46 ± 2.99d 105.25 ± 3.22c 114.71 ± 3.42b 829.41 ± 4.81e 1049.37 ± 5.28e

12 1.95 ± 0.13d 33.57 ± 1.51f 163.23 ± 7.05e 127.61 ± 5.27a 89.74 ± 2.40d 635.05 ± 8.62f 852.4 ± 4.33f

14 1.23 ± 0.28e 27.92 ± 0.97fg 145.35 ± 6.31f 115.29 ± 4.12b 92.35 ± 2.11e 415.83 ± 4.36g 623.48 ± 5.25g

16 1.07 ± 0.18e 22.73 ± 1.38gh 126.09 ± 3.15g 96.06 ± 5.44d 50.98 ± 1.17f 291.71 ± 6.90h 438.74 ± 3.28h

18 0.86 ± 0.12e 18.58 ± 2.15h - 70.61 ± 5.37e 32.73 ± 4.25g - 103.35 ± 3.22i

20 0.69 ± 0.05e - - 40.99 ± 3.30g - - 40.99 ± 2.13j

1 Values are means ± standard deviation (n = 3). 2 Different letters in the same column indicate a significant difference (p < 0.05).
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Table 4. Changes in relaxation time and peak area of G. elata dried at 80 ◦C after steaming.

Drying Time (min) T21 (ms) 1,2 T22 (ms) 1,2 T23 (ms) 1,2 A21/g 1,2 A22/g 1,2 A23/g 1,2 ATotal/g 1,2

2 4.20 ± 0.14a 73.84 ± 4.06a 226.27 ± 5.32a 57.68 ± 1.93d 91.08 ± 4.04c 2026.95 ± 6.34a 2175.71 ± 9.82a

4 3.70 ± 0.49a 65.46 ± 3.67b 209.65 ± 4.18b 72.70 ± 4.75c 114.61 ± 3.13b 1546.24 ± 10.91b 1733.55 ± 8.43b

6 2.97 ± 0.22b 55.10 ± 3.72c 198.94 ± 5.81b 90.58 ± 7.13b 125.40 ± 3.99a 1136.94 ± 11.04c 1352.92 ± 7.26c

8 2.47 ± 0.24bc 46.34 ± 4.36d 185.32 ± 4.90c 113.37 ± 5.79a 116.93 ± 4.75b 774.60 ± 6.61d 1004.9 ± 5.25d

10 1.98 ± 0.18cd 37.17 ± 1.93e 166.81 ± 3.20d 96.92 ± 4.59b 88.04 ± 2.04c 570.56 ± 5.58e 755.52 ± 6.47e

12 1.64 ± 0.24d 28.57 ± 1.38f 143.23 ± 7.05e 79.28 ± 2.89c 63.07 ± 2.58d 269.21 ± 4.21f 411.56 ± 5.23f

14 1.03 ± 0.15e 21.58 ± 3.70f - 55.96 ± 4.15d 35.67 ± 3.69e - 91.62 ± 4.22g

16 0.93 ± 0.22e - - 35.39 ± 3.51e - - 35.39 ± 3.21h

1 Values are means ± standard deviation (n = 3). 2 Different letters in the same column indicate a significant difference (p < 0.05).
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The signal amplitude of the T2 proton relaxation time was standardized against the sample mass,
giving A21/g, A22/g, A23/g, and Atotal/g, which represent the signal amplitude per mass of bound
water, immobilized water, free water, and total water, respectively [28].

As the area under the signal peak was proportional to the water content, it can be used to
estimate the sample water content. The Atotal/g values continued to decline with increasing drying
time, which indicated that water always moved in the direction of poor mobility. Furthermore,
higher temperatures resulted in faster movement. The A23/g values decreased similarly to the Atotal/g
values, which indicated that free water had the highest mobility and was removed first in the drying
process. Changes in the A22/g values showed no obvious pattern, possibly owing to cell membrane
damage caused by drying and the irregular movement of immobilized water. The A21/g values initially
increased and then decreased in the drying process, which might be due to free water and immobilized
water moving in the direction of poor mobility with increasing drying time, thus increasing the bound
water content. After drying for 16 h, the contents of all three water states decreased, and only bound
water remained at the end of drying.

2.3. MRI Analysis of G. Elata during Drying

As a fast and nondestructive analytical technology, MRI can analyze the internal structure and
water states of samples during the drying process. Figure 4 shows vertical-sectional and cross-sectional
MRI images of G. elata during the drying process. The color strip shows that different colors represent
different proton densities and indirectly reflect moisture content. As shown in Figure 4, the color of the
image was consistent after steaming G. elata, indicating that the water distribution was uniform. As the
drying time increased, the yellow area decreased and the green area increased, indicating that moisture
was continuously lost during the drying process. The proton density decreased from the outside to the
inside, as previously observed in dried eggplant [29]. After drying for 16 h, the MRI image became
barely visible, demonstrating that most of the water had evaporated, leaving only bound water that
was tightly linked to the macromolecules.
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2.4. Change in the Color of G. elata at Different Drying Temperatures

The color of dry G. elata is another important indicator for evaluating herb quality. The impact of
temperature on the color parameters (L*, a*, b*) is shown in Figure 5 L* values (lightness) decreased as
the drying temperature increased (40, 60, and 80 ◦C), while b* values (yellowness) increased gradually,
and a* values (redness) were significantly higher at 80 ◦C. These results might be attributed to the
occurrence of Maillard browning reactions [30]. Therefore, it is advisable to use lower temperatures
during the drying processing to ensure the quality of dried G. elata appearance is maintained.
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2.5. Correlation Analysis

As a fast and nondestructive analytical technique, NMR technology can replace some
time-consuming methods if the relationships between NMR parameters and relative physicochemical
parameters are determined. Relationships among moisture content (MC), LF-NMR parameters,
and color parameters were investigated using linear analysis, with the corresponding correlation
coefficients shown in Table 5. MC showed very significant correlations with T21, T22, A23/g,
and ATotal/g, with coefficients of 0.982, 0.980, 0.990, and 0.996, respectively. Similarly, L* showed very
significant correlations with A23/g and Atotal/g, while b* showed significant correlations with T22

and T23. No significant correlation was found between a* and the NMR parameters in the G. elata
samples. These results showed that LF-NMR was not only able to measure the moisture content,
but also reflected the color of the medicinal material, which can reflect its overall quality.

Table 5. Correlation coefficients among moisture content (MC), LF-NMR parameters, and color
parameters.

T21 T22 T23 A21/g A22/g A23/g A Total/g

MC 0.982 * 0.980 ** 0.972 * 0.233 0.131 0.991 ** 0.996 **
L* −0.162 −0.628 −0.729 0.527 0.521 0.904 ** 0.913 **
a* 0.017 −0.219 0.228 0.509 0.432 0.613 0.722
b* 0.728 0.823 * 0.845 * 0.749 0.071 0.769 0.776

* p < 0.05, significant at the 0.05 level, ** p < 0.01, significant at the 0.01 level.

2.6. Establishment of the PLSR Model

A strong correlation was found between Atotal/g and MC. Therefore, the linear equations
can predict the moisture content in G. elata. However, as reported by Li et al. [31], the NMR
parameters of T2 curves were extremely collinear. Therefore, it is necessary to establish a more
reliable prediction method.

As a reliable and convenient multivariate regression method, PLSR is well-suited to solving
multicollinearity problems [32]. Figure 6A shows the relationship between the RMSEV of calibration
and rank values, which clearly showed that the best rank value was 6. From the best rank value,
predicted values vs. measured values of MC were obtained using the PLSR model. R2

c, R2
cv, RMSEC,

RMSEV, and RPD were used to evaluate the model. The PLSR model for MC gave R2
c and R2

cv values
of 0.994 and 0.993, with RMSEC and RMSEV values of 2.07 and 2.16, while the RPD value was 12.7.
These results indicated that PLSR analysis, which accounted for all NMR parameters, also showed
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good correlations among these parameters. All results demonstrated that LF-NMR was a feasible and
convenient method for monitoring moisture content.
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3. Experimental

3.1. Sample Preparation

Fresh G. elata (second class Gastrodia elata f. glauca) used in this study was purchased from the
Xiaocaoba Gastrodia Planting Base in Shaotong City (Shaotong, Yunnan Province, China) and stored in
a refrigerator at 4 ◦C before use. Before each experiment, G. elata was washed and steamed for 10 min
in a steamer (Qiaojieer Electric Co. Ltd., Zibo, Shandong, China). After steaming, the G. elata tuber
was cut into pieces approximately 4 cm in height and 1 cm in radius with 90◦ curvature. The weight of
each G. elata tuber sample was approximately 10 ± 0.5 g.

3.2. Moisture Content Measurement

The initial moisture content (MC) was calculated using Equation (1):

MC =
W0 − W

W
(1)

where W0 (g) is the initial mass and W (g) is the constant mass after drying at 105 ◦C.

3.3. Drying Process

G. elata tuber samples were laid flat on a metal grid tray and placed in an infrared-forced circulation
drying oven (Wujiang Huafei Electric Heating Equipment Co. Ltd., Suzhou, China). The samples were
dried at 40, 60, or 80 ◦C with a constant air velocity of 1 m/s over the tray. The samples were weighed
every 30 min for the first hour, and then every 1 h until the change in weight between measurements
was less than 0.01 g. All experiments were performed in triplicate.

3.4. LF-1H NMR Measurements

LF-1H NMR measurements were performed using an NMR Analyzer (MesoMR23-060H-I,
Niumag Corp., Shanghai, China) equipped with a 0.5 T permanent magnet corresponding to a
proton resonance frequency of 20 MHz at 32 ◦C. The G. elata tuber samples were placed in an
NMR tube with an outer diameter of 25 mm. The proton decay signals were collected using the
Carr–Purcell–Meiboom–Gill pulse sequence (CPMG) with a τ-value (time between 90◦ pulse and
180◦ pulse) of 200 µs, and 90◦ and 180◦ pulses of 7.5 and 15 µs, respectively. The NMR measurement



Molecules 2019, 24, 236 10 of 12

parameters were set as follows: Echo time (TE), 0.35 ms; waiting time (TW), 2000 ms; data from 18,000
echoes acquired using 8 repeated scans.

Relaxation time analysis and distributed exponential curve fitting were performed using
MultiExp Inv Analysis software (Niumag Corp., Shanghai, China). Multiexponential fitting analysis
was performed on the relaxation data using a modified inversion algorithm to obtain improved
fitting. The relaxation time and its corresponding water population (area ratio) from this analysis
were recorded.

3.5. MRI Detection

MRI was performed using an NMR Analyzer (MesoMR23-060H-I, Niumag Corp., Shanghai,
China) equipped with a 25-mm radio frequency coil at 32 ◦C. The MRI measurement parameters were
set as follows: Slice width, 3 mm; slice gap, 1 mm; TR (time repetition), 2000; TE (time echo), 25 ms;
average, 4.

3.6. Color Analysis

The fracture surface color of G. elata was measured using an NH310 high-quality portable
colorimeter (Shenzhen 3NH Technology Co. Ltd., Shenzhen, China). The color was described in
terms of L*, a*, and b*, where L* is lightness (0 for black, 100 for white), a* is green to red, and b* is blue
to yellow. All experiments were performed in triplicate.

3.7. Statistical Analysis

Data are reported as means ± standard deviation. The moisture content, transverse relaxation
time, and signal amplitude were calculated using the Statistical Package for the Social Sciences
version 17.0 (SPSS Inc., Chicago, IL, USA). One-way analysis of variance (ANOVA) was used to
determine whether differences between the mean values were significant. Origin 9 (OriginLab Corp.,
Northampton, MA, USA) was used to produce the figures. PLSR analysis was performed using
Unscrambler 9.7 (Camo Software AS, Oslo, Norway). The performance of the PLSR model can be
evaluated using the determination coefficients of calibration (R2

C) and cross-validation (R2
CV), and the

root mean square errors of calibration (RMSEC) and cross-validation (RMSECV). In general, a good
model should have high R2

C and R2
CV values, and low RMSEC and RMSECV values.

4. Conclusions

This study indicates that the LF-NMR and MRI method is feasible for monitoring water variation
in G. elata samples during the drying process. Three water states (bound, immobilized, and free)
in G. elata samples were investigated using multiexponential fitting and inversion of the NMR data.
LF-NMR reflected the variation in water states in G. elata samples during drying, while MRI reflected
the spatial distribution of water and structural changes. Significant correlations were found among
MC, L*, b*, and NMR parameters. PLSR analysis, taking into account all NMR parameters, also showed
good correlations among these parameters. These results suggested that LF-NMR was a feasible
and convenient method for monitoring moisture content. This demonstrates that LF-NMR and MRI
can monitor the drying process of G. elata, and has great potential for application to other Chinese
herbal medicines.
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